| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t1e3 | Structured version Visualization version GIF version | ||
| Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3t1e3 | ⊢ (3 · 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12321 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | mulridi 11239 | 1 ⊢ (3 · 1) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 · cmul 11134 3c3 12296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-mulcom 11193 ax-mulass 11195 ax-distr 11196 ax-1rid 11199 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 |
| This theorem is referenced by: 3t3e9 12407 01sqrexlem7 15267 5prm 17128 631prm 17146 4001prm 17164 pigt3 26479 lhe4.4ex1a 44353 stoweidlem13 46042 minusmodnep2tmod 47382 3ndvds4 47609 gpg3kgrtriexlem3 48087 gpg3kgrtriexlem6 48090 |
| Copyright terms: Public domain | W3C validator |