| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvs | Structured version Visualization version GIF version | ||
| Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvs.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvs.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvs | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | eqid 2730 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | nvs.4 | . . . . . . 7 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 5 | nvs.6 | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | nvi 30550 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 7 | 6 | simp3d 1144 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 8 | simp2 1137 | . . . . . 6 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
| 9 | 8 | ralimi 3067 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 11 | oveq2 7398 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵)) | |
| 12 | 11 | fveq2d 6865 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵))) |
| 13 | fveq2 6861 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑁‘𝑥) = (𝑁‘𝐵)) | |
| 14 | 13 | oveq2d 7406 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁‘𝑥)) = ((abs‘𝑦) · (𝑁‘𝐵))) |
| 15 | 12, 14 | eqeq12d 2746 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)))) |
| 16 | fvoveq1 7413 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵))) | |
| 17 | fveq2 6861 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴)) | |
| 18 | 17 | oveq1d 7405 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| 19 | 16, 18 | eqeq12d 2746 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
| 20 | 15, 19 | rspc2v 3602 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
| 21 | 10, 20 | syl5 34 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
| 22 | 21 | 3impia 1117 | . 2 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| 23 | 22 | 3com13 1124 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4598 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 + caddc 11078 · cmul 11080 ≤ cle 11216 abscabs 15207 CVecOLDcvc 30494 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 ·𝑠OLD cns 30523 0veccn0v 30524 normCVcnmcv 30526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-1st 7971 df-2nd 7972 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 |
| This theorem is referenced by: nvsge0 30600 nvm1 30601 nvpi 30603 nvmtri 30607 smcnlem 30633 ipidsq 30646 minvecolem2 30811 |
| Copyright terms: Public domain | W3C validator |