MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvs Structured version   Visualization version   GIF version

Theorem nvs 30388
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvs.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvs.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
nvs.6 𝑁 = (normCVβ€˜π‘ˆ)
Assertion
Ref Expression
nvs ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))

Proof of Theorem nvs
Dummy variables 𝑦 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvs.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
2 eqid 2724 . . . . . . 7 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
3 nvs.4 . . . . . . 7 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
4 eqid 2724 . . . . . . 7 (0vecβ€˜π‘ˆ) = (0vecβ€˜π‘ˆ)
5 nvs.6 . . . . . . 7 𝑁 = (normCVβ€˜π‘ˆ)
61, 2, 3, 4, 5nvi 30339 . . . . . 6 (π‘ˆ ∈ NrmCVec β†’ (⟨( +𝑣 β€˜π‘ˆ), π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
76simp3d 1141 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))
8 simp2 1134 . . . . . 6 ((((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
98ralimi 3075 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
107, 9syl 17 . . . 4 (π‘ˆ ∈ NrmCVec β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
11 oveq2 7410 . . . . . . 7 (π‘₯ = 𝐡 β†’ (𝑦𝑆π‘₯) = (𝑦𝑆𝐡))
1211fveq2d 6886 . . . . . 6 (π‘₯ = 𝐡 β†’ (π‘β€˜(𝑦𝑆π‘₯)) = (π‘β€˜(𝑦𝑆𝐡)))
13 fveq2 6882 . . . . . . 7 (π‘₯ = 𝐡 β†’ (π‘β€˜π‘₯) = (π‘β€˜π΅))
1413oveq2d 7418 . . . . . 6 (π‘₯ = 𝐡 β†’ ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅)))
1512, 14eqeq12d 2740 . . . . 5 (π‘₯ = 𝐡 β†’ ((π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ↔ (π‘β€˜(𝑦𝑆𝐡)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅))))
16 fvoveq1 7425 . . . . . 6 (𝑦 = 𝐴 β†’ (π‘β€˜(𝑦𝑆𝐡)) = (π‘β€˜(𝐴𝑆𝐡)))
17 fveq2 6882 . . . . . . 7 (𝑦 = 𝐴 β†’ (absβ€˜π‘¦) = (absβ€˜π΄))
1817oveq1d 7417 . . . . . 6 (𝑦 = 𝐴 β†’ ((absβ€˜π‘¦) Β· (π‘β€˜π΅)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
1916, 18eqeq12d 2740 . . . . 5 (𝑦 = 𝐴 β†’ ((π‘β€˜(𝑦𝑆𝐡)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅)) ↔ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
2015, 19rspc2v 3615 . . . 4 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
2110, 20syl5 34 . . 3 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚) β†’ (π‘ˆ ∈ NrmCVec β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
22213impia 1114 . 2 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚ ∧ π‘ˆ ∈ NrmCVec) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
23223com13 1121 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βŸ¨cop 4627   class class class wbr 5139  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402  β„‚cc 11105  β„cr 11106  0cc0 11107   + caddc 11110   Β· cmul 11112   ≀ cle 11247  abscabs 15179  CVecOLDcvc 30283  NrmCVeccnv 30309   +𝑣 cpv 30310  BaseSetcba 30311   ·𝑠OLD cns 30312  0veccn0v 30313  normCVcnmcv 30315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-1st 7969  df-2nd 7970  df-vc 30284  df-nv 30317  df-va 30320  df-ba 30321  df-sm 30322  df-0v 30323  df-nmcv 30325
This theorem is referenced by:  nvsge0  30389  nvm1  30390  nvpi  30392  nvmtri  30396  smcnlem  30422  ipidsq  30435  minvecolem2  30600
  Copyright terms: Public domain W3C validator