![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddsub | Structured version Visualization version GIF version |
Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004.) |
Ref | Expression |
---|---|
ltaddsub | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lesubadd 11632 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 + 𝐵))) | |
2 | 1 | 3com13 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 𝐴 ↔ 𝐶 ≤ (𝐴 + 𝐵))) |
3 | resubcl 11470 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
4 | lenlt 11238 | . . . . 5 ⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐶 − 𝐵))) | |
5 | 3, 4 | stoic3 1779 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐶 − 𝐵))) |
6 | 5 | 3com13 1125 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 𝐴 ↔ ¬ 𝐴 < (𝐶 − 𝐵))) |
7 | readdcl 11139 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
8 | lenlt 11238 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (𝐶 ≤ (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) < 𝐶)) | |
9 | 7, 8 | sylan2 594 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ≤ (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) < 𝐶)) |
10 | 9 | 3impb 1116 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ≤ (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) < 𝐶)) |
11 | 10 | 3coml 1128 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ≤ (𝐴 + 𝐵) ↔ ¬ (𝐴 + 𝐵) < 𝐶)) |
12 | 2, 6, 11 | 3bitr3rd 310 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ (𝐴 + 𝐵) < 𝐶 ↔ ¬ 𝐴 < (𝐶 − 𝐵))) |
13 | 12 | con4bid 317 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 ℝcr 11055 + caddc 11059 < clt 11194 ≤ cle 11195 − cmin 11390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 |
This theorem is referenced by: ltaddsub2 11635 ltsub13 11641 ltaddsubi 11721 ltaddsubd 11760 iooshf 13349 ltdifltdiv 13745 swrdswrd 14599 sincosq3sgn 25873 sincosq4sgn 25874 pthdlem1 28756 crctcshwlkn0lem4 28800 breprexplemc 33302 ftc1anclem6 36202 sbgoldbwt 46055 evengpop3 46076 |
Copyright terms: Public domain | W3C validator |