MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvs Structured version   Visualization version   GIF version

Theorem nvs 30467
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvs.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvs.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
nvs.6 𝑁 = (normCVβ€˜π‘ˆ)
Assertion
Ref Expression
nvs ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))

Proof of Theorem nvs
Dummy variables 𝑦 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvs.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
2 eqid 2728 . . . . . . 7 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
3 nvs.4 . . . . . . 7 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
4 eqid 2728 . . . . . . 7 (0vecβ€˜π‘ˆ) = (0vecβ€˜π‘ˆ)
5 nvs.6 . . . . . . 7 𝑁 = (normCVβ€˜π‘ˆ)
61, 2, 3, 4, 5nvi 30418 . . . . . 6 (π‘ˆ ∈ NrmCVec β†’ (⟨( +𝑣 β€˜π‘ˆ), π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
76simp3d 1142 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))
8 simp2 1135 . . . . . 6 ((((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
98ralimi 3079 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
107, 9syl 17 . . . 4 (π‘ˆ ∈ NrmCVec β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
11 oveq2 7423 . . . . . . 7 (π‘₯ = 𝐡 β†’ (𝑦𝑆π‘₯) = (𝑦𝑆𝐡))
1211fveq2d 6896 . . . . . 6 (π‘₯ = 𝐡 β†’ (π‘β€˜(𝑦𝑆π‘₯)) = (π‘β€˜(𝑦𝑆𝐡)))
13 fveq2 6892 . . . . . . 7 (π‘₯ = 𝐡 β†’ (π‘β€˜π‘₯) = (π‘β€˜π΅))
1413oveq2d 7431 . . . . . 6 (π‘₯ = 𝐡 β†’ ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅)))
1512, 14eqeq12d 2744 . . . . 5 (π‘₯ = 𝐡 β†’ ((π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ↔ (π‘β€˜(𝑦𝑆𝐡)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅))))
16 fvoveq1 7438 . . . . . 6 (𝑦 = 𝐴 β†’ (π‘β€˜(𝑦𝑆𝐡)) = (π‘β€˜(𝐴𝑆𝐡)))
17 fveq2 6892 . . . . . . 7 (𝑦 = 𝐴 β†’ (absβ€˜π‘¦) = (absβ€˜π΄))
1817oveq1d 7430 . . . . . 6 (𝑦 = 𝐴 β†’ ((absβ€˜π‘¦) Β· (π‘β€˜π΅)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
1916, 18eqeq12d 2744 . . . . 5 (𝑦 = 𝐴 β†’ ((π‘β€˜(𝑦𝑆𝐡)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅)) ↔ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
2015, 19rspc2v 3619 . . . 4 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
2110, 20syl5 34 . . 3 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚) β†’ (π‘ˆ ∈ NrmCVec β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
22213impia 1115 . 2 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚ ∧ π‘ˆ ∈ NrmCVec) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
23223com13 1122 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3057  βŸ¨cop 4631   class class class wbr 5143  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7415  β„‚cc 11131  β„cr 11132  0cc0 11133   + caddc 11136   Β· cmul 11138   ≀ cle 11274  abscabs 15208  CVecOLDcvc 30362  NrmCVeccnv 30388   +𝑣 cpv 30389  BaseSetcba 30390   ·𝑠OLD cns 30391  0veccn0v 30392  normCVcnmcv 30394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-1st 7988  df-2nd 7989  df-vc 30363  df-nv 30396  df-va 30399  df-ba 30400  df-sm 30401  df-0v 30402  df-nmcv 30404
This theorem is referenced by:  nvsge0  30468  nvm1  30469  nvpi  30471  nvmtri  30475  smcnlem  30501  ipidsq  30514  minvecolem2  30679
  Copyright terms: Public domain W3C validator