| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leaddsub | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| leaddsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsubadd 11733 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) | |
| 2 | 1 | 3com13 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) |
| 3 | resubcl 11573 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
| 4 | ltnle 11340 | . . . . 5 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) | |
| 5 | 3, 4 | stoic3 1776 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
| 6 | 5 | 3com13 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
| 7 | readdcl 11238 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 8 | ltnle 11340 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) | |
| 9 | 7, 8 | sylan2 593 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
| 10 | 9 | 3impb 1115 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
| 11 | 10 | 3coml 1128 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
| 12 | 2, 6, 11 | 3bitr3rd 310 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐴 + 𝐵) ≤ 𝐶 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
| 13 | 12 | con4bid 317 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 + caddc 11158 < clt 11295 ≤ cle 11296 − cmin 11492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 |
| This theorem is referenced by: leaddsub2 11740 lesub 11742 lesub2 11758 subge0 11776 lesub3d 11881 div4p1lem1div2 12521 eluzp1m1 12904 eluzsub 12908 eluzsubiOLD 12912 fzen 13581 fznatpl1 13618 expmulnbnd 14274 hashdvds 16812 sylow1lem5 19620 gsumbagdiaglem 21950 voliunlem2 25586 itg2split 25784 dvfsumlem3 26069 pilem2 26496 logimul 26656 emcllem2 27040 chtublem 27255 dchrisum0re 27557 pntlemg 27642 crctcshwlkn0 29841 logdivsqrle 34665 poimirlem7 37634 totbndbnd 37796 aks4d1p1p5 42076 aks4d1p1 42077 primrootspoweq0 42107 sticksstones10 42156 sticksstones12a 42158 sticksstones12 42159 aks6d1c6lem3 42173 bcle2d 42180 metakunt16 42221 binomcxplemnn0 44368 fmtnodvds 47531 lighneallem4a 47595 nnolog2flm1 48511 |
| Copyright terms: Public domain | W3C validator |