![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leaddsub | Structured version Visualization version GIF version |
Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
Ref | Expression |
---|---|
leaddsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltsubadd 11680 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) | |
2 | 1 | 3com13 1124 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) |
3 | resubcl 11520 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
4 | ltnle 11289 | . . . . 5 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) | |
5 | 3, 4 | stoic3 1778 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
6 | 5 | 3com13 1124 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
7 | readdcl 11189 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
8 | ltnle 11289 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) | |
9 | 7, 8 | sylan2 593 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
10 | 9 | 3impb 1115 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
11 | 10 | 3coml 1127 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
12 | 2, 6, 11 | 3bitr3rd 309 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐴 + 𝐵) ≤ 𝐶 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
13 | 12 | con4bid 316 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5147 (class class class)co 7405 ℝcr 11105 + caddc 11109 < clt 11244 ≤ cle 11245 − cmin 11440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 |
This theorem is referenced by: leaddsub2 11687 lesub 11689 lesub2 11705 subge0 11723 lesub3d 11828 div4p1lem1div2 12463 eluzp1m1 12844 eluzsub 12848 eluzsubiOLD 12852 fzen 13514 fznatpl1 13551 expmulnbnd 14194 hashdvds 16704 sylow1lem5 19464 gsumbagdiaglemOLD 21482 gsumbagdiaglem 21485 voliunlem2 25059 itg2split 25258 dvfsumlem3 25536 pilem2 25955 logimul 26113 emcllem2 26490 chtublem 26703 dchrisum0re 27005 pntlemg 27090 crctcshwlkn0 29064 logdivsqrle 33650 poimirlem7 36483 totbndbnd 36645 aks4d1p1p5 40928 aks4d1p1 40929 sticksstones10 40959 sticksstones12a 40961 sticksstones12 40962 metakunt16 40988 binomcxplemnn0 43093 fmtnodvds 46198 lighneallem4a 46262 nnolog2flm1 47229 |
Copyright terms: Public domain | W3C validator |