Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltflcei Structured version   Visualization version   GIF version

Theorem ltflcei 35038
Description: Theorem to move the floor function across a strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
ltflcei ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))

Proof of Theorem ltflcei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 flltp1 13169 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21ad3antrrr 729 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < ((⌊‘𝐴) + 1))
3 renegcl 10942 . . . . . . . . 9 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
4 flval 13163 . . . . . . . . 9 (-𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
53, 4syl 17 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
65ad3antlr 730 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))))
7 fllep1 13170 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
87adantl 485 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ ((⌊‘𝐴) + 1))
9 reflcl 13165 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
10 peano2re 10806 . . . . . . . . . . . . . . . . 17 ((⌊‘𝐴) ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
119, 10syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ)
1211adantl 485 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 letr 10727 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
1412, 13mpd3an3 1459 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐴𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1)))
158, 14mpan2d 693 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴𝐵 ≤ ((⌊‘𝐴) + 1)))
16 leneg 11136 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1711, 16sylan2 595 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
1815, 17sylibd 242 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
1918ancoms 462 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵))
20 ltneg 11133 . . . . . . . . . . . . . 14 (((⌊‘𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
219, 20sylan 583 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴)))
229recnd 10662 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
23 ax-1cn 10588 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
24 negdi2 10937 . . . . . . . . . . . . . . . . . 18 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘𝐴) + 1) = (-(⌊‘𝐴) − 1))
2524oveq1d 7154 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (-((⌊‘𝐴) + 1) + 1) = ((-(⌊‘𝐴) − 1) + 1))
26 negcl 10879 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝐴) ∈ ℂ → -(⌊‘𝐴) ∈ ℂ)
27 npcan 10888 . . . . . . . . . . . . . . . . . 18 ((-(⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2826, 27sylan 583 . . . . . . . . . . . . . . . . 17 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) = -(⌊‘𝐴))
2925, 28eqtr2d 2837 . . . . . . . . . . . . . . . 16 (((⌊‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3022, 23, 29sylancl 589 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1))
3130breq2d 5045 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3231adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3321, 32bitrd 282 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3433biimpd 232 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵 → -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
3519, 34anim12d 611 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴 ∧ (⌊‘𝐴) < 𝐵) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3635ancomsd 469 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) < 𝐵𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
3736impl 459 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
38 flcl 13164 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
3938peano2zd 12082 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℤ)
4039znegcld 12081 . . . . . . . . . 10 (𝐴 ∈ ℝ → -((⌊‘𝐴) + 1) ∈ ℤ)
41 rebtwnz 12339 . . . . . . . . . . 11 (-𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
423, 41syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))
43 breq1 5036 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 ≤ -𝐵 ↔ -((⌊‘𝐴) + 1) ≤ -𝐵))
44 oveq1 7146 . . . . . . . . . . . . 13 (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 + 1) = (-((⌊‘𝐴) + 1) + 1))
4544breq2d 5045 . . . . . . . . . . . 12 (𝑥 = -((⌊‘𝐴) + 1) → (-𝐵 < (𝑥 + 1) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))
4643, 45anbi12d 633 . . . . . . . . . . 11 (𝑥 = -((⌊‘𝐴) + 1) → ((𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)) ↔ (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))))
4746riota2 7122 . . . . . . . . . 10 ((-((⌊‘𝐴) + 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4840, 42, 47syl2an 598 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
4948ad2antrr 725 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)))
5037, 49mpbid 235 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))
516, 50eqtrd 2836 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (⌊‘-𝐵) = -((⌊‘𝐴) + 1))
5238zcnd 12080 . . . . . . . . 9 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
53 peano2cn 10805 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℂ → ((⌊‘𝐴) + 1) ∈ ℂ)
5452, 53syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℂ)
553flcld 13167 . . . . . . . . 9 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℤ)
5655zcnd 12080 . . . . . . . 8 (𝐵 ∈ ℝ → (⌊‘-𝐵) ∈ ℂ)
57 negcon2 10932 . . . . . . . 8 ((((⌊‘𝐴) + 1) ∈ ℂ ∧ (⌊‘-𝐵) ∈ ℂ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5854, 56, 57syl2an 598 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
5958ad2antrr 725 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1)))
6051, 59mpbird 260 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → ((⌊‘𝐴) + 1) = -(⌊‘-𝐵))
612, 60breqtrd 5059 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) ∧ 𝐵𝐴) → 𝐴 < -(⌊‘-𝐵))
6261ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (𝐵𝐴𝐴 < -(⌊‘-𝐵)))
63 ltnle 10713 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
64 ceige 13212 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ≤ -(⌊‘-𝐵))
6564adantl 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ -(⌊‘-𝐵))
66 ceicl 13210 . . . . . . . . 9 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℤ)
6766zred 12079 . . . . . . . 8 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℝ)
6867adantl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -(⌊‘-𝐵) ∈ ℝ)
69 ltletr 10725 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ -(⌊‘-𝐵) ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7068, 69mpd3an3 1459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵)))
7165, 70mpan2d 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < -(⌊‘-𝐵)))
7263, 71sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7372adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → (¬ 𝐵𝐴𝐴 < -(⌊‘-𝐵)))
7462, 73pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (⌊‘𝐴) < 𝐵) → 𝐴 < -(⌊‘-𝐵))
75 flval 13163 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
7675ad3antrrr 729 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
77 ceim1l 13214 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) < 𝐵)
7877adantl 485 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) < 𝐵)
79 peano2rem 10946 . . . . . . . . . . . . . 14 (-(⌊‘-𝐵) ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8067, 79syl 17 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℝ)
8180adantl 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐵) − 1) ∈ ℝ)
82 ltleletr 10726 . . . . . . . . . . . . 13 (((-(⌊‘-𝐵) − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
83823com13 1121 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (-(⌊‘-𝐵) − 1) ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8481, 83mpd3an3 1459 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵𝐵𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8578, 84mpand 694 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 → (-(⌊‘-𝐵) − 1) ≤ 𝐴))
8666zcnd 12080 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ → -(⌊‘-𝐵) ∈ ℂ)
87 npcan 10888 . . . . . . . . . . . . . 14 ((-(⌊‘-𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8886, 23, 87sylancl 589 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵))
8988breq2d 5045 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐴 < ((-(⌊‘-𝐵) − 1) + 1) ↔ 𝐴 < -(⌊‘-𝐵)))
9089biimprd 251 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9190adantl 485 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
9285, 91anim12d 611 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴𝐴 < -(⌊‘-𝐵)) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9392ancomsd 469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < -(⌊‘-𝐵) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
9493impl 459 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
95 peano2zm 12017 . . . . . . . . . 10 (-(⌊‘-𝐵) ∈ ℤ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
9666, 95syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → (-(⌊‘-𝐵) − 1) ∈ ℤ)
97 rebtwnz 12339 . . . . . . . . 9 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
98 breq1 5036 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥𝐴 ↔ (-(⌊‘-𝐵) − 1) ≤ 𝐴))
99 oveq1 7146 . . . . . . . . . . . 12 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 + 1) = ((-(⌊‘-𝐵) − 1) + 1))
10099breq2d 5045 . . . . . . . . . . 11 (𝑥 = (-(⌊‘-𝐵) − 1) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))
10198, 100anbi12d 633 . . . . . . . . . 10 (𝑥 = (-(⌊‘-𝐵) − 1) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ ((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1))))
102101riota2 7122 . . . . . . . . 9 (((-(⌊‘-𝐵) − 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10396, 97, 102syl2anr 599 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
104103ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔ (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)))
10594, 104mpbid 235 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))
10676, 105eqtrd 2836 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) = (-(⌊‘-𝐵) − 1))
10777ad3antlr 730 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (-(⌊‘-𝐵) − 1) < 𝐵)
108106, 107eqbrtrd 5055 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵𝐴) → (⌊‘𝐴) < 𝐵)
109108ex 416 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (𝐵𝐴 → (⌊‘𝐴) < 𝐵))
110 flle 13168 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
111110adantr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴)
1129adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ)
113 lelttr 10724 . . . . . . . 8 (((⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
1141133coml 1124 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
115112, 114mpd3an3 1459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵))
116111, 115mpand 694 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (⌊‘𝐴) < 𝐵))
11763, 116sylbird 263 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
118117adantr 484 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (¬ 𝐵𝐴 → (⌊‘𝐴) < 𝐵))
119109, 118pm2.61d 182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (⌊‘𝐴) < 𝐵)
12074, 119impbida 800 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐴) < 𝐵𝐴 < -(⌊‘-𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  ∃!wreu 3111   class class class wbr 5033  cfv 6328  crio 7096  (class class class)co 7139  cc 10528  cr 10529  1c1 10531   + caddc 10533   < clt 10668  cle 10669  cmin 10863  -cneg 10864  cz 11973  cfl 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fl 13161
This theorem is referenced by:  leceifl  35039
  Copyright terms: Public domain W3C validator