MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvs Structured version   Visualization version   GIF version

Theorem nvs 30565
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvs.1 𝑋 = (BaseSet‘𝑈)
nvs.4 𝑆 = ( ·𝑠OLD𝑈)
nvs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvs ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))

Proof of Theorem nvs
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvs.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 eqid 2729 . . . . . . 7 ( +𝑣𝑈) = ( +𝑣𝑈)
3 nvs.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
4 eqid 2729 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
5 nvs.6 . . . . . . 7 𝑁 = (normCV𝑈)
61, 2, 3, 4, 5nvi 30516 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨( +𝑣𝑈), 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
76simp3d 1144 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
8 simp2 1137 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
98ralimi 3066 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥( +𝑣𝑈)𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
107, 9syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
11 oveq2 7377 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵))
1211fveq2d 6844 . . . . . 6 (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵)))
13 fveq2 6840 . . . . . . 7 (𝑥 = 𝐵 → (𝑁𝑥) = (𝑁𝐵))
1413oveq2d 7385 . . . . . 6 (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁𝑥)) = ((abs‘𝑦) · (𝑁𝐵)))
1512, 14eqeq12d 2745 . . . . 5 (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁𝐵))))
16 fvoveq1 7392 . . . . . 6 (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵)))
17 fveq2 6840 . . . . . . 7 (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴))
1817oveq1d 7384 . . . . . 6 (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
1916, 18eqeq12d 2745 . . . . 5 (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
2015, 19rspc2v 3596 . . . 4 ((𝐵𝑋𝐴 ∈ ℂ) → (∀𝑥𝑋𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
2110, 20syl5 34 . . 3 ((𝐵𝑋𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵))))
22213impia 1117 . 2 ((𝐵𝑋𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
23223com13 1124 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4591   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049  cle 11185  abscabs 15176  CVecOLDcvc 30460  NrmCVeccnv 30486   +𝑣 cpv 30487  BaseSetcba 30488   ·𝑠OLD cns 30489  0veccn0v 30490  normCVcnmcv 30492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-1st 7947  df-2nd 7948  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502
This theorem is referenced by:  nvsge0  30566  nvm1  30567  nvpi  30569  nvmtri  30573  smcnlem  30599  ipidsq  30612  minvecolem2  30777
  Copyright terms: Public domain W3C validator