| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12192 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7360 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 12209 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12203 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11067 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 11127 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 12289 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 12288 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 7361 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2752 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 12283 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2752 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2752 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 · cmul 11014 2c2 12183 3c3 12184 6c6 12187 9c9 12190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 |
| This theorem is referenced by: sq3 14105 3dvds 16242 3dvdsdec 16243 3dvds2dec 16244 9nprm 17024 11prm 17026 43prm 17033 83prm 17034 317prm 17037 1259lem2 17043 1259lem4 17045 1259prm 17047 2503lem2 17049 mcubic 26755 log2tlbnd 26853 log2ublem3 26856 log2ub 26857 bposlem9 27201 lgsdir2lem5 27238 ex-lcm 30402 hgt750lem 34625 hgt750lem2 34626 3lexlogpow2ineq2 42042 3lexlogpow5ineq5 42043 3cubeslem3l 42669 3cubeslem3r 42670 inductionexd 44138 fmtno5lem3 47549 fmtno4prmfac193 47567 fmtno4nprmfac193 47568 127prm 47593 2exp340mod341 47727 9fppr8 47731 |
| Copyright terms: Public domain | W3C validator |