![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oaword1 | Structured version Visualization version GIF version |
Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. Lemma 3.2 of [Schloeder] p. 7. (For the other part see oaord1 8549.) (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
oaword1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa0 8514 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴) |
3 | 0ss 4391 | . . 3 ⊢ ∅ ⊆ 𝐵 | |
4 | 0elon 6411 | . . . 4 ⊢ ∅ ∈ On | |
5 | oaword 8547 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))) | |
6 | 5 | 3com13 1121 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ∅ ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))) |
7 | 4, 6 | mp3an3 1446 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))) |
8 | 3, 7 | mpbii 232 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)) |
9 | 2, 8 | eqsstrrd 4016 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ∅c0 4317 Oncon0 6357 (class class class)co 7404 +o coa 8461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-oadd 8468 |
This theorem is referenced by: oawordexr 8554 oa00 8557 oaf1o 8561 omordi 8564 omeulem2 8581 oeeui 8600 nnarcl 8614 omxpenlem 9072 cantnfle 9665 cantnflem1d 9682 cantnflem3 9685 cantnflem4 9686 tfsconcatfn 42645 tfsconcatfv2 42647 tfsconcatrn 42649 tfsconcat0b 42653 tfsconcatrev 42655 oadif1 42687 oaun2 42688 oaun3 42689 naddwordnexlem0 42704 naddwordnexlem4 42709 |
Copyright terms: Public domain | W3C validator |