![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version |
Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3t3e9 | ⊢ (3 · 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12357 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7459 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
3 | 3cn 12374 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | 2cn 12368 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 11242 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | adddii 11302 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
7 | 3t2e6 12459 | . . . . 5 ⊢ (3 · 2) = 6 | |
8 | 3t1e3 12458 | . . . . 5 ⊢ (3 · 1) = 3 | |
9 | 7, 8 | oveq12i 7460 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
10 | 6, 9 | eqtri 2768 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
11 | 6p3e9 12453 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 10, 11 | eqtri 2768 | . 2 ⊢ (3 · (2 + 1)) = 9 |
13 | 2, 12 | eqtri 2768 | 1 ⊢ (3 · 3) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 2c2 12348 3c3 12349 6c6 12352 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 |
This theorem is referenced by: sq3 14247 3dvds 16379 3dvdsdec 16380 3dvds2dec 16381 9nprm 17160 11prm 17162 43prm 17169 83prm 17170 317prm 17173 1259lem2 17179 1259lem4 17181 1259prm 17183 2503lem2 17185 mcubic 26908 log2tlbnd 27006 log2ublem3 27009 log2ub 27010 bposlem9 27354 lgsdir2lem5 27391 ex-lcm 30490 hgt750lem 34628 hgt750lem2 34629 3lexlogpow2ineq2 42016 3lexlogpow5ineq5 42017 3cubeslem3l 42642 3cubeslem3r 42643 inductionexd 44117 fmtno5lem3 47429 fmtno4prmfac193 47447 fmtno4nprmfac193 47448 127prm 47473 2exp340mod341 47607 9fppr8 47611 |
Copyright terms: Public domain | W3C validator |