MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulc Structured version   Visualization version   GIF version

Theorem dvdsmulc 15993
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))

Proof of Theorem dvdsmulc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3simpc 1149 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 zmulcl 12369 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ)
323adant2 1130 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ)
4 zmulcl 12369 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ)
543adant1 1129 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ)
63, 5jca 512 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ))
763comr 1124 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ))
8 simpr 485 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
9 zcn 12324 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
10 zcn 12324 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 zcn 12324 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
12 mulass 10959 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
139, 10, 11, 12syl3an 1159 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
14133com13 1123 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
15143expa 1117 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
16153adantl3 1167 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
17 oveq1 7282 . . . . 5 ((𝑥 · 𝑀) = 𝑁 → ((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾))
1816, 17sylan9req 2799 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑥 · 𝑀) = 𝑁) → (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾))
1918ex 413 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾)))
201, 7, 8, 19dvds1lem 15977 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
21203coml 1126 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cc 10869   · cmul 10876  cz 12319  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-dvds 15964
This theorem is referenced by:  dvdsmulcr  15995  coprmdvds2  16359  mulgcddvds  16360  rpmulgcd2  16361  pcpremul  16544  odadd2  19450  ablfacrp2  19670  znrrg  20773  dvdsmulf1o  26343  nnproddivdvdsd  40009
  Copyright terms: Public domain W3C validator