| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvs | Structured version Visualization version GIF version | ||
| Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvs.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvs.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| nvs | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 3 | nvs.4 | . . . . . . 7 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
| 5 | nvs.6 | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | nvi 30594 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 7 | 6 | simp3d 1144 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 8 | simp2 1137 | . . . . . 6 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
| 9 | 8 | ralimi 3069 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 11 | oveq2 7354 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵)) | |
| 12 | 11 | fveq2d 6826 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵))) |
| 13 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑁‘𝑥) = (𝑁‘𝐵)) | |
| 14 | 13 | oveq2d 7362 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁‘𝑥)) = ((abs‘𝑦) · (𝑁‘𝐵))) |
| 15 | 12, 14 | eqeq12d 2747 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)))) |
| 16 | fvoveq1 7369 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵))) | |
| 17 | fveq2 6822 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴)) | |
| 18 | 17 | oveq1d 7361 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| 19 | 16, 18 | eqeq12d 2747 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
| 20 | 15, 19 | rspc2v 3583 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
| 21 | 10, 20 | syl5 34 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
| 22 | 21 | 3impia 1117 | . 2 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| 23 | 22 | 3com13 1124 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 〈cop 4579 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 + caddc 11009 · cmul 11011 ≤ cle 11147 abscabs 15141 CVecOLDcvc 30538 NrmCVeccnv 30564 +𝑣 cpv 30565 BaseSetcba 30566 ·𝑠OLD cns 30567 0veccn0v 30568 normCVcnmcv 30570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 |
| This theorem is referenced by: nvsge0 30644 nvm1 30645 nvpi 30647 nvmtri 30651 smcnlem 30677 ipidsq 30690 minvecolem2 30855 |
| Copyright terms: Public domain | W3C validator |