| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexpsucr | Structured version Visualization version GIF version | ||
| Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.) |
| Ref | Expression |
|---|---|
| relexpsucr | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12496 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | simp3 1138 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
| 3 | simp1 1136 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℕ) | |
| 4 | relexpsucnnr 15033 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| 6 | 5 | 3expib 1122 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
| 7 | simp2 1137 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → Rel 𝑅) | |
| 8 | relcoi2 6264 | . . . . . . . . 9 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) | |
| 9 | 8 | eqcomd 2740 | . . . . . . . 8 ⊢ (Rel 𝑅 → 𝑅 = (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅)) |
| 10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 = (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅)) |
| 11 | simp1 1136 | . . . . . . . . . . 11 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) | |
| 12 | 11 | oveq1d 7415 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = (0 + 1)) |
| 13 | 0p1e1 12355 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
| 14 | 12, 13 | eqtrdi 2785 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = 1) |
| 15 | 14 | oveq2d 7416 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅↑𝑟1)) |
| 16 | simp3 1138 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
| 17 | relexp1g 15034 | . . . . . . . . 9 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟1) = 𝑅) |
| 19 | 15, 18 | eqtrd 2769 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = 𝑅) |
| 20 | 11 | oveq2d 7416 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
| 21 | relexp0 15031 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | |
| 22 | 16, 7, 21 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
| 23 | 20, 22 | eqtrd 2769 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ ∪ ∪ 𝑅)) |
| 24 | 23 | coeq1d 5839 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ 𝑅) = (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅)) |
| 25 | 10, 19, 24 | 3eqtr4d 2779 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| 26 | 25 | 3expib 1122 | . . . . 5 ⊢ (𝑁 = 0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
| 27 | 6, 26 | jaoi 857 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
| 28 | 1, 27 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
| 29 | 28 | 3impib 1116 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| 30 | 29 | 3com13 1124 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cuni 4881 I cid 5545 ↾ cres 5654 ∘ ccom 5656 Rel wrel 5657 (class class class)co 7400 0cc0 11122 1c1 11123 + caddc 11125 ℕcn 12233 ℕ0cn0 12494 ↑𝑟crelexp 15027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-n0 12495 df-z 12582 df-uz 12846 df-seq 14010 df-relexp 15028 |
| This theorem is referenced by: relexpsucrd 15041 |
| Copyright terms: Public domain | W3C validator |