| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12189 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7357 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 12206 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12200 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 11124 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 12286 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 12285 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 7358 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2754 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 12280 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2754 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2754 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 3c3 12181 6c6 12184 9c9 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 |
| This theorem is referenced by: sq3 14105 3dvds 16242 3dvdsdec 16243 3dvds2dec 16244 9nprm 17024 11prm 17026 43prm 17033 83prm 17034 317prm 17037 1259lem2 17043 1259lem4 17045 1259prm 17047 2503lem2 17049 mcubic 26784 log2tlbnd 26882 log2ublem3 26885 log2ub 26886 bposlem9 27230 lgsdir2lem5 27267 ex-lcm 30438 hgt750lem 34664 hgt750lem2 34665 3lexlogpow2ineq2 42162 3lexlogpow5ineq5 42163 3cubeslem3l 42789 3cubeslem3r 42790 inductionexd 44258 fmtno5lem3 47665 fmtno4prmfac193 47683 fmtno4nprmfac193 47684 127prm 47709 2exp340mod341 47843 9fppr8 47847 |
| Copyright terms: Public domain | W3C validator |