MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooshf Structured version   Visualization version   GIF version

Theorem iooshf 13406
Description: Shift the arguments of the open interval function. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
iooshf (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵))))

Proof of Theorem iooshf
StepHypRef Expression
1 ltaddsub 11689 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
213com13 1121 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
323expa 1115 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
43adantrr 714 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐶 + 𝐵) < 𝐴𝐶 < (𝐴𝐵)))
5 ltsubadd 11685 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐴𝐵) < 𝐷𝐴 < (𝐷 + 𝐵)))
65bicomd 222 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐴 < (𝐷 + 𝐵) ↔ (𝐴𝐵) < 𝐷))
763expa 1115 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 < (𝐷 + 𝐵) ↔ (𝐴𝐵) < 𝐷))
87adantrl 713 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < (𝐷 + 𝐵) ↔ (𝐴𝐵) < 𝐷))
94, 8anbi12d 630 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵)) ↔ (𝐶 < (𝐴𝐵) ∧ (𝐴𝐵) < 𝐷)))
10 readdcl 11192 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
1110rexrd 11265 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ*)
1211ad2ant2rl 746 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 + 𝐵) ∈ ℝ*)
13 readdcl 11192 . . . . . 6 ((𝐷 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 + 𝐵) ∈ ℝ)
1413rexrd 11265 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 + 𝐵) ∈ ℝ*)
1514ad2ant2l 743 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐷 + 𝐵) ∈ ℝ*)
16 rexr 11261 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
1716ad2antrl 725 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴 ∈ ℝ*)
18 elioo5 13384 . . . 4 (((𝐶 + 𝐵) ∈ ℝ* ∧ (𝐷 + 𝐵) ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)) ↔ ((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵))))
1912, 15, 17, 18syl3anc 1368 . . 3 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)) ↔ ((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵))))
2019ancoms 458 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵)) ↔ ((𝐶 + 𝐵) < 𝐴𝐴 < (𝐷 + 𝐵))))
21 rexr 11261 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
2221ad2antrl 725 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
23 rexr 11261 . . . 4 (𝐷 ∈ ℝ → 𝐷 ∈ ℝ*)
2423ad2antll 726 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
25 resubcl 11525 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
2625rexrd 11265 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ*)
2726adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴𝐵) ∈ ℝ*)
28 elioo5 13384 . . 3 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ* ∧ (𝐴𝐵) ∈ ℝ*) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ (𝐶 < (𝐴𝐵) ∧ (𝐴𝐵) < 𝐷)))
2922, 24, 27, 28syl3anc 1368 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ (𝐶 < (𝐴𝐵) ∧ (𝐴𝐵) < 𝐷)))
309, 20, 293bitr4rd 312 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵) ∈ (𝐶(,)𝐷) ↔ 𝐴 ∈ ((𝐶 + 𝐵)(,)(𝐷 + 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098   class class class wbr 5141  (class class class)co 7404  cr 11108   + caddc 11112  *cxr 11248   < clt 11249  cmin 11445  (,)cioo 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-ioo 13331
This theorem is referenced by:  sinq34lt0t  26395
  Copyright terms: Public domain W3C validator