Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvs Structured version   Visualization version   GIF version

Theorem nvs 28425
 Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvs.1 𝑋 = (BaseSet‘𝑈)
nvs.4 𝑆 = ( ·𝑠OLD𝑈)
nvs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvs ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))

Proof of Theorem nvs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvs.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 eqid 2820 . . . . . . 7 ( +𝑣𝑈) = ( +𝑣𝑈)
3 nvs.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
4 eqid 2820 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
5 nvs.6 . . . . . . 7 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 28376 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1140 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp2 1133 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
98ralimi 3147 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
107, 9syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
11 oveq2 7141 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1211fveq2d 6650 . . . . . 6 (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵)))
13 fveq2 6646 . . . . . . 7 (𝑥 = 𝐵 → (𝑁𝑥) = (𝑁𝐵))
1413oveq2d 7149 . . . . . 6 (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁𝑥)) = ((abs‘𝑦) · (𝑁𝐵)))
1512, 14eqeq12d 2836 . . . . 5 (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁𝐵))))
16 fvoveq1 7156 . . . . . 6 (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵)))
17 fveq2 6646 . . . . . . 7 (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴))
1817oveq1d 7148 . . . . . 6 (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
1916, 18eqeq12d 2836 . . . . 5 (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
2015, 19rspc2v 3612 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ) → (∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
2110, 20syl5 34 . . 3 ((𝐵𝑋𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
22213impia 1113 . 2 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
23223com13 1120 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  ∀wral 3125  ⟨cop 4549   class class class wbr 5042  ⟶wf 6327  ‘cfv 6331  (class class class)co 7133  ℂcc 10513  ℝcr 10514  0cc0 10515   + caddc 10518   · cmul 10520   ≤ cle 10654  abscabs 14573  CVecOLDcvc 28320  NrmCVeccnv 28346   +𝑣 cpv 28347  BaseSetcba 28348   ·𝑠OLD cns 28349  0veccn0v 28350  normCVcnmcv 28352 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-1st 7667  df-2nd 7668  df-vc 28321  df-nv 28354  df-va 28357  df-ba 28358  df-sm 28359  df-0v 28360  df-nmcv 28362 This theorem is referenced by:  nvsge0  28426  nvm1  28427  nvpi  28429  nvmtri  28433  smcnlem  28459  ipidsq  28472  minvecolem2  28637
 Copyright terms: Public domain W3C validator