Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem17 Structured version   Visualization version   GIF version

Theorem stoweidlem17 43558
Description: This lemma proves that the function 𝑔 (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem17.1 𝑡𝜑
stoweidlem17.2 (𝜑𝑁 ∈ ℕ)
stoweidlem17.3 (𝜑𝑋:(0...𝑁)⟶𝐴)
stoweidlem17.4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem17.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem17.6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem17.7 (𝜑𝐸 ∈ ℝ)
stoweidlem17.8 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem17 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑖,𝑡,𝐸   𝐴,𝑓,𝑔   𝑇,𝑓,𝑔,𝑖,𝑡   𝑓,𝑋,𝑔,𝑖,𝑡   𝜑,𝑓,𝑔,𝑖   𝑖,𝑁,𝑡   𝑥,𝑡,𝐸   𝑥,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡,𝑖)   𝑁(𝑥,𝑓,𝑔)   𝑋(𝑥)

Proof of Theorem stoweidlem17
Dummy variables 𝑚 𝑟 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem17.2 . . 3 (𝜑𝑁 ∈ ℕ)
21nnnn0d 12293 . 2 (𝜑𝑁 ∈ ℕ0)
3 nn0uz 12620 . . . . 5 0 = (ℤ‘0)
42, 3eleqtrdi 2849 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
5 eluzfz2 13264 . . . 4 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
64, 5syl 17 . . 3 (𝜑𝑁 ∈ (0...𝑁))
76ancli 549 . 2 (𝜑 → (𝜑𝑁 ∈ (0...𝑁)))
8 eleq1 2826 . . . . 5 (𝑛 = 0 → (𝑛 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
98anbi2d 629 . . . 4 (𝑛 = 0 → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ 0 ∈ (0...𝑁))))
10 oveq2 7283 . . . . . . 7 (𝑛 = 0 → (0...𝑛) = (0...0))
1110sumeq1d 15413 . . . . . 6 (𝑛 = 0 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡)))
1211mpteq2dv 5176 . . . . 5 (𝑛 = 0 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))))
1312eleq1d 2823 . . . 4 (𝑛 = 0 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
149, 13imbi12d 345 . . 3 (𝑛 = 0 → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
15 eleq1 2826 . . . . 5 (𝑛 = 𝑚 → (𝑛 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...𝑁)))
1615anbi2d 629 . . . 4 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑𝑚 ∈ (0...𝑁))))
17 oveq2 7283 . . . . . . 7 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
1817sumeq1d 15413 . . . . . 6 (𝑛 = 𝑚 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
1918mpteq2dv 5176 . . . . 5 (𝑛 = 𝑚 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))))
2019eleq1d 2823 . . . 4 (𝑛 = 𝑚 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
2116, 20imbi12d 345 . . 3 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
22 eleq1 2826 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑛 ∈ (0...𝑁) ↔ (𝑚 + 1) ∈ (0...𝑁)))
2322anbi2d 629 . . . 4 (𝑛 = (𝑚 + 1) → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))))
24 oveq2 7283 . . . . . . 7 (𝑛 = (𝑚 + 1) → (0...𝑛) = (0...(𝑚 + 1)))
2524sumeq1d 15413 . . . . . 6 (𝑛 = (𝑚 + 1) → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)))
2625mpteq2dv 5176 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))))
2726eleq1d 2823 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
2823, 27imbi12d 345 . . 3 (𝑛 = (𝑚 + 1) → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
29 eleq1 2826 . . . . 5 (𝑛 = 𝑁 → (𝑛 ∈ (0...𝑁) ↔ 𝑁 ∈ (0...𝑁)))
3029anbi2d 629 . . . 4 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ (0...𝑁)) ↔ (𝜑𝑁 ∈ (0...𝑁))))
31 oveq2 7283 . . . . . . 7 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
3231sumeq1d 15413 . . . . . 6 (𝑛 = 𝑁 → Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
3332mpteq2dv 5176 . . . . 5 (𝑛 = 𝑁 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))))
3433eleq1d 2823 . . . 4 (𝑛 = 𝑁 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
3530, 34imbi12d 345 . . 3 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑛)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) ↔ ((𝜑𝑁 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
36 0z 12330 . . . . . . . . 9 0 ∈ ℤ
37 fzsn 13298 . . . . . . . . 9 (0 ∈ ℤ → (0...0) = {0})
3836, 37ax-mp 5 . . . . . . . 8 (0...0) = {0}
3938sumeq1i 15410 . . . . . . 7 Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡))
4039mpteq2i 5179 . . . . . 6 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡)))
41 stoweidlem17.1 . . . . . . 7 𝑡𝜑
42 stoweidlem17.7 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
4342adantr 481 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 𝐸 ∈ ℝ)
4443recnd 11003 . . . . . . . . 9 ((𝜑𝑡𝑇) → 𝐸 ∈ ℂ)
45 stoweidlem17.3 . . . . . . . . . . . . 13 (𝜑𝑋:(0...𝑁)⟶𝐴)
46 nnz 12342 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
47 nngt0 12004 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 0 < 𝑁)
48 0re 10977 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
49 nnre 11980 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
50 ltle 11063 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
5148, 49, 50sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (0 < 𝑁 → 0 ≤ 𝑁))
5247, 51mpd 15 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
5346, 52jca 512 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
541, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5536eluz1i 12590 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘0) ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5654, 55sylibr 233 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (ℤ‘0))
57 eluzfz1 13263 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
5856, 57syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑁))
5945, 58ffvelrnd 6962 . . . . . . . . . . . 12 (𝜑 → (𝑋‘0) ∈ 𝐴)
60 feq1 6581 . . . . . . . . . . . . . 14 (𝑓 = (𝑋‘0) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘0):𝑇⟶ℝ))
6160imbi2d 341 . . . . . . . . . . . . 13 (𝑓 = (𝑋‘0) → ((𝜑𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘0):𝑇⟶ℝ)))
62 stoweidlem17.8 . . . . . . . . . . . . . 14 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
6362expcom 414 . . . . . . . . . . . . 13 (𝑓𝐴 → (𝜑𝑓:𝑇⟶ℝ))
6461, 63vtoclga 3513 . . . . . . . . . . . 12 ((𝑋‘0) ∈ 𝐴 → (𝜑 → (𝑋‘0):𝑇⟶ℝ))
6559, 64mpcom 38 . . . . . . . . . . 11 (𝜑 → (𝑋‘0):𝑇⟶ℝ)
6665ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝑋‘0)‘𝑡) ∈ ℝ)
6766recnd 11003 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑋‘0)‘𝑡) ∈ ℂ)
6844, 67mulcld 10995 . . . . . . . 8 ((𝜑𝑡𝑇) → (𝐸 · ((𝑋‘0)‘𝑡)) ∈ ℂ)
69 fveq2 6774 . . . . . . . . . . 11 (𝑖 = 0 → (𝑋𝑖) = (𝑋‘0))
7069fveq1d 6776 . . . . . . . . . 10 (𝑖 = 0 → ((𝑋𝑖)‘𝑡) = ((𝑋‘0)‘𝑡))
7170oveq2d 7291 . . . . . . . . 9 (𝑖 = 0 → (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡)))
7271sumsn 15458 . . . . . . . 8 ((0 ∈ ℤ ∧ (𝐸 · ((𝑋‘0)‘𝑡)) ∈ ℂ) → Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡)))
7336, 68, 72sylancr 587 . . . . . . 7 ((𝜑𝑡𝑇) → Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘0)‘𝑡)))
7441, 73mpteq2da 5172 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ {0} (𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))))
7540, 74eqtrid 2790 . . . . 5 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))))
76 stoweidlem17.5 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
77 stoweidlem17.6 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
7841, 76, 77, 62, 42, 59stoweidlem2 43543 . . . . 5 (𝜑 → (𝑡𝑇 ↦ (𝐸 · ((𝑋‘0)‘𝑡))) ∈ 𝐴)
7975, 78eqeltrd 2839 . . . 4 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
8079adantr 481 . . 3 ((𝜑 ∧ 0 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...0)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
81 eqidd 2739 . . . . . . . . . . . . . . 15 (𝑟 = 𝑡𝐸 = 𝐸)
8281cbvmptv 5187 . . . . . . . . . . . . . 14 (𝑟𝑇𝐸) = (𝑡𝑇𝐸)
8382eqcomi 2747 . . . . . . . . . . . . 13 (𝑡𝑇𝐸) = (𝑟𝑇𝐸)
84 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑡𝑇) → 𝑡𝑇)
8583, 81, 84, 43fvmptd3 6898 . . . . . . . . . . . 12 ((𝜑𝑡𝑇) → ((𝑡𝑇𝐸)‘𝑡) = 𝐸)
8685oveq1d 7290 . . . . . . . . . . 11 ((𝜑𝑡𝑇) → (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
8741, 86mpteq2da 5172 . . . . . . . . . 10 (𝜑 → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
8887adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
8945ffvelrnda 6961 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑋‘(𝑚 + 1)) ∈ 𝐴)
90 simpl 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝜑)
91 id 22 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐸𝑥 = 𝐸)
9291mpteq2dv 5176 . . . . . . . . . . . . . . 15 (𝑥 = 𝐸 → (𝑡𝑇𝑥) = (𝑡𝑇𝐸))
9392eleq1d 2823 . . . . . . . . . . . . . 14 (𝑥 = 𝐸 → ((𝑡𝑇𝑥) ∈ 𝐴 ↔ (𝑡𝑇𝐸) ∈ 𝐴))
9493imbi2d 341 . . . . . . . . . . . . 13 (𝑥 = 𝐸 → ((𝜑 → (𝑡𝑇𝑥) ∈ 𝐴) ↔ (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴)))
9577expcom 414 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝜑 → (𝑡𝑇𝑥) ∈ 𝐴))
9694, 95vtoclga 3513 . . . . . . . . . . . 12 (𝐸 ∈ ℝ → (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴))
9742, 96mpcom 38 . . . . . . . . . . 11 (𝜑 → (𝑡𝑇𝐸) ∈ 𝐴)
9897adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇𝐸) ∈ 𝐴)
99 fveq1 6773 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑋‘(𝑚 + 1)) → (𝑔𝑡) = ((𝑋‘(𝑚 + 1))‘𝑡))
10099oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑔 = (𝑋‘(𝑚 + 1)) → (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡)) = (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡)))
101100mpteq2dv 5176 . . . . . . . . . . . . . 14 (𝑔 = (𝑋‘(𝑚 + 1)) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))))
102101eleq1d 2823 . . . . . . . . . . . . 13 (𝑔 = (𝑋‘(𝑚 + 1)) → ((𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴))
103102imbi2d 341 . . . . . . . . . . . 12 (𝑔 = (𝑋‘(𝑚 + 1)) → (((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)))
10482eleq1i 2829 . . . . . . . . . . . . . . . 16 ((𝑟𝑇𝐸) ∈ 𝐴 ↔ (𝑡𝑇𝐸) ∈ 𝐴)
105 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = (𝑟𝑇𝐸) → (𝑓𝑡) = ((𝑟𝑇𝐸)‘𝑡))
10682fveq1i 6775 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑟𝑇𝐸)‘𝑡) = ((𝑡𝑇𝐸)‘𝑡)
107105, 106eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = (𝑟𝑇𝐸) → (𝑓𝑡) = ((𝑡𝑇𝐸)‘𝑡))
108107oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑟𝑇𝐸) → ((𝑓𝑡) · (𝑔𝑡)) = (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡)))
109108mpteq2dv 5176 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑟𝑇𝐸) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))))
110109eleq1d 2823 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑟𝑇𝐸) → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
111110imbi2d 341 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑟𝑇𝐸) → (((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴)))
112763com12 1122 . . . . . . . . . . . . . . . . . 18 ((𝑓𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
1131123expib 1121 . . . . . . . . . . . . . . . . 17 (𝑓𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴))
114111, 113vtoclga 3513 . . . . . . . . . . . . . . . 16 ((𝑟𝑇𝐸) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
115104, 114sylbir 234 . . . . . . . . . . . . . . 15 ((𝑡𝑇𝐸) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
1161153impib 1115 . . . . . . . . . . . . . 14 (((𝑡𝑇𝐸) ∈ 𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴)
1171163com13 1123 . . . . . . . . . . . . 13 ((𝑔𝐴𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴)
1181173expib 1121 . . . . . . . . . . . 12 (𝑔𝐴 → ((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · (𝑔𝑡))) ∈ 𝐴))
119103, 118vtoclga 3513 . . . . . . . . . . 11 ((𝑋‘(𝑚 + 1)) ∈ 𝐴 → ((𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴))
1201193impib 1115 . . . . . . . . . 10 (((𝑋‘(𝑚 + 1)) ∈ 𝐴𝜑 ∧ (𝑡𝑇𝐸) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
12189, 90, 98, 120syl3anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ (((𝑡𝑇𝐸)‘𝑡) · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
12288, 121eqeltrrd 2840 . . . . . . . 8 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
123122ad2antll 726 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
124 simprrl 778 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → 𝜑)
125 simpl 483 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ ℕ0)
126 simprl 768 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝜑)
1271ad2antrl 725 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℕ)
128127nnnn0d 12293 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℕ0)
129 nn0re 12242 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
130129adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ ℝ)
131 peano2nn0 12273 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
132131nn0red 12294 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℝ)
133132adantr 481 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 + 1) ∈ ℝ)
1341nnred 11988 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
135134ad2antrl 725 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑁 ∈ ℝ)
136 lep1 11816 . . . . . . . . . . . . 13 (𝑚 ∈ ℝ → 𝑚 ≤ (𝑚 + 1))
137125, 129, 1363syl 18 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ≤ (𝑚 + 1))
138 elfzle2 13260 . . . . . . . . . . . . 13 ((𝑚 + 1) ∈ (0...𝑁) → (𝑚 + 1) ≤ 𝑁)
139138ad2antll 726 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 + 1) ≤ 𝑁)
140130, 133, 135, 137, 139letrd 11132 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚𝑁)
141 elfz2nn0 13347 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) ↔ (𝑚 ∈ ℕ0𝑁 ∈ ℕ0𝑚𝑁))
142125, 128, 140, 141syl3anbrc 1342 . . . . . . . . . 10 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → 𝑚 ∈ (0...𝑁))
143125, 126, 142jca32 516 . . . . . . . . 9 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))))
144143adantl 482 . . . . . . . 8 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))))
145 pm3.31 450 . . . . . . . . 9 ((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) → ((𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
146145adantr 481 . . . . . . . 8 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → ((𝑚 ∈ ℕ0 ∧ (𝜑𝑚 ∈ (0...𝑁))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
147144, 146mpd 15 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
148 fveq2 6774 . . . . . . . . . . . 12 (𝑟 = 𝑡 → ((𝑋‘(𝑚 + 1))‘𝑟) = ((𝑋‘(𝑚 + 1))‘𝑡))
149148oveq2d 7291 . . . . . . . . . . 11 (𝑟 = 𝑡 → (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
150149cbvmptv 5187 . . . . . . . . . 10 (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
151150eleq1i 2829 . . . . . . . . 9 ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴)
152 fveq1 6773 . . . . . . . . . . . . . . 15 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑔𝑡) = ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)))‘𝑡))
153150fveq1i 6775 . . . . . . . . . . . . . . 15 ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟)))‘𝑡) = ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)
154152, 153eqtrdi 2794 . . . . . . . . . . . . . 14 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑔𝑡) = ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))
155154oveq2d 7291 . . . . . . . . . . . . 13 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)))
156155mpteq2dv 5176 . . . . . . . . . . . 12 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))))
157156eleq1d 2823 . . . . . . . . . . 11 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → ((𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
158157imbi2d 341 . . . . . . . . . 10 (𝑔 = (𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) → (((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)))
159 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑡 → ((𝑋𝑖)‘𝑟) = ((𝑋𝑖)‘𝑡))
160159oveq2d 7291 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑡 → (𝐸 · ((𝑋𝑖)‘𝑟)) = (𝐸 · ((𝑋𝑖)‘𝑡)))
161160sumeq2sdv 15416 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
162161cbvmptv 5187 . . . . . . . . . . . . . . 15 (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
163162eleq1i 2829 . . . . . . . . . . . . . 14 ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
164 fveq1 6773 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (𝑓𝑡) = ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟)))‘𝑡))
165162fveq1i 6775 . . . . . . . . . . . . . . . . . . . 20 ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟)))‘𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡)
166164, 165eqtrdi 2794 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (𝑓𝑡) = ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡))
167166oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → ((𝑓𝑡) + (𝑔𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡)))
168167mpteq2dv 5176 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))))
169168eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → ((𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
170169imbi2d 341 . . . . . . . . . . . . . . 15 (𝑓 = (𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) → (((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴) ↔ ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴)))
171 stoweidlem17.4 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1721713com12 1122 . . . . . . . . . . . . . . . 16 ((𝑓𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
1731723expib 1121 . . . . . . . . . . . . . . 15 (𝑓𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴))
174170, 173vtoclga 3513 . . . . . . . . . . . . . 14 ((𝑟𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑟))) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
175163, 174sylbir 234 . . . . . . . . . . . . 13 ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 → ((𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
1761753impib 1115 . . . . . . . . . . . 12 (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴𝜑𝑔𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴)
1771763com13 1123 . . . . . . . . . . 11 ((𝑔𝐴𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴)
1781773expib 1121 . . . . . . . . . 10 (𝑔𝐴 → ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝑔𝑡))) ∈ 𝐴))
179158, 178vtoclga 3513 . . . . . . . . 9 ((𝑟𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑟))) ∈ 𝐴 → ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
180151, 179sylbir 234 . . . . . . . 8 ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴 → ((𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
1811803impib 1115 . . . . . . 7 (((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) ∈ 𝐴𝜑 ∧ (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)
182123, 124, 147, 181syl3anc 1370 . . . . . 6 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴)
183 3anass 1094 . . . . . . . . 9 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ↔ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))))
184183biimpri 227 . . . . . . . 8 ((𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))) → (𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
185184adantl 482 . . . . . . 7 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
186 nfv 1917 . . . . . . . . . 10 𝑡 𝑚 ∈ ℕ0
187 nfv 1917 . . . . . . . . . 10 𝑡(𝑚 + 1) ∈ (0...𝑁)
188186, 41, 187nf3an 1904 . . . . . . . . 9 𝑡(𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁))
189 simpr 485 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝑡𝑇)
190 fzfid 13693 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (0...𝑚) ∈ Fin)
191423ad2ant2 1133 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
192191adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝐸 ∈ ℝ)
193192adantr 481 . . . . . . . . . . . . . 14 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → 𝐸 ∈ ℝ)
194 fzelp1 13308 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...𝑚) → 𝑖 ∈ (0...(𝑚 + 1)))
195194anim2i 617 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))))
196 an32 643 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ↔ (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡𝑇))
197195, 196sylib 217 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡𝑇))
198453ad2ant2 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝑋:(0...𝑁)⟶𝐴)
199198adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑋:(0...𝑁)⟶𝐴)
200 elfzuz3 13253 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 + 1) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘(𝑚 + 1)))
201 fzss2 13296 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘(𝑚 + 1)) → (0...(𝑚 + 1)) ⊆ (0...𝑁))
202200, 201syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 + 1) ∈ (0...𝑁) → (0...(𝑚 + 1)) ⊆ (0...𝑁))
203202sselda 3921 . . . . . . . . . . . . . . . . . . 19 (((𝑚 + 1) ∈ (0...𝑁) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑖 ∈ (0...𝑁))
2042033ad2antl3 1186 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝑖 ∈ (0...𝑁))
205199, 204ffvelrnd 6962 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝑋𝑖) ∈ 𝐴)
206 simpl2 1191 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝜑)
207 feq1 6581 . . . . . . . . . . . . . . . . . . 19 (𝑓 = (𝑋𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑋𝑖):𝑇⟶ℝ))
208207imbi2d 341 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋𝑖) → ((𝜑𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋𝑖):𝑇⟶ℝ)))
209208, 63vtoclga 3513 . . . . . . . . . . . . . . . . 17 ((𝑋𝑖) ∈ 𝐴 → (𝜑 → (𝑋𝑖):𝑇⟶ℝ))
210205, 206, 209sylc 65 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝑋𝑖):𝑇⟶ℝ)
211210ffvelrnda 6961 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑖 ∈ (0...(𝑚 + 1))) ∧ 𝑡𝑇) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
212197, 211syl 17 . . . . . . . . . . . . . 14 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
213193, 212remulcld 11005 . . . . . . . . . . . . 13 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...𝑚)) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
214190, 213fsumrecl 15446 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
215 eqid 2738 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
216215fvmpt2 6886 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
217189, 214, 216syl2anc 584 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
218217oveq1d 7290 . . . . . . . . . 10 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
219 3simpc 1149 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
220219adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))
221 feq1 6581 . . . . . . . . . . . . . . . . . 18 (𝑓 = (𝑋‘(𝑚 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝑋‘(𝑚 + 1)):𝑇⟶ℝ))
222221imbi2d 341 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑋‘(𝑚 + 1)) → ((𝜑𝑓:𝑇⟶ℝ) ↔ (𝜑 → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)))
223222, 63vtoclga 3513 . . . . . . . . . . . . . . . 16 ((𝑋‘(𝑚 + 1)) ∈ 𝐴 → (𝜑 → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ))
22489, 90, 223sylc 65 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)
225220, 224syl 17 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝑋‘(𝑚 + 1)):𝑇⟶ℝ)
226225, 189ffvelrnd 6962 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑋‘(𝑚 + 1))‘𝑡) ∈ ℝ)
227192, 226remulcld 11005 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)) ∈ ℝ)
228 eqid 2738 . . . . . . . . . . . . 13 (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
229228fvmpt2 6886 . . . . . . . . . . . 12 ((𝑡𝑇 ∧ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)) ∈ ℝ) → ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
230189, 227, 229syl2anc 584 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
231230oveq2d 7291 . . . . . . . . . 10 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
232 elfzuz 13252 . . . . . . . . . . . . . 14 ((𝑚 + 1) ∈ (0...𝑁) → (𝑚 + 1) ∈ (ℤ‘0))
2332323ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑚 + 1) ∈ (ℤ‘0))
234233adantr 481 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (𝑚 + 1) ∈ (ℤ‘0))
235192adantr 481 . . . . . . . . . . . . 13 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → 𝐸 ∈ ℝ)
236211an32s 649 . . . . . . . . . . . . 13 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → ((𝑋𝑖)‘𝑡) ∈ ℝ)
237 remulcl 10956 . . . . . . . . . . . . . 14 ((𝐸 ∈ ℝ ∧ ((𝑋𝑖)‘𝑡) ∈ ℝ) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℝ)
238237recnd 11003 . . . . . . . . . . . . 13 ((𝐸 ∈ ℝ ∧ ((𝑋𝑖)‘𝑡) ∈ ℝ) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
239235, 236, 238syl2anc 584 . . . . . . . . . . . 12 ((((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) ∧ 𝑖 ∈ (0...(𝑚 + 1))) → (𝐸 · ((𝑋𝑖)‘𝑡)) ∈ ℂ)
240 fveq2 6774 . . . . . . . . . . . . . 14 (𝑖 = (𝑚 + 1) → (𝑋𝑖) = (𝑋‘(𝑚 + 1)))
241240fveq1d 6776 . . . . . . . . . . . . 13 (𝑖 = (𝑚 + 1) → ((𝑋𝑖)‘𝑡) = ((𝑋‘(𝑚 + 1))‘𝑡))
242241oveq2d 7291 . . . . . . . . . . . 12 (𝑖 = (𝑚 + 1) → (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))
243234, 239, 242fsumm1 15463 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
244 nn0cn 12243 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
2452443ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → 𝑚 ∈ ℂ)
246245adantr 481 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 𝑚 ∈ ℂ)
247 1cnd 10970 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → 1 ∈ ℂ)
248246, 247pncand 11333 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → ((𝑚 + 1) − 1) = 𝑚)
249248oveq2d 7291 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
250249sumeq1d 15413 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))
251250oveq1d 7290 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → (Σ𝑖 ∈ (0...((𝑚 + 1) − 1))(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
252243, 251eqtrd 2778 . . . . . . . . . 10 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = (Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)) + (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡))))
253218, 231, 2523eqtr4rd 2789 . . . . . . . . 9 (((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) ∧ 𝑡𝑇) → Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡)) = (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡)))
254188, 253mpteq2da 5172 . . . . . . . 8 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))))
255254eleq1d 2823 . . . . . . 7 ((𝑚 ∈ ℕ0𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
256185, 255syl 17 . . . . . 6 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴 ↔ (𝑡𝑇 ↦ (((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑡) + ((𝑡𝑇 ↦ (𝐸 · ((𝑋‘(𝑚 + 1))‘𝑡)))‘𝑡))) ∈ 𝐴))
257182, 256mpbird 256 . . . . 5 (((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) ∧ (𝑚 ∈ ℕ0 ∧ (𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)))) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
258257exp32 421 . . . 4 ((𝑚 ∈ ℕ0 → ((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)) → (𝑚 ∈ ℕ0 → ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
259258pm2.86i 110 . . 3 (𝑚 ∈ ℕ0 → (((𝜑𝑚 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑚)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴) → ((𝜑 ∧ (𝑚 + 1) ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...(𝑚 + 1))(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)))
26014, 21, 28, 35, 80, 259nn0ind 12415 . 2 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ (0...𝑁)) → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴))
2612, 7, 260sylc 65 1 (𝜑 → (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  stoweidlem60  43601
  Copyright terms: Public domain W3C validator