Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltflcei Structured version   Visualization version   GIF version

Theorem ltflcei 37214
Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
ltflcei ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))

Proof of Theorem ltflcei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13806 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 728 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 renegcl 11560 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 flval 13800 . . . . . . . . 9 (-𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
65ad3antlr 729 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
7 fllep1 13807 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
87adantl 480 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ ((⌊‘𝐴) + 1))
9 reflcl 13802 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
10 peano2re 11424 . . . . . . . . . . . . . . . . 17 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
119, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
1211adantl 480 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 letr 11345 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
1412, 13mpd3an3 1458 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
158, 14mpan2d 692 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐵 ≤ ((⌊‘𝐴) + 1)))
16 leneg 11754 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1711, 16sylan2 591 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1815, 17sylibd 238 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
1918ancoms 457 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
20 ltneg 11751 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
219, 20sylan 578 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
229recnd 11279 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
23 ax-1cn 11203 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
24 negdi2 11555 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘𝐴) + 1) = (-(⌊‘𝐴) − 1))
2524oveq1d 7434 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (-((⌊‘𝐴) + 1) + 1) = ((-(⌊‘𝐴) − 1) + 1))
26 negcl 11497 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝐴) ∈ ℂ → -(⌊‘𝐴) ∈ ℂ)
27 npcan 11506 . . . . . . . . . . . . . . . . . 18 ((-(⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2826, 27sylan 578 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2925, 28eqtr2d 2766 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3022, 23, 29sylancl 584 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3130breq2d 5161 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3231adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3321, 32bitrd 278 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3433biimpd 228 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 → -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3519, 34anim12d 607 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴 ∧ (⌊‘𝐴) < 𝐵) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3635ancomsd 464 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) < 𝐵𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3736impl 454 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
38 flcl 13801 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
3938peano2zd 12707 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℤ)
4039znegcld 12706 . . . . . . . . . 10 (𝐴 ∈ ℝ → -((⌊‘𝐴) + 1) ∈ ℤ)
41 rebtwnz 12969 . . . . . . . . . . 11 (-𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
423, 41syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
43 breq1 5152 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 ≤ -𝐵 ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
44 oveq1 7426 . . . . . . . . . . . . 13 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 + 1) = (-((⌊‘𝐴) + 1) + 1))
4544breq2d 5161 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (-𝐵 < (𝑥 + 1) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
4643, 45anbi12d 630 . . . . . . . . . . 11 (𝑥 = -((⌊‘𝐴) + 1) → ((𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)) ↔ (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
4746riota2 7401 . . . . . . . . . 10 ((-((⌊‘𝐴) + 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4840, 42, 47syl2an 594 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4948ad2antrr 724 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
5037, 49mpbid 231 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))
516, 50eqtrd 2765 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = -((⌊‘𝐴) + 1))
5238zcnd 12705 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
53 peano2cn 11423 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℂ → ((⌊‘𝐴) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℂ)
553flcld 13804 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℤ)
5655zcnd 12705 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℂ)
57 negcon2 11550 . . . . . . . 8 ((((⌊‘𝐴) + 1) ∈ ℂ ∧ (⌊‘-𝐵) ∈ ℂ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5854, 56, 57syl2an 594 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5958ad2antrr 724 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
6051, 59mpbird 256 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((⌊‘𝐴) + 1) = -(⌊‘-𝐵))
612, 60breqtrd 5175 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < -(⌊‘-𝐵))
6261ex 411 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (𝐵𝐴𝐴 < -(⌊‘-𝐵)))
63 ltnle 11330 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
64 ceige 13850 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ -(⌊‘-𝐵))
6564adantl 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ -(⌊‘-𝐵))
66 ceicl 13847 . . . . . . . . 9 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℤ)
6766zred 12704 . . . . . . . 8 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℝ)
6867adantl 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(⌊‘-𝐵) ∈ ℝ)
69 ltletr 11343 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -(⌊‘-𝐵) ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7068, 69mpd3an3 1458 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7165, 70mpan2d 692 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < -(⌊‘-𝐵)))
7263, 71sylbird 259 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7372adantr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7462, 73pm2.61d 179 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → 𝐴 < -(⌊‘-𝐵))
75 flval 13800 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
7675ad3antrrr 728 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
77 ceim1l 13853 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) < 𝐵)
7877adantl 480 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) < 𝐵)
79 peano2rem 11564 . . . . . . . . . . . . . 14 (-(⌊‘-𝐵) ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8180adantl 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) ∈ ℝ)
82 ltleletr 11344 . . . . . . . . . . . . 13 (((-(⌊‘-𝐵) − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
83823com13 1121 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-(⌊‘-𝐵) − 1) ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8481, 83mpd3an3 1458 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8578, 84mpand 693 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8666zcnd 12705 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℂ)
87 npcan 11506 . . . . . . . . . . . . . 14 ((-(⌊‘-𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8886, 23, 87sylancl 584 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8988breq2d 5161 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐴 < ((-(⌊‘-𝐵) − 1) + 1) ↔ 𝐴 < -(⌊‘-𝐵)))
9089biimprd 247 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9190adantl 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9285, 91anim12d 607 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴 < -(⌊‘-𝐵)) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9392ancomsd 464 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < -(⌊‘-𝐵) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9493impl 454 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
95 peano2zm 12643 . . . . . . . . . 10 (-(⌊‘-𝐵) ∈ ℤ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
9666, 95syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
97 rebtwnz 12969 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
98 breq1 5152 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥𝐴 ↔ (-(⌊‘-𝐵) − 1) ≤ 𝐴))
99 oveq1 7426 . . . . . . . . . . . 12 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 + 1) = ((-(⌊‘-𝐵) − 1) + 1))
10099breq2d 5161 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
10198, 100anbi12d 630 . . . . . . . . . 10 (𝑥 = (-(⌊‘-𝐵) − 1) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
102101riota2 7401 . . . . . . . . 9 (((-(⌊‘-𝐵) − 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10396, 97, 102syl2anr 595 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
104103ad2antrr 724 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10594, 104mpbid 231 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))
10676, 105eqtrd 2765 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (-(⌊‘-𝐵) − 1))
10777ad3antlr 729 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (-(⌊‘-𝐵) − 1) < 𝐵)
108106, 107eqbrtrd 5171 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) < 𝐵)
109108ex 411 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (𝐵𝐴 → (⌊‘𝐴) < 𝐵))
110 flle 13805 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
111110adantr 479 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
1129adantr 479 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
113 lelttr 11341 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
1141133coml 1124 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
115112, 114mpd3an3 1458 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
116111, 115mpand 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (⌊‘𝐴) < 𝐵))
11763, 116sylbird 259 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
118117adantr 479 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
119109, 118pm2.61d 179 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (⌊‘𝐴) < 𝐵)
12074, 119impbida 799 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  ∃!wreu 3361   class class class wbr 5149  cfv 6549  crio 7374  (class class class)co 7419  cc 11143  cr 11144  1c1 11146   + caddc 11148   < clt 11285  cle 11286  cmin 11481  -cneg 11482  cz 12596  cfl 13796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-inf 9473  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-fl 13798
This theorem is referenced by:  leceifl  37215
  Copyright terms: Public domain W3C validator