| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12250 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7398 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 12267 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12261 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 11186 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 12347 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 12346 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 7399 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2752 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 12341 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2752 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2752 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 · cmul 11073 2c2 12241 3c3 12242 6c6 12245 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 |
| This theorem is referenced by: sq3 14163 3dvds 16301 3dvdsdec 16302 3dvds2dec 16303 9nprm 17083 11prm 17085 43prm 17092 83prm 17093 317prm 17096 1259lem2 17102 1259lem4 17104 1259prm 17106 2503lem2 17108 mcubic 26757 log2tlbnd 26855 log2ublem3 26858 log2ub 26859 bposlem9 27203 lgsdir2lem5 27240 ex-lcm 30387 hgt750lem 34642 hgt750lem2 34643 3lexlogpow2ineq2 42047 3lexlogpow5ineq5 42048 3cubeslem3l 42674 3cubeslem3r 42675 inductionexd 44144 fmtno5lem3 47556 fmtno4prmfac193 47574 fmtno4nprmfac193 47575 127prm 47600 2exp340mod341 47734 9fppr8 47738 |
| Copyright terms: Public domain | W3C validator |