MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvs Structured version   Visualization version   GIF version

Theorem nvs 29903
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvs.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nvs.4 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
nvs.6 𝑁 = (normCVβ€˜π‘ˆ)
Assertion
Ref Expression
nvs ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))

Proof of Theorem nvs
Dummy variables 𝑦 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvs.1 . . . . . . 7 𝑋 = (BaseSetβ€˜π‘ˆ)
2 eqid 2732 . . . . . . 7 ( +𝑣 β€˜π‘ˆ) = ( +𝑣 β€˜π‘ˆ)
3 nvs.4 . . . . . . 7 𝑆 = ( ·𝑠OLD β€˜π‘ˆ)
4 eqid 2732 . . . . . . 7 (0vecβ€˜π‘ˆ) = (0vecβ€˜π‘ˆ)
5 nvs.6 . . . . . . 7 𝑁 = (normCVβ€˜π‘ˆ)
61, 2, 3, 4, 5nvi 29854 . . . . . 6 (π‘ˆ ∈ NrmCVec β†’ (⟨( +𝑣 β€˜π‘ˆ), π‘†βŸ© ∈ CVecOLD ∧ 𝑁:π‘‹βŸΆβ„ ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
76simp3d 1144 . . . . 5 (π‘ˆ ∈ NrmCVec β†’ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))
8 simp2 1137 . . . . . 6 ((((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
98ralimi 3083 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 β†’ π‘₯ = (0vecβ€˜π‘ˆ)) ∧ βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯( +𝑣 β€˜π‘ˆ)𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
107, 9syl 17 . . . 4 (π‘ˆ ∈ NrmCVec β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)))
11 oveq2 7413 . . . . . . 7 (π‘₯ = 𝐡 β†’ (𝑦𝑆π‘₯) = (𝑦𝑆𝐡))
1211fveq2d 6892 . . . . . 6 (π‘₯ = 𝐡 β†’ (π‘β€˜(𝑦𝑆π‘₯)) = (π‘β€˜(𝑦𝑆𝐡)))
13 fveq2 6888 . . . . . . 7 (π‘₯ = 𝐡 β†’ (π‘β€˜π‘₯) = (π‘β€˜π΅))
1413oveq2d 7421 . . . . . 6 (π‘₯ = 𝐡 β†’ ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅)))
1512, 14eqeq12d 2748 . . . . 5 (π‘₯ = 𝐡 β†’ ((π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) ↔ (π‘β€˜(𝑦𝑆𝐡)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅))))
16 fvoveq1 7428 . . . . . 6 (𝑦 = 𝐴 β†’ (π‘β€˜(𝑦𝑆𝐡)) = (π‘β€˜(𝐴𝑆𝐡)))
17 fveq2 6888 . . . . . . 7 (𝑦 = 𝐴 β†’ (absβ€˜π‘¦) = (absβ€˜π΄))
1817oveq1d 7420 . . . . . 6 (𝑦 = 𝐴 β†’ ((absβ€˜π‘¦) Β· (π‘β€˜π΅)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
1916, 18eqeq12d 2748 . . . . 5 (𝑦 = 𝐴 β†’ ((π‘β€˜(𝑦𝑆𝐡)) = ((absβ€˜π‘¦) Β· (π‘β€˜π΅)) ↔ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
2015, 19rspc2v 3621 . . . 4 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ β„‚ (π‘β€˜(𝑦𝑆π‘₯)) = ((absβ€˜π‘¦) Β· (π‘β€˜π‘₯)) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
2110, 20syl5 34 . . 3 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚) β†’ (π‘ˆ ∈ NrmCVec β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅))))
22213impia 1117 . 2 ((𝐡 ∈ 𝑋 ∧ 𝐴 ∈ β„‚ ∧ π‘ˆ ∈ NrmCVec) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
23223com13 1124 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(𝐴𝑆𝐡)) = ((absβ€˜π΄) Β· (π‘β€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βŸ¨cop 4633   class class class wbr 5147  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  0cc0 11106   + caddc 11109   Β· cmul 11111   ≀ cle 11245  abscabs 15177  CVecOLDcvc 29798  NrmCVeccnv 29824   +𝑣 cpv 29825  BaseSetcba 29826   ·𝑠OLD cns 29827  0veccn0v 29828  normCVcnmcv 29830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-1st 7971  df-2nd 7972  df-vc 29799  df-nv 29832  df-va 29835  df-ba 29836  df-sm 29837  df-0v 29838  df-nmcv 29840
This theorem is referenced by:  nvsge0  29904  nvm1  29905  nvpi  29907  nvmtri  29911  smcnlem  29937  ipidsq  29950  minvecolem2  30115
  Copyright terms: Public domain W3C validator