| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t1e3 | Structured version Visualization version GIF version | ||
| Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3t1e3 | ⊢ (3 · 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12347 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | mulridi 11265 | 1 ⊢ (3 · 1) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7431 1c1 11156 · cmul 11160 3c3 12322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-mulcl 11217 ax-mulcom 11219 ax-mulass 11221 ax-distr 11222 ax-1rid 11225 ax-cnre 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-2 12329 df-3 12330 |
| This theorem is referenced by: 3t3e9 12433 01sqrexlem7 15287 5prm 17146 631prm 17164 4001prm 17182 pigt3 26560 lhe4.4ex1a 44348 stoweidlem13 46028 minusmodnep2tmod 47355 3ndvds4 47582 gpg3kgrtriexlem3 48041 gpg3kgrtriexlem6 48044 |
| Copyright terms: Public domain | W3C validator |