![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnacan | Structured version Visualization version GIF version |
Description: Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
nnacan | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnaword 8625 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) | |
2 | 1 | 3comr 1122 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 ⊆ 𝐶 ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶))) |
3 | nnaword 8625 | . . . . 5 ⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
4 | 3 | 3com13 1121 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ⊆ 𝐵 ↔ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) |
5 | 2, 4 | anbi12d 630 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)))) |
6 | 5 | bicomd 222 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵)) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵))) |
7 | eqss 3992 | . 2 ⊢ ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ ((𝐴 +o 𝐵) ⊆ (𝐴 +o 𝐶) ∧ (𝐴 +o 𝐶) ⊆ (𝐴 +o 𝐵))) | |
8 | eqss 3992 | . 2 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 (class class class)co 7404 ωcom 7851 +o coa 8461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-oadd 8468 |
This theorem is referenced by: omopthi 8659 nnasmo 8661 unfilem2 9310 ttrcltr 9710 ackbij1lem13 10226 ackbij1lem16 10229 addcanpi 10893 |
Copyright terms: Public domain | W3C validator |