MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3t1e3 Structured version   Visualization version   GIF version

Theorem 3t1e3 12376
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3t1e3 (3 · 1) = 3

Proof of Theorem 3t1e3
StepHypRef Expression
1 3cn 12292 . 2 3 ∈ ℂ
21mulridi 11217 1 (3 · 1) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7408  1c1 11110   · cmul 11114  3c3 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-mulcom 11173  ax-mulass 11175  ax-distr 11176  ax-1rid 11179  ax-cnre 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-2 12274  df-3 12275
This theorem is referenced by:  3t3e9  12378  01sqrexlem7  15194  5prm  17041  631prm  17059  4001prm  17077  pigt3  26026  lhe4.4ex1a  43078  stoweidlem13  44719  3ndvds4  46253
  Copyright terms: Public domain W3C validator