MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulc Structured version   Visualization version   GIF version

Theorem dvdsmulc 16167
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulc ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†’ (๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ)))

Proof of Theorem dvdsmulc
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 3simpc 1151 . . 3 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค))
2 zmulcl 12553 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ ยท ๐พ) โˆˆ โ„ค)
323adant2 1132 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ ยท ๐พ) โˆˆ โ„ค)
4 zmulcl 12553 . . . . . 6 ((๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ ยท ๐พ) โˆˆ โ„ค)
543adant1 1131 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ ยท ๐พ) โˆˆ โ„ค)
63, 5jca 513 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘€ ยท ๐พ) โˆˆ โ„ค โˆง (๐‘ ยท ๐พ) โˆˆ โ„ค))
763comr 1126 . . 3 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐‘€ ยท ๐พ) โˆˆ โ„ค โˆง (๐‘ ยท ๐พ) โˆˆ โ„ค))
8 simpr 486 . . 3 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ๐‘ฅ โˆˆ โ„ค)
9 zcn 12505 . . . . . . . . 9 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
10 zcn 12505 . . . . . . . . 9 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„‚)
11 zcn 12505 . . . . . . . . 9 (๐พ โˆˆ โ„ค โ†’ ๐พ โˆˆ โ„‚)
12 mulass 11140 . . . . . . . . 9 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚ โˆง ๐พ โˆˆ โ„‚) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
139, 10, 11, 12syl3an 1161 . . . . . . . 8 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
14133com13 1125 . . . . . . 7 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
15143expa 1119 . . . . . 6 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
16153adantl3 1169 . . . . 5 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
17 oveq1 7365 . . . . 5 ((๐‘ฅ ยท ๐‘€) = ๐‘ โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ ยท ๐พ))
1816, 17sylan9req 2798 . . . 4 ((((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘ฅ โˆˆ โ„ค) โˆง (๐‘ฅ ยท ๐‘€) = ๐‘) โ†’ (๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ))
1918ex 414 . . 3 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท ๐‘€) = ๐‘ โ†’ (๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ)))
201, 7, 8, 19dvds1lem 16151 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†’ (๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ)))
21203coml 1128 1 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†’ (๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   class class class wbr 5106  (class class class)co 7358  โ„‚cc 11050   ยท cmul 11057  โ„คcz 12500   โˆฅ cdvds 16137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-ltxr 11195  df-sub 11388  df-neg 11389  df-nn 12155  df-n0 12415  df-z 12501  df-dvds 16138
This theorem is referenced by:  dvdsmulcr  16169  coprmdvds2  16531  mulgcddvds  16532  rpmulgcd2  16533  pcpremul  16716  odadd2  19628  ablfacrp2  19847  znrrg  20975  dvdsmulf1o  26546  nnproddivdvdsd  40461
  Copyright terms: Public domain W3C validator