Step | Hyp | Ref
| Expression |
1 | | flltp1 13448 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) |
2 | 1 | ad3antrrr 726 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → 𝐴 < ((⌊‘𝐴) + 1)) |
3 | | renegcl 11214 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → -𝐵 ∈
ℝ) |
4 | | flval 13442 |
. . . . . . . . 9
⊢ (-𝐵 ∈ ℝ →
(⌊‘-𝐵) =
(℩𝑥 ∈
ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))) |
5 | 3, 4 | syl 17 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ →
(⌊‘-𝐵) =
(℩𝑥 ∈
ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))) |
6 | 5 | ad3antlr 727 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → (⌊‘-𝐵) = (℩𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)))) |
7 | | fllep1 13449 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1)) |
8 | 7 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ ((⌊‘𝐴) + 1)) |
9 | | reflcl 13444 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℝ) |
10 | | peano2re 11078 |
. . . . . . . . . . . . . . . . 17
⊢
((⌊‘𝐴)
∈ ℝ → ((⌊‘𝐴) + 1) ∈ ℝ) |
11 | 9, 10 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) + 1)
∈ ℝ) |
12 | 11 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) →
((⌊‘𝐴) + 1)
∈ ℝ) |
13 | | letr 10999 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧
((⌊‘𝐴) + 1)
∈ ℝ) → ((𝐵
≤ 𝐴 ∧ 𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1))) |
14 | 12, 13 | mpd3an3 1460 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 ≤ ((⌊‘𝐴) + 1)) → 𝐵 ≤ ((⌊‘𝐴) + 1))) |
15 | 8, 14 | mpan2d 690 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 → 𝐵 ≤ ((⌊‘𝐴) + 1))) |
16 | | leneg 11408 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧
((⌊‘𝐴) + 1)
∈ ℝ) → (𝐵
≤ ((⌊‘𝐴) +
1) ↔ -((⌊‘𝐴) + 1) ≤ -𝐵)) |
17 | 11, 16 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ ((⌊‘𝐴) + 1) ↔
-((⌊‘𝐴) + 1)
≤ -𝐵)) |
18 | 15, 17 | sylibd 238 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵)) |
19 | 18 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 → -((⌊‘𝐴) + 1) ≤ -𝐵)) |
20 | | ltneg 11405 |
. . . . . . . . . . . . . 14
⊢
(((⌊‘𝐴)
∈ ℝ ∧ 𝐵
∈ ℝ) → ((⌊‘𝐴) < 𝐵 ↔ -𝐵 < -(⌊‘𝐴))) |
21 | 9, 20 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((⌊‘𝐴) <
𝐵 ↔ -𝐵 < -(⌊‘𝐴))) |
22 | 9 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℂ) |
23 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
24 | | negdi2 11209 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⌊‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → -((⌊‘𝐴) + 1) = (-(⌊‘𝐴) − 1)) |
25 | 24 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢
(((⌊‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → (-((⌊‘𝐴) + 1) + 1) =
((-(⌊‘𝐴)
− 1) + 1)) |
26 | | negcl 11151 |
. . . . . . . . . . . . . . . . . 18
⊢
((⌊‘𝐴)
∈ ℂ → -(⌊‘𝐴) ∈ ℂ) |
27 | | npcan 11160 |
. . . . . . . . . . . . . . . . . 18
⊢
((-(⌊‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) =
-(⌊‘𝐴)) |
28 | 26, 27 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢
(((⌊‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → ((-(⌊‘𝐴) − 1) + 1) =
-(⌊‘𝐴)) |
29 | 25, 28 | eqtr2d 2779 |
. . . . . . . . . . . . . . . 16
⊢
(((⌊‘𝐴)
∈ ℂ ∧ 1 ∈ ℂ) → -(⌊‘𝐴) = (-((⌊‘𝐴) + 1) + 1)) |
30 | 22, 23, 29 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ →
-(⌊‘𝐴) =
(-((⌊‘𝐴) + 1) +
1)) |
31 | 30 | breq2d 5082 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1))) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 < -(⌊‘𝐴) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1))) |
33 | 21, 32 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((⌊‘𝐴) <
𝐵 ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1))) |
34 | 33 | biimpd 228 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((⌊‘𝐴) <
𝐵 → -𝐵 < (-((⌊‘𝐴) + 1) + 1))) |
35 | 19, 34 | anim12d 608 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ (⌊‘𝐴) < 𝐵) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))) |
36 | 35 | ancomsd 465 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(((⌊‘𝐴) <
𝐵 ∧ 𝐵 ≤ 𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))) |
37 | 36 | impl 455 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1))) |
38 | | flcl 13443 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℤ) |
39 | 38 | peano2zd 12358 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) + 1)
∈ ℤ) |
40 | 39 | znegcld 12357 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ →
-((⌊‘𝐴) + 1)
∈ ℤ) |
41 | | rebtwnz 12616 |
. . . . . . . . . . 11
⊢ (-𝐵 ∈ ℝ →
∃!𝑥 ∈ ℤ
(𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) |
42 | 3, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ →
∃!𝑥 ∈ ℤ
(𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) |
43 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 ≤ -𝐵 ↔ -((⌊‘𝐴) + 1) ≤ -𝐵)) |
44 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = -((⌊‘𝐴) + 1) → (𝑥 + 1) = (-((⌊‘𝐴) + 1) + 1)) |
45 | 44 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝑥 = -((⌊‘𝐴) + 1) → (-𝐵 < (𝑥 + 1) ↔ -𝐵 < (-((⌊‘𝐴) + 1) + 1))) |
46 | 43, 45 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = -((⌊‘𝐴) + 1) → ((𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1)) ↔ (-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)))) |
47 | 46 | riota2 7238 |
. . . . . . . . . 10
⊢
((-((⌊‘𝐴) + 1) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))) |
48 | 40, 42, 47 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((-((⌊‘𝐴) + 1)
≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔
(℩𝑥 ∈
ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))) |
49 | 48 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → ((-((⌊‘𝐴) + 1) ≤ -𝐵 ∧ -𝐵 < (-((⌊‘𝐴) + 1) + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1))) |
50 | 37, 49 | mpbid 231 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → (℩𝑥 ∈ ℤ (𝑥 ≤ -𝐵 ∧ -𝐵 < (𝑥 + 1))) = -((⌊‘𝐴) + 1)) |
51 | 6, 50 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → (⌊‘-𝐵) = -((⌊‘𝐴) + 1)) |
52 | 38 | zcnd 12356 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ∈
ℂ) |
53 | | peano2cn 11077 |
. . . . . . . . 9
⊢
((⌊‘𝐴)
∈ ℂ → ((⌊‘𝐴) + 1) ∈ ℂ) |
54 | 52, 53 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ →
((⌊‘𝐴) + 1)
∈ ℂ) |
55 | 3 | flcld 13446 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ →
(⌊‘-𝐵) ∈
ℤ) |
56 | 55 | zcnd 12356 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ →
(⌊‘-𝐵) ∈
ℂ) |
57 | | negcon2 11204 |
. . . . . . . 8
⊢
((((⌊‘𝐴)
+ 1) ∈ ℂ ∧ (⌊‘-𝐵) ∈ ℂ) →
(((⌊‘𝐴) + 1) =
-(⌊‘-𝐵) ↔
(⌊‘-𝐵) =
-((⌊‘𝐴) +
1))) |
58 | 54, 56, 57 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(((⌊‘𝐴) + 1) =
-(⌊‘-𝐵) ↔
(⌊‘-𝐵) =
-((⌊‘𝐴) +
1))) |
59 | 58 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → (((⌊‘𝐴) + 1) = -(⌊‘-𝐵) ↔ (⌊‘-𝐵) = -((⌊‘𝐴) + 1))) |
60 | 51, 59 | mpbird 256 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → ((⌊‘𝐴) + 1) = -(⌊‘-𝐵)) |
61 | 2, 60 | breqtrd 5096 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) ∧ 𝐵 ≤ 𝐴) → 𝐴 < -(⌊‘-𝐵)) |
62 | 61 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) → (𝐵 ≤ 𝐴 → 𝐴 < -(⌊‘-𝐵))) |
63 | | ltnle 10985 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
64 | | ceige 13492 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 𝐵 ≤ -(⌊‘-𝐵)) |
65 | 64 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ -(⌊‘-𝐵)) |
66 | | ceicl 13489 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ →
-(⌊‘-𝐵) ∈
ℤ) |
67 | 66 | zred 12355 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ →
-(⌊‘-𝐵) ∈
ℝ) |
68 | 67 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
-(⌊‘-𝐵) ∈
ℝ) |
69 | | ltletr 10997 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧
-(⌊‘-𝐵) ∈
ℝ) → ((𝐴 <
𝐵 ∧ 𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵))) |
70 | 68, 69 | mpd3an3 1460 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ -(⌊‘-𝐵)) → 𝐴 < -(⌊‘-𝐵))) |
71 | 65, 70 | mpan2d 690 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 < -(⌊‘-𝐵))) |
72 | 63, 71 | sylbird 259 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
𝐵 ≤ 𝐴 → 𝐴 < -(⌊‘-𝐵))) |
73 | 72 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) → (¬ 𝐵 ≤ 𝐴 → 𝐴 < -(⌊‘-𝐵))) |
74 | 62, 73 | pm2.61d 179 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧
(⌊‘𝐴) <
𝐵) → 𝐴 < -(⌊‘-𝐵)) |
75 | | flval 13442 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) =
(℩𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
76 | 75 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
77 | | ceim1l 13495 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ →
(-(⌊‘-𝐵)
− 1) < 𝐵) |
78 | 77 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-(⌊‘-𝐵)
− 1) < 𝐵) |
79 | | peano2rem 11218 |
. . . . . . . . . . . . . 14
⊢
(-(⌊‘-𝐵)
∈ ℝ → (-(⌊‘-𝐵) − 1) ∈
ℝ) |
80 | 67, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ →
(-(⌊‘-𝐵)
− 1) ∈ ℝ) |
81 | 80 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(-(⌊‘-𝐵)
− 1) ∈ ℝ) |
82 | | ltleletr 10998 |
. . . . . . . . . . . . 13
⊢
(((-(⌊‘-𝐵) − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) →
(((-(⌊‘-𝐵)
− 1) < 𝐵 ∧
𝐵 ≤ 𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴)) |
83 | 82 | 3com13 1122 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧
(-(⌊‘-𝐵)
− 1) ∈ ℝ) → (((-(⌊‘-𝐵) − 1) < 𝐵 ∧ 𝐵 ≤ 𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴)) |
84 | 81, 83 | mpd3an3 1460 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(((-(⌊‘-𝐵)
− 1) < 𝐵 ∧
𝐵 ≤ 𝐴) → (-(⌊‘-𝐵) − 1) ≤ 𝐴)) |
85 | 78, 84 | mpand 691 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 → (-(⌊‘-𝐵) − 1) ≤ 𝐴)) |
86 | 66 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℝ →
-(⌊‘-𝐵) ∈
ℂ) |
87 | | npcan 11160 |
. . . . . . . . . . . . . 14
⊢
((-(⌊‘-𝐵) ∈ ℂ ∧ 1 ∈ ℂ)
→ ((-(⌊‘-𝐵) − 1) + 1) = -(⌊‘-𝐵)) |
88 | 86, 23, 87 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ →
((-(⌊‘-𝐵)
− 1) + 1) = -(⌊‘-𝐵)) |
89 | 88 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ → (𝐴 < ((-(⌊‘-𝐵) − 1) + 1) ↔ 𝐴 < -(⌊‘-𝐵))) |
90 | 89 | biimprd 247 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1))) |
91 | 90 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < -(⌊‘-𝐵) → 𝐴 < ((-(⌊‘-𝐵) − 1) + 1))) |
92 | 85, 91 | anim12d 608 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < -(⌊‘-𝐵)) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴 ∧ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))) |
93 | 92 | ancomsd 465 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < -(⌊‘-𝐵) ∧ 𝐵 ≤ 𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴 ∧ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))) |
94 | 93 | impl 455 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → ((-(⌊‘-𝐵) − 1) ≤ 𝐴 ∧ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1))) |
95 | | peano2zm 12293 |
. . . . . . . . . 10
⊢
(-(⌊‘-𝐵)
∈ ℤ → (-(⌊‘-𝐵) − 1) ∈
ℤ) |
96 | 66, 95 | syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ →
(-(⌊‘-𝐵)
− 1) ∈ ℤ) |
97 | | rebtwnz 12616 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ →
∃!𝑥 ∈ ℤ
(𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
98 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 ≤ 𝐴 ↔ (-(⌊‘-𝐵) − 1) ≤ 𝐴)) |
99 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑥 = (-(⌊‘-𝐵) − 1) → (𝑥 + 1) = ((-(⌊‘-𝐵) − 1) +
1)) |
100 | 99 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑥 = (-(⌊‘-𝐵) − 1) → (𝐴 < (𝑥 + 1) ↔ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1))) |
101 | 98, 100 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑥 = (-(⌊‘-𝐵) − 1) → ((𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) ↔ ((-(⌊‘-𝐵) − 1) ≤ 𝐴 ∧ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)))) |
102 | 101 | riota2 7238 |
. . . . . . . . 9
⊢
(((-(⌊‘-𝐵) − 1) ∈ ℤ ∧
∃!𝑥 ∈ ℤ
(𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴 ∧ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔
(℩𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))) |
103 | 96, 97, 102 | syl2anr 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(((-(⌊‘-𝐵)
− 1) ≤ 𝐴 ∧
𝐴 <
((-(⌊‘-𝐵)
− 1) + 1)) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))) |
104 | 103 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → (((-(⌊‘-𝐵) − 1) ≤ 𝐴 ∧ 𝐴 < ((-(⌊‘-𝐵) − 1) + 1)) ↔
(℩𝑥 ∈
ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1))) |
105 | 94, 104 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) = (-(⌊‘-𝐵) − 1)) |
106 | 76, 105 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → (⌊‘𝐴) = (-(⌊‘-𝐵) − 1)) |
107 | 77 | ad3antlr 727 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → (-(⌊‘-𝐵) − 1) < 𝐵) |
108 | 106, 107 | eqbrtrd 5092 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) ∧ 𝐵 ≤ 𝐴) → (⌊‘𝐴) < 𝐵) |
109 | 108 | ex 412 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (𝐵 ≤ 𝐴 → (⌊‘𝐴) < 𝐵)) |
110 | | flle 13447 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(⌊‘𝐴) ≤
𝐴) |
111 | 110 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(⌊‘𝐴) ≤
𝐴) |
112 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(⌊‘𝐴) ∈
ℝ) |
113 | | lelttr 10996 |
. . . . . . . 8
⊢
(((⌊‘𝐴)
∈ ℝ ∧ 𝐴
∈ ℝ ∧ 𝐵
∈ ℝ) → (((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵)) |
114 | 113 | 3coml 1125 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧
(⌊‘𝐴) ∈
ℝ) → (((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵)) |
115 | 112, 114 | mpd3an3 1460 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(((⌊‘𝐴) ≤
𝐴 ∧ 𝐴 < 𝐵) → (⌊‘𝐴) < 𝐵)) |
116 | 111, 115 | mpand 691 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (⌊‘𝐴) < 𝐵)) |
117 | 63, 116 | sylbird 259 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬
𝐵 ≤ 𝐴 → (⌊‘𝐴) < 𝐵)) |
118 | 117 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (¬ 𝐵 ≤ 𝐴 → (⌊‘𝐴) < 𝐵)) |
119 | 109, 118 | pm2.61d 179 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < -(⌊‘-𝐵)) → (⌊‘𝐴) < 𝐵) |
120 | 74, 119 | impbida 797 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((⌊‘𝐴) <
𝐵 ↔ 𝐴 < -(⌊‘-𝐵))) |