Step | Hyp | Ref
| Expression |
1 | | stoweidlem17.2 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | nnnn0d 12223 |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
3 | | nn0uz 12549 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
5 | | eluzfz2 13193 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
7 | 6 | ancli 548 |
. 2
⊢ (𝜑 → (𝜑 ∧ 𝑁 ∈ (0...𝑁))) |
8 | | eleq1 2826 |
. . . . 5
⊢ (𝑛 = 0 → (𝑛 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁))) |
9 | 8 | anbi2d 628 |
. . . 4
⊢ (𝑛 = 0 → ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ 0 ∈ (0...𝑁)))) |
10 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 0 → (0...𝑛) = (0...0)) |
11 | 10 | sumeq1d 15341 |
. . . . . 6
⊢ (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡)) = Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
12 | 11 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑛 = 0 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡)))) |
13 | 12 | eleq1d 2823 |
. . . 4
⊢ (𝑛 = 0 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
14 | 9, 13 | imbi12d 344 |
. . 3
⊢ (𝑛 = 0 → (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴))) |
15 | | eleq1 2826 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑛 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...𝑁))) |
16 | 15 | anbi2d 628 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑚 ∈ (0...𝑁)))) |
17 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚)) |
18 | 17 | sumeq1d 15341 |
. . . . . 6
⊢ (𝑛 = 𝑚 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
19 | 18 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))) |
20 | 19 | eleq1d 2823 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
21 | 16, 20 | imbi12d 344 |
. . 3
⊢ (𝑛 = 𝑚 → (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴))) |
22 | | eleq1 2826 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑛 ∈ (0...𝑁) ↔ (𝑚 + 1) ∈ (0...𝑁))) |
23 | 22 | anbi2d 628 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) |
24 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → (0...𝑛) = (0...(𝑚 + 1))) |
25 | 24 | sumeq1d 15341 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡)) = Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
26 | 25 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)))) |
27 | 26 | eleq1d 2823 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
28 | 23, 27 | imbi12d 344 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴))) |
29 | | eleq1 2826 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (0...𝑁) ↔ 𝑁 ∈ (0...𝑁))) |
30 | 29 | anbi2d 628 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝜑 ∧ 𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑁 ∈ (0...𝑁)))) |
31 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) |
32 | 31 | sumeq1d 15341 |
. . . . . 6
⊢ (𝑛 = 𝑁 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
33 | 32 | mpteq2dv 5172 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡)))) |
34 | 33 | eleq1d 2823 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
35 | 30, 34 | imbi12d 344 |
. . 3
⊢ (𝑛 = 𝑁 → (((𝜑 ∧ 𝑛 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑁 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴))) |
36 | | 0z 12260 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
37 | | fzsn 13227 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → (0...0) = {0}) |
38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
⊢ (0...0) =
{0} |
39 | 38 | sumeq1i 15338 |
. . . . . . 7
⊢
Σ𝑖 ∈
(0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡)) = Σ𝑖 ∈ {0} (𝐸 · ((𝑋‘𝑖)‘𝑡)) |
40 | 39 | mpteq2i 5175 |
. . . . . 6
⊢ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ {0} (𝐸 · ((𝑋‘𝑖)‘𝑡))) |
41 | | stoweidlem17.1 |
. . . . . . 7
⊢
Ⅎ𝑡𝜑 |
42 | | stoweidlem17.7 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ ℝ) |
43 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ) |
44 | 43 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℂ) |
45 | | stoweidlem17.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋:(0...𝑁)⟶𝐴) |
46 | | nnz 12272 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
47 | | nngt0 11934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
48 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
49 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
50 | | ltle 10994 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ 𝑁
∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) |
51 | 48, 49, 50 | sylancr 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → (0 <
𝑁 → 0 ≤ 𝑁)) |
52 | 47, 51 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ → 0 ≤
𝑁) |
53 | 46, 52 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 0 ≤
𝑁)) |
54 | 1, 53 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
55 | 36 | eluz1i 12519 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘0) ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) |
56 | 54, 55 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
57 | | eluzfz1 13192 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
59 | 45, 58 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋‘0) ∈ 𝐴) |
60 | | feq1 6565 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑋‘0) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘0):𝑇⟶ℝ)) |
61 | 60 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑋‘0) → ((𝜑 → 𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘0):𝑇⟶ℝ))) |
62 | | stoweidlem17.8 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴) → 𝑓:𝑇⟶ℝ) |
63 | 62 | expcom 413 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝐴 → (𝜑 → 𝑓:𝑇⟶ℝ)) |
64 | 61, 63 | vtoclga 3503 |
. . . . . . . . . . . 12
⊢ ((𝑋‘0) ∈ 𝐴 → (𝜑 → (𝑋‘0):𝑇⟶ℝ)) |
65 | 59, 64 | mpcom 38 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋‘0):𝑇⟶ℝ) |
66 | 65 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑋‘0)‘𝑡) ∈ ℝ) |
67 | 66 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑋‘0)‘𝑡) ∈ ℂ) |
68 | 44, 67 | mulcld 10926 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐸 · ((𝑋‘0)‘𝑡)) ∈ ℂ) |
69 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (𝑋‘𝑖) = (𝑋‘0)) |
70 | 69 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → ((𝑋‘𝑖)‘𝑡) = ((𝑋‘0)‘𝑡)) |
71 | 70 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑖 = 0 → (𝐸 · ((𝑋‘𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡))) |
72 | 71 | sumsn 15386 |
. . . . . . . 8
⊢ ((0
∈ ℤ ∧ (𝐸
· ((𝑋‘0)‘𝑡)) ∈ ℂ) → Σ𝑖 ∈ {0} (𝐸 · ((𝑋‘𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡))) |
73 | 36, 68, 72 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ {0} (𝐸 · ((𝑋‘𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡))) |
74 | 41, 73 | mpteq2da 5168 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ {0} (𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡)))) |
75 | 40, 74 | syl5eq 2791 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡)))) |
76 | | stoweidlem17.5 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
77 | | stoweidlem17.6 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
78 | 41, 76, 77, 62, 42, 59 | stoweidlem2 43433 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))) ∈ 𝐴) |
79 | 75, 78 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) |
80 | 79 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) |
81 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑡 → 𝐸 = 𝐸) |
82 | 81 | cbvmptv 5183 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ 𝑇 ↦ 𝐸) = (𝑡 ∈ 𝑇 ↦ 𝐸) |
83 | 82 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝑇 ↦ 𝐸) = (𝑟 ∈ 𝑇 ↦ 𝐸) |
84 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
85 | 83, 81, 84, 43 | fvmptd3 6880 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) = 𝐸) |
86 | 85 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
87 | 41, 86 | mpteq2da 5168 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
88 | 87 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
89 | 45 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑋‘(𝑚 + 1)) ∈ 𝐴) |
90 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝜑) |
91 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐸 → 𝑥 = 𝐸) |
92 | 91 | mpteq2dv 5172 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐸 → (𝑡 ∈ 𝑇 ↦ 𝑥) = (𝑡 ∈ 𝑇 ↦ 𝐸)) |
93 | 92 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐸 → ((𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴)) |
94 | 93 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐸 → ((𝜑 → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴))) |
95 | 77 | expcom 413 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → (𝜑 → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴)) |
96 | 94, 95 | vtoclga 3503 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℝ → (𝜑 → (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴)) |
97 | 42, 96 | mpcom 38 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) |
98 | 97 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) |
99 | | fveq1 6755 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (𝑋‘(𝑚 + 1)) → (𝑔‘𝑡) = ((𝑋‘(𝑚 + 1))‘𝑡)) |
100 | 99 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝑋‘(𝑚 + 1)) → (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) |
101 | 100 | mpteq2dv 5172 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑋‘(𝑚 + 1)) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
102 | 101 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑋‘(𝑚 + 1)) → ((𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)) |
103 | 102 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑋‘(𝑚 + 1)) → (((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴))) |
104 | 82 | eleq1i 2829 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) |
105 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ 𝐸) → (𝑓‘𝑡) = ((𝑟 ∈ 𝑇 ↦ 𝐸)‘𝑡)) |
106 | 82 | fveq1i 6757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑟 ∈ 𝑇 ↦ 𝐸)‘𝑡) = ((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) |
107 | 105, 106 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ 𝐸) → (𝑓‘𝑡) = ((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡)) |
108 | 107 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ 𝐸) → ((𝑓‘𝑡) · (𝑔‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) |
109 | 108 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ 𝐸) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡)))) |
110 | 109 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ 𝐸) → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
111 | 110 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ 𝐸) → (((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴))) |
112 | 76 | 3com12 1121 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
113 | 112 | 3expib 1120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ 𝐴 → ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
114 | 111, 113 | vtoclga 3503 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴 → ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
115 | 104, 114 | sylbir 234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴 → ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
116 | 115 | 3impib 1114 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
117 | 116 | 3com13 1122 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ 𝐴 ∧ 𝜑 ∧ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
118 | 117 | 3expib 1120 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ 𝐴 → ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴)) |
119 | 103, 118 | vtoclga 3503 |
. . . . . . . . . . 11
⊢ ((𝑋‘(𝑚 + 1)) ∈ 𝐴 → ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)) |
120 | 119 | 3impib 1114 |
. . . . . . . . . 10
⊢ (((𝑋‘(𝑚 + 1)) ∈ 𝐴 ∧ 𝜑 ∧ (𝑡 ∈ 𝑇 ↦ 𝐸) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴) |
121 | 89, 90, 98, 120 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ 𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴) |
122 | 88, 121 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴) |
123 | 122 | ad2antll 725 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴) |
124 | | simprrl 777 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → 𝜑) |
125 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ ℕ0) |
126 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝜑) |
127 | 1 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℕ) |
128 | 127 | nnnn0d 12223 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈
ℕ0) |
129 | | nn0re 12172 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
130 | 129 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ ℝ) |
131 | | peano2nn0 12203 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
132 | 131 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℝ) |
133 | 132 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 + 1) ∈ ℝ) |
134 | 1 | nnred 11918 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℝ) |
135 | 134 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℝ) |
136 | | lep1 11746 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℝ → 𝑚 ≤ (𝑚 + 1)) |
137 | 125, 129,
136 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ≤ (𝑚 + 1)) |
138 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ ((𝑚 + 1) ∈ (0...𝑁) → (𝑚 + 1) ≤ 𝑁) |
139 | 138 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 + 1) ≤ 𝑁) |
140 | 130, 133,
135, 137, 139 | letrd 11062 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ≤ 𝑁) |
141 | | elfz2nn0 13276 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (0...𝑁) ↔ (𝑚 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑚 ≤ 𝑁)) |
142 | 125, 128,
140, 141 | syl3anbrc 1341 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ (0...𝑁)) |
143 | 125, 126,
142 | jca32 515 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ 𝑚 ∈ (0...𝑁)))) |
144 | 143 | adantl 481 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ 𝑚 ∈ (0...𝑁)))) |
145 | | pm3.31 449 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) → ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ 𝑚 ∈ (0...𝑁))) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
146 | 145 | adantr 480 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ 𝑚 ∈ (0...𝑁))) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
147 | 144, 146 | mpd 15 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) |
148 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑡 → ((𝑋‘(𝑚 + 1))‘𝑟) = ((𝑋‘(𝑚 + 1))‘𝑡)) |
149 | 148 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑡 → (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
150 | 149 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) = (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
151 | 150 | eleq1i 2829 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴) |
152 | | fveq1 6755 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑔‘𝑡) = ((𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)))‘𝑡)) |
153 | 150 | fveq1i 6757 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)))‘𝑡) = ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) |
154 | 152, 153 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑔‘𝑡) = ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)) |
155 | 154 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) |
156 | 155 | mpteq2dv 5172 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)))) |
157 | 156 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → ((𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)) |
158 | 157 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))) |
159 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑡 → ((𝑋‘𝑖)‘𝑟) = ((𝑋‘𝑖)‘𝑡)) |
160 | 159 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑡 → (𝐸 · ((𝑋‘𝑖)‘𝑟)) = (𝐸 · ((𝑋‘𝑖)‘𝑡))) |
161 | 160 | sumeq2sdv 15344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑡 → Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
162 | 161 | cbvmptv 5183 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
163 | 162 | eleq1i 2829 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) |
164 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) → (𝑓‘𝑡) = ((𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟)))‘𝑡)) |
165 | 162 | fveq1i 6757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟)))‘𝑡) = ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) |
166 | 164, 165 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) → (𝑓‘𝑡) = ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡)) |
167 | 166 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) → ((𝑓‘𝑡) + (𝑔‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) |
168 | 167 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡)))) |
169 | 168 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
170 | 169 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) → (((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴))) |
171 | | stoweidlem17.4 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
172 | 171 | 3com12 1121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
173 | 172 | 3expib 1120 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ 𝐴 → ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
174 | 170, 173 | vtoclga 3503 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑟))) ∈ 𝐴 → ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
175 | 163, 174 | sylbir 234 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 → ((𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
176 | 175 | 3impib 1114 |
. . . . . . . . . . . 12
⊢ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
177 | 176 | 3com13 1122 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ 𝐴 ∧ 𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
178 | 177 | 3expib 1120 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 → ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴)) |
179 | 158, 178 | vtoclga 3503 |
. . . . . . . . 9
⊢ ((𝑟 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) ∈ 𝐴 → ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)) |
180 | 151, 179 | sylbir 234 |
. . . . . . . 8
⊢ ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴 → ((𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)) |
181 | 180 | 3impib 1114 |
. . . . . . 7
⊢ (((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴 ∧ 𝜑 ∧ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴) |
182 | 123, 124,
147, 181 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴) |
183 | | 3anass 1093 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) |
184 | 183 | biimpri 227 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 ∈ ℕ0 ∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) |
185 | 184 | adantl 481 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑚 ∈ ℕ0 ∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) |
186 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑚 ∈
ℕ0 |
187 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(𝑚 + 1) ∈ (0...𝑁) |
188 | 186, 41, 187 | nf3an 1905 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) |
189 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
190 | | fzfid 13621 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (0...𝑚) ∈ Fin) |
191 | 42 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝐸 ∈ ℝ) |
192 | 191 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝐸 ∈ ℝ) |
193 | 192 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...𝑚)) → 𝐸 ∈ ℝ) |
194 | | fzelp1 13237 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (0...𝑚) → 𝑖 ∈ (0...(𝑚 + 1))) |
195 | 194 | anim2i 616 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (((𝑚 ∈ ℕ0 ∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1)))) |
196 | | an32 642 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ↔ (((𝑚 ∈ ℕ0 ∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡 ∈ 𝑇)) |
197 | 195, 196 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (((𝑚 ∈ ℕ0 ∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡 ∈ 𝑇)) |
198 | 45 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝑋:(0...𝑁)⟶𝐴) |
199 | 198 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑋:(0...𝑁)⟶𝐴) |
200 | | elfzuz3 13182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 + 1) ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑚 + 1))) |
201 | | fzss2 13225 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘(𝑚 + 1)) → (0...(𝑚 + 1)) ⊆ (0...𝑁)) |
202 | 200, 201 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 + 1) ∈ (0...𝑁) → (0...(𝑚 + 1)) ⊆ (0...𝑁)) |
203 | 202 | sselda 3917 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑚 + 1) ∈ (0...𝑁) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑖 ∈ (0...𝑁)) |
204 | 203 | 3ad2antl3 1185 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑖 ∈ (0...𝑁)) |
205 | 199, 204 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝑋‘𝑖) ∈ 𝐴) |
206 | | simpl2 1190 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝜑) |
207 | | feq1 6565 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = (𝑋‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘𝑖):𝑇⟶ℝ)) |
208 | 207 | imbi2d 340 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑋‘𝑖) → ((𝜑 → 𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘𝑖):𝑇⟶ℝ))) |
209 | 208, 63 | vtoclga 3503 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋‘𝑖) ∈ 𝐴 → (𝜑 → (𝑋‘𝑖):𝑇⟶ℝ)) |
210 | 205, 206,
209 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝑋‘𝑖):𝑇⟶ℝ) |
211 | 210 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡 ∈ 𝑇) → ((𝑋‘𝑖)‘𝑡) ∈ ℝ) |
212 | 197, 211 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑋‘𝑖)‘𝑡) ∈ ℝ) |
213 | 193, 212 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (𝐸 · ((𝑋‘𝑖)‘𝑡)) ∈ ℝ) |
214 | 190, 213 | fsumrecl 15374 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)) ∈ ℝ) |
215 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
216 | 215 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝑇 ∧ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
217 | 189, 214,
216 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
218 | 217 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
219 | | 3simpc 1148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) |
220 | 219 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) |
221 | | feq1 6565 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (𝑋‘(𝑚 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)) |
222 | 221 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (𝑋‘(𝑚 + 1)) → ((𝜑 → 𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ))) |
223 | 222, 63 | vtoclga 3503 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋‘(𝑚 + 1)) ∈ 𝐴 → (𝜑 → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)) |
224 | 89, 90, 223 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ) |
225 | 220, 224 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ) |
226 | 225, 189 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → ((𝑋‘(𝑚 + 1))‘𝑡) ∈ ℝ) |
227 | 192, 226 | remulcld 10936 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)) ∈ ℝ) |
228 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
229 | 228 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝑇 ∧ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)) ∈ ℝ) → ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
230 | 189, 227,
229 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
231 | 230 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
232 | | elfzuz 13181 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 + 1) ∈ (0...𝑁) → (𝑚 + 1) ∈
(ℤ≥‘0)) |
233 | 232 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑚 + 1) ∈
(ℤ≥‘0)) |
234 | 233 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (𝑚 + 1) ∈
(ℤ≥‘0)) |
235 | 192 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝐸 ∈ ℝ) |
236 | 211 | an32s 648 |
. . . . . . . . . . . . 13
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → ((𝑋‘𝑖)‘𝑡) ∈ ℝ) |
237 | | remulcl 10887 |
. . . . . . . . . . . . . 14
⊢ ((𝐸 ∈ ℝ ∧ ((𝑋‘𝑖)‘𝑡) ∈ ℝ) → (𝐸 · ((𝑋‘𝑖)‘𝑡)) ∈ ℝ) |
238 | 237 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℝ ∧ ((𝑋‘𝑖)‘𝑡) ∈ ℝ) → (𝐸 · ((𝑋‘𝑖)‘𝑡)) ∈ ℂ) |
239 | 235, 236,
238 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝐸 · ((𝑋‘𝑖)‘𝑡)) ∈ ℂ) |
240 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑚 + 1) → (𝑋‘𝑖) = (𝑋‘(𝑚 + 1))) |
241 | 240 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑚 + 1) → ((𝑋‘𝑖)‘𝑡) = ((𝑋‘(𝑚 + 1))‘𝑡)) |
242 | 241 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑚 + 1) → (𝐸 · ((𝑋‘𝑖)‘𝑡)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) |
243 | 234, 239,
242 | fsumm1 15391 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
244 | | nn0cn 12173 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
245 | 244 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝑚 ∈ ℂ) |
246 | 245 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 𝑚 ∈ ℂ) |
247 | | 1cnd 10901 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → 1 ∈ ℂ) |
248 | 246, 247 | pncand 11263 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → ((𝑚 + 1) − 1) = 𝑚) |
249 | 248 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (0...((𝑚 + 1) − 1)) = (0...𝑚)) |
250 | 249 | sumeq1d 15341 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) |
251 | 250 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → (Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
252 | 243, 251 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))) |
253 | 218, 231,
252 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡 ∈ 𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡)) = (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) |
254 | 188, 253 | mpteq2da 5168 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)))) |
255 | 254 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ0
∧ 𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)) |
256 | 185, 255 | syl 17 |
. . . . . 6
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → ((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡 ∈ 𝑇 ↦ (((𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡)))‘𝑡) + ((𝑡 ∈ 𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)) |
257 | 182, 256 | mpbird 256 |
. . . . 5
⊢ (((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) |
258 | 257 | exp32 420 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
→ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) → (𝑚 ∈ ℕ0 → ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴))) |
259 | 258 | pm2.86i 110 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) → ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴))) |
260 | 14, 21, 28, 35, 80, 259 | nn0ind 12345 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((𝜑 ∧ 𝑁 ∈ (0...𝑁)) → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴)) |
261 | 2, 7, 260 | sylc 65 |
1
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋‘𝑖)‘𝑡))) ∈ 𝐴) |