MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaword1 Structured version   Visualization version   GIF version

Theorem oaword1 8551
Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. Lemma 3.2 of [Schloeder] p. 7. (For the other part see oaord1 8550.) (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
oaword1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))

Proof of Theorem oaword1
StepHypRef Expression
1 oa0 8515 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
21adantr 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
3 0ss 4396 . . 3 ∅ ⊆ 𝐵
4 0elon 6418 . . . 4 ∅ ∈ On
5 oaword 8548 . . . . 5 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)))
653com13 1124 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ∅ ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)))
74, 6mp3an3 1450 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)))
83, 7mpbii 232 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))
92, 8eqsstrrd 4021 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3948  c0 4322  Oncon0 6364  (class class class)co 7408   +o coa 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-oadd 8469
This theorem is referenced by:  oawordexr  8555  oa00  8558  oaf1o  8562  omordi  8565  omeulem2  8582  oeeui  8601  nnarcl  8615  omxpenlem  9072  cantnfle  9665  cantnflem1d  9682  cantnflem3  9685  cantnflem4  9686  tfsconcatfn  42078  tfsconcatfv2  42080  tfsconcatrn  42082  tfsconcat0b  42086  tfsconcatrev  42088  oadif1  42120  oaun2  42121  oaun3  42122  naddwordnexlem0  42137  naddwordnexlem4  42142
  Copyright terms: Public domain W3C validator