| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leaddsub | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' relationship between addition and subtraction. (Contributed by NM, 6-Apr-2005.) |
| Ref | Expression |
|---|---|
| leaddsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsubadd 11655 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) | |
| 2 | 1 | 3com13 1124 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ 𝐶 < (𝐴 + 𝐵))) |
| 3 | resubcl 11493 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
| 4 | ltnle 11260 | . . . . 5 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) | |
| 5 | 3, 4 | stoic3 1776 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
| 6 | 5 | 3com13 1124 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
| 7 | readdcl 11158 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 8 | ltnle 11260 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) | |
| 9 | 7, 8 | sylan2 593 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
| 10 | 9 | 3impb 1114 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
| 11 | 10 | 3coml 1127 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) ≤ 𝐶)) |
| 12 | 2, 6, 11 | 3bitr3rd 310 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐴 + 𝐵) ≤ 𝐶 ↔ ¬ 𝐴 ≤ (𝐶 − 𝐵))) |
| 13 | 12 | con4bid 317 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐶 ↔ 𝐴 ≤ (𝐶 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 + caddc 11078 < clt 11215 ≤ cle 11216 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: leaddsub2 11662 lesub 11664 lesub2 11680 subge0 11698 lesub3d 11803 div4p1lem1div2 12444 eluzp1m1 12826 eluzsub 12830 eluzsubiOLD 12834 fzen 13509 fznatpl1 13546 expmulnbnd 14207 hashdvds 16752 sylow1lem5 19539 gsumbagdiaglem 21846 voliunlem2 25459 itg2split 25657 dvfsumlem3 25942 pilem2 26369 logimul 26530 emcllem2 26914 chtublem 27129 dchrisum0re 27431 pntlemg 27516 crctcshwlkn0 29758 logdivsqrle 34648 poimirlem7 37628 totbndbnd 37790 aks4d1p1p5 42070 aks4d1p1 42071 primrootspoweq0 42101 sticksstones10 42150 sticksstones12a 42152 sticksstones12 42153 aks6d1c6lem3 42167 bcle2d 42174 binomcxplemnn0 44345 fmtnodvds 47549 lighneallem4a 47613 nnolog2flm1 48583 |
| Copyright terms: Public domain | W3C validator |