| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oaword1 | Structured version Visualization version GIF version | ||
| Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. Lemma 3.2 of [Schloeder] p. 7. (For the other part see oaord1 8568.) (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| oaword1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa0 8533 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴) |
| 3 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
| 4 | 0elon 6412 | . . . 4 ⊢ ∅ ∈ On | |
| 5 | oaword 8566 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))) | |
| 6 | 5 | 3com13 1124 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ∅ ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))) |
| 7 | 4, 6 | mp3an3 1452 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))) |
| 8 | 3, 7 | mpbii 233 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)) |
| 9 | 2, 8 | eqsstrrd 3999 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 Oncon0 6357 (class class class)co 7410 +o coa 8482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 |
| This theorem is referenced by: oawordexr 8573 oa00 8576 oaf1o 8580 omordi 8583 omeulem2 8600 oeeui 8619 nnarcl 8633 omxpenlem 9092 cantnfle 9690 cantnflem1d 9707 cantnflem3 9710 cantnflem4 9711 tfsconcatfn 43329 tfsconcatfv2 43331 tfsconcatrn 43333 tfsconcat0b 43337 tfsconcatrev 43339 oadif1 43371 oaun2 43372 oaun3 43373 naddwordnexlem0 43387 naddwordnexlem4 43392 |
| Copyright terms: Public domain | W3C validator |