MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpsucr Structured version   Visualization version   GIF version

Theorem relexpsucr 14974
Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpsucr ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))

Proof of Theorem relexpsucr
StepHypRef Expression
1 elnn0 12420 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simp3 1138 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
3 simp1 1136 . . . . . . 7 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → 𝑁 ∈ ℕ)
4 relexpsucnnr 14967 . . . . . . 7 ((𝑅𝑉𝑁 ∈ ℕ) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
52, 3, 4syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
653expib 1122 . . . . 5 (𝑁 ∈ ℕ → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
7 simp2 1137 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → Rel 𝑅)
8 relcoi2 6238 . . . . . . . . 9 (Rel 𝑅 → (( I ↾ 𝑅) ∘ 𝑅) = 𝑅)
98eqcomd 2735 . . . . . . . 8 (Rel 𝑅𝑅 = (( I ↾ 𝑅) ∘ 𝑅))
107, 9syl 17 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅 = (( I ↾ 𝑅) ∘ 𝑅))
11 simp1 1136 . . . . . . . . . . 11 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑁 = 0)
1211oveq1d 7384 . . . . . . . . . 10 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = (0 + 1))
13 0p1e1 12279 . . . . . . . . . 10 (0 + 1) = 1
1412, 13eqtrdi 2780 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑁 + 1) = 1)
1514oveq2d 7385 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = (𝑅𝑟1))
16 simp3 1138 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → 𝑅𝑉)
17 relexp1g 14968 . . . . . . . . 9 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1816, 17syl 17 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟1) = 𝑅)
1915, 18eqtrd 2764 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = 𝑅)
2011oveq2d 7385 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
21 relexp0 14965 . . . . . . . . . 10 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
2216, 7, 21syl2anc 584 . . . . . . . . 9 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟0) = ( I ↾ 𝑅))
2320, 22eqtrd 2764 . . . . . . . 8 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ 𝑅))
2423coeq1d 5815 . . . . . . 7 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → ((𝑅𝑟𝑁) ∘ 𝑅) = (( I ↾ 𝑅) ∘ 𝑅))
2510, 19, 243eqtr4d 2774 . . . . . 6 ((𝑁 = 0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
26253expib 1122 . . . . 5 (𝑁 = 0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
276, 26jaoi 857 . . . 4 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
281, 27sylbi 217 . . 3 (𝑁 ∈ ℕ0 → ((Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅)))
29283impib 1116 . 2 ((𝑁 ∈ ℕ0 ∧ Rel 𝑅𝑅𝑉) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
30293com13 1124 1 ((𝑅𝑉 ∧ Rel 𝑅𝑁 ∈ ℕ0) → (𝑅𝑟(𝑁 + 1)) = ((𝑅𝑟𝑁) ∘ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   cuni 4867   I cid 5525  cres 5633  ccom 5635  Rel wrel 5636  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  cn 12162  0cn0 12418  𝑟crelexp 14961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943  df-relexp 14962
This theorem is referenced by:  relexpsucrd  14975
  Copyright terms: Public domain W3C validator