| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t1e3 | Structured version Visualization version GIF version | ||
| Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 3t1e3 | ⊢ (3 · 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3cn 12209 | . 2 ⊢ 3 ∈ ℂ | |
| 2 | 1 | mulridi 11119 | 1 ⊢ (3 · 1) = 3 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 · cmul 11014 3c3 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 |
| This theorem is referenced by: 3t3e9 12290 01sqrexlem7 15155 5prm 17020 631prm 17038 4001prm 17056 pigt3 26425 lhe4.4ex1a 44306 stoweidlem13 45998 minusmodnep2tmod 47341 3ndvds4 47583 gpg3kgrtriexlem3 48073 gpg3kgrtriexlem6 48076 |
| Copyright terms: Public domain | W3C validator |