Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltflcei Structured version   Visualization version   GIF version

Theorem ltflcei 35451
Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
ltflcei ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))

Proof of Theorem ltflcei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13340 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 730 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 renegcl 11106 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 flval 13334 . . . . . . . . 9 (-𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
65ad3antlr 731 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
7 fllep1 13341 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
87adantl 485 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ ((⌊‘𝐴) + 1))
9 reflcl 13336 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
10 peano2re 10970 . . . . . . . . . . . . . . . . 17 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
119, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
1211adantl 485 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 letr 10891 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
1412, 13mpd3an3 1464 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
158, 14mpan2d 694 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐵 ≤ ((⌊‘𝐴) + 1)))
16 leneg 11300 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1711, 16sylan2 596 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1815, 17sylibd 242 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
1918ancoms 462 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
20 ltneg 11297 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
219, 20sylan 583 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
229recnd 10826 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
23 ax-1cn 10752 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
24 negdi2 11101 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘𝐴) + 1) = (-(⌊‘𝐴) − 1))
2524oveq1d 7206 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (-((⌊‘𝐴) + 1) + 1) = ((-(⌊‘𝐴) − 1) + 1))
26 negcl 11043 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝐴) ∈ ℂ → -(⌊‘𝐴) ∈ ℂ)
27 npcan 11052 . . . . . . . . . . . . . . . . . 18 ((-(⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2826, 27sylan 583 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2925, 28eqtr2d 2772 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3022, 23, 29sylancl 589 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3130breq2d 5051 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3231adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3321, 32bitrd 282 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3433biimpd 232 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 → -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3519, 34anim12d 612 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴 ∧ (⌊‘𝐴) < 𝐵) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3635ancomsd 469 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) < 𝐵𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3736impl 459 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
38 flcl 13335 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
3938peano2zd 12250 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℤ)
4039znegcld 12249 . . . . . . . . . 10 (𝐴 ∈ ℝ → -((⌊‘𝐴) + 1) ∈ ℤ)
41 rebtwnz 12508 . . . . . . . . . . 11 (-𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
423, 41syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
43 breq1 5042 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 ≤ -𝐵 ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
44 oveq1 7198 . . . . . . . . . . . . 13 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 + 1) = (-((⌊‘𝐴) + 1) + 1))
4544breq2d 5051 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (-𝐵 < (𝑥 + 1) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
4643, 45anbi12d 634 . . . . . . . . . . 11 (𝑥 = -((⌊‘𝐴) + 1) → ((𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)) ↔ (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
4746riota2 7174 . . . . . . . . . 10 ((-((⌊‘𝐴) + 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4840, 42, 47syl2an 599 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4948ad2antrr 726 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
5037, 49mpbid 235 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))
516, 50eqtrd 2771 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = -((⌊‘𝐴) + 1))
5238zcnd 12248 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
53 peano2cn 10969 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℂ → ((⌊‘𝐴) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℂ)
553flcld 13338 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℤ)
5655zcnd 12248 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℂ)
57 negcon2 11096 . . . . . . . 8 ((((⌊‘𝐴) + 1) ∈ ℂ ∧ (⌊‘-𝐵) ∈ ℂ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5854, 56, 57syl2an 599 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5958ad2antrr 726 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
6051, 59mpbird 260 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((⌊‘𝐴) + 1) = -(⌊‘-𝐵))
612, 60breqtrd 5065 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < -(⌊‘-𝐵))
6261ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (𝐵𝐴𝐴 < -(⌊‘-𝐵)))
63 ltnle 10877 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
64 ceige 13383 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ -(⌊‘-𝐵))
6564adantl 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ -(⌊‘-𝐵))
66 ceicl 13381 . . . . . . . . 9 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℤ)
6766zred 12247 . . . . . . . 8 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℝ)
6867adantl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(⌊‘-𝐵) ∈ ℝ)
69 ltletr 10889 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -(⌊‘-𝐵) ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7068, 69mpd3an3 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7165, 70mpan2d 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < -(⌊‘-𝐵)))
7263, 71sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7372adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7462, 73pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → 𝐴 < -(⌊‘-𝐵))
75 flval 13334 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
7675ad3antrrr 730 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
77 ceim1l 13385 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) < 𝐵)
7877adantl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) < 𝐵)
79 peano2rem 11110 . . . . . . . . . . . . . 14 (-(⌊‘-𝐵) ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8180adantl 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) ∈ ℝ)
82 ltleletr 10890 . . . . . . . . . . . . 13 (((-(⌊‘-𝐵) − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
83823com13 1126 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-(⌊‘-𝐵) − 1) ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8481, 83mpd3an3 1464 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8578, 84mpand 695 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8666zcnd 12248 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℂ)
87 npcan 11052 . . . . . . . . . . . . . 14 ((-(⌊‘-𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8886, 23, 87sylancl 589 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8988breq2d 5051 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐴 < ((-(⌊‘-𝐵) − 1) + 1) ↔ 𝐴 < -(⌊‘-𝐵)))
9089biimprd 251 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9190adantl 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9285, 91anim12d 612 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴 < -(⌊‘-𝐵)) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9392ancomsd 469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < -(⌊‘-𝐵) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9493impl 459 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
95 peano2zm 12185 . . . . . . . . . 10 (-(⌊‘-𝐵) ∈ ℤ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
9666, 95syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
97 rebtwnz 12508 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
98 breq1 5042 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥𝐴 ↔ (-(⌊‘-𝐵) − 1) ≤ 𝐴))
99 oveq1 7198 . . . . . . . . . . . 12 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 + 1) = ((-(⌊‘-𝐵) − 1) + 1))
10099breq2d 5051 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
10198, 100anbi12d 634 . . . . . . . . . 10 (𝑥 = (-(⌊‘-𝐵) − 1) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
102101riota2 7174 . . . . . . . . 9 (((-(⌊‘-𝐵) − 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10396, 97, 102syl2anr 600 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
104103ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10594, 104mpbid 235 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))
10676, 105eqtrd 2771 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (-(⌊‘-𝐵) − 1))
10777ad3antlr 731 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (-(⌊‘-𝐵) − 1) < 𝐵)
108106, 107eqbrtrd 5061 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) < 𝐵)
109108ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (𝐵𝐴 → (⌊‘𝐴) < 𝐵))
110 flle 13339 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
111110adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
1129adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
113 lelttr 10888 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
1141133coml 1129 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
115112, 114mpd3an3 1464 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
116111, 115mpand 695 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (⌊‘𝐴) < 𝐵))
11763, 116sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
118117adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
119109, 118pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (⌊‘𝐴) < 𝐵)
12074, 119impbida 801 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  ∃!wreu 3053   class class class wbr 5039  cfv 6358  crio 7147  (class class class)co 7191  cc 10692  cr 10693  1c1 10695   + caddc 10697   < clt 10832  cle 10833  cmin 11027  -cneg 11028  cz 12141  cfl 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fl 13332
This theorem is referenced by:  leceifl  35452
  Copyright terms: Public domain W3C validator