![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leaddsub | Structured version Visualization version GIF version |
Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
Ref | Expression |
---|---|
leaddsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsubadd 11684 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) | |
2 | 1 | 3com13 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) |
3 | resubcl 11524 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
4 | ltnle 11293 | . . . . 5 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) | |
5 | 3, 4 | stoic3 1779 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
6 | 5 | 3com13 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
7 | readdcl 11193 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
8 | ltnle 11293 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) | |
9 | 7, 8 | sylan2 594 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
10 | 9 | 3impb 1116 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
11 | 10 | 3coml 1128 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
12 | 2, 6, 11 | 3bitr3rd 310 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐴 + 𝐵) ≤ 𝐶 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
13 | 12 | con4bid 317 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝcr 11109 + caddc 11113 < clt 11248 ≤ cle 11249 − cmin 11444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 |
This theorem is referenced by: leaddsub2 11691 lesub 11693 lesub2 11709 subge0 11727 lesub3d 11832 div4p1lem1div2 12467 eluzp1m1 12848 eluzsub 12852 eluzsubiOLD 12856 fzen 13518 fznatpl1 13555 expmulnbnd 14198 hashdvds 16708 sylow1lem5 19470 gsumbagdiaglemOLD 21491 gsumbagdiaglem 21494 voliunlem2 25068 itg2split 25267 dvfsumlem3 25545 pilem2 25964 logimul 26122 emcllem2 26501 chtublem 26714 dchrisum0re 27016 pntlemg 27101 crctcshwlkn0 29075 logdivsqrle 33662 poimirlem7 36495 totbndbnd 36657 aks4d1p1p5 40940 aks4d1p1 40941 sticksstones10 40971 sticksstones12a 40973 sticksstones12 40974 metakunt16 41000 binomcxplemnn0 43108 fmtnodvds 46212 lighneallem4a 46276 nnolog2flm1 47276 |
Copyright terms: Public domain | W3C validator |