Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexpsucr | Structured version Visualization version GIF version |
Description: A reduction for relation exponentiation to the right. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexpsucr | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12165 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | simp3 1136 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
3 | simp1 1134 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ ℕ) | |
4 | relexpsucnnr 14664 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) | |
5 | 2, 3, 4 | syl2anc 583 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
6 | 5 | 3expib 1120 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
7 | simp2 1135 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → Rel 𝑅) | |
8 | relcoi2 6169 | . . . . . . . . 9 ⊢ (Rel 𝑅 → (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅) = 𝑅) | |
9 | 8 | eqcomd 2744 | . . . . . . . 8 ⊢ (Rel 𝑅 → 𝑅 = (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅)) |
10 | 7, 9 | syl 17 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 = (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅)) |
11 | simp1 1134 | . . . . . . . . . . 11 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) | |
12 | 11 | oveq1d 7270 | . . . . . . . . . 10 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = (0 + 1)) |
13 | 0p1e1 12025 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
14 | 12, 13 | eqtrdi 2795 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑁 + 1) = 1) |
15 | 14 | oveq2d 7271 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = (𝑅↑𝑟1)) |
16 | simp3 1136 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) | |
17 | relexp1g 14665 | . . . . . . . . 9 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) | |
18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟1) = 𝑅) |
19 | 15, 18 | eqtrd 2778 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = 𝑅) |
20 | 11 | oveq2d 7271 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
21 | relexp0 14662 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | |
22 | 16, 7, 21 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
23 | 20, 22 | eqtrd 2778 | . . . . . . . 8 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = ( I ↾ ∪ ∪ 𝑅)) |
24 | 23 | coeq1d 5759 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → ((𝑅↑𝑟𝑁) ∘ 𝑅) = (( I ↾ ∪ ∪ 𝑅) ∘ 𝑅)) |
25 | 10, 19, 24 | 3eqtr4d 2788 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
26 | 25 | 3expib 1120 | . . . . 5 ⊢ (𝑁 = 0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
27 | 6, 26 | jaoi 853 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
28 | 1, 27 | sylbi 216 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅))) |
29 | 28 | 3impib 1114 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ Rel 𝑅 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
30 | 29 | 3com13 1122 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅 ∧ 𝑁 ∈ ℕ0) → (𝑅↑𝑟(𝑁 + 1)) = ((𝑅↑𝑟𝑁) ∘ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 I cid 5479 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 ℕcn 11903 ℕ0cn0 12163 ↑𝑟crelexp 14658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-relexp 14659 |
This theorem is referenced by: relexpsucrd 14672 |
Copyright terms: Public domain | W3C validator |