![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvs | Structured version Visualization version GIF version |
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvs.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvs.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvs | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvs.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2735 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | nvs.4 | . . . . . . 7 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2735 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
5 | nvs.6 | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 1, 2, 3, 4, 5 | nvi 30643 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
7 | 6 | simp3d 1143 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
8 | simp2 1136 | . . . . . 6 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
9 | 8 | ralimi 3081 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
11 | oveq2 7439 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵)) | |
12 | 11 | fveq2d 6911 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵))) |
13 | fveq2 6907 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑁‘𝑥) = (𝑁‘𝐵)) | |
14 | 13 | oveq2d 7447 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁‘𝑥)) = ((abs‘𝑦) · (𝑁‘𝐵))) |
15 | 12, 14 | eqeq12d 2751 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)))) |
16 | fvoveq1 7454 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵))) | |
17 | fveq2 6907 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴)) | |
18 | 17 | oveq1d 7446 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
19 | 16, 18 | eqeq12d 2751 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
20 | 15, 19 | rspc2v 3633 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
21 | 10, 20 | syl5 34 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
22 | 21 | 3impia 1116 | . 2 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
23 | 22 | 3com13 1123 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 〈cop 4637 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 + caddc 11156 · cmul 11158 ≤ cle 11294 abscabs 15270 CVecOLDcvc 30587 NrmCVeccnv 30613 +𝑣 cpv 30614 BaseSetcba 30615 ·𝑠OLD cns 30616 0veccn0v 30617 normCVcnmcv 30619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-1st 8013 df-2nd 8014 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 |
This theorem is referenced by: nvsge0 30693 nvm1 30694 nvpi 30696 nvmtri 30700 smcnlem 30726 ipidsq 30739 minvecolem2 30904 |
Copyright terms: Public domain | W3C validator |