MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3t1e3 Structured version   Visualization version   GIF version

Theorem 3t1e3 12458
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3t1e3 (3 · 1) = 3

Proof of Theorem 3t1e3
StepHypRef Expression
1 3cn 12374 . 2 3 ∈ ℂ
21mulridi 11294 1 (3 · 1) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  1c1 11185   · cmul 11189  3c3 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-mulcom 11248  ax-mulass 11250  ax-distr 11251  ax-1rid 11254  ax-cnre 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-2 12356  df-3 12357
This theorem is referenced by:  3t3e9  12460  01sqrexlem7  15297  5prm  17156  631prm  17174  4001prm  17192  pigt3  26578  lhe4.4ex1a  44298  stoweidlem13  45934  3ndvds4  47469
  Copyright terms: Public domain W3C validator