MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leaddsub Structured version   Visualization version   GIF version

Theorem leaddsub 11381
Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.)
Assertion
Ref Expression
leaddsub ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶𝐴 ≤ (𝐶𝐵)))

Proof of Theorem leaddsub
StepHypRef Expression
1 ltsubadd 11375 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶𝐵) < 𝐴𝐶 < (𝐴 + 𝐵)))
213com13 1122 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵) < 𝐴𝐶 < (𝐴 + 𝐵)))
3 resubcl 11215 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
4 ltnle 10985 . . . . 5 (((𝐶𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶𝐵)))
53, 4stoic3 1780 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶𝐵)))
653com13 1122 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶𝐵)))
7 readdcl 10885 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
8 ltnle 10985 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶))
97, 8sylan2 592 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶))
1093impb 1113 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶))
11103coml 1125 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶))
122, 6, 113bitr3rd 309 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐴 + 𝐵) ≤ 𝐶 ↔ ¬ 𝐴 ≤ (𝐶𝐵)))
1312con4bid 316 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶𝐴 ≤ (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801   + caddc 10805   < clt 10940  cle 10941  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  leaddsub2  11382  lesub  11384  lesub2  11400  subge0  11418  lesub3d  11523  div4p1lem1div2  12158  eluzp1m1  12537  eluzsubi  12541  fzen  13202  fznatpl1  13239  expmulnbnd  13878  hashdvds  16404  sylow1lem5  19122  gsumbagdiaglemOLD  21051  gsumbagdiaglem  21054  voliunlem2  24620  itg2split  24819  dvfsumlem3  25097  pilem2  25516  logimul  25674  emcllem2  26051  chtublem  26264  dchrisum0re  26566  pntlemg  26651  crctcshwlkn0  28087  logdivsqrle  32530  poimirlem7  35711  totbndbnd  35874  aks4d1p1p5  40011  aks4d1p1  40012  sticksstones10  40039  sticksstones12a  40041  sticksstones12  40042  metakunt16  40068  binomcxplemnn0  41856  fmtnodvds  44884  lighneallem4a  44948  nnolog2flm1  45824
  Copyright terms: Public domain W3C validator