| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t1e3 | Structured version Visualization version GIF version | ||
| Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3t1e3 | ⊢ (3 · 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12267 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | mulridi 11178 | 1 ⊢ (3 · 1) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 · cmul 11073 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 |
| This theorem is referenced by: 3t3e9 12348 01sqrexlem7 15214 5prm 17079 631prm 17097 4001prm 17115 pigt3 26427 lhe4.4ex1a 44318 stoweidlem13 46011 minusmodnep2tmod 47354 3ndvds4 47596 gpg3kgrtriexlem3 48076 gpg3kgrtriexlem6 48079 |
| Copyright terms: Public domain | W3C validator |