![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version |
Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3t3e9 | ⊢ (3 · 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12327 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7441 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
3 | 3cn 12344 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | 2cn 12338 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 11210 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | adddii 11270 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
7 | 3t2e6 12429 | . . . . 5 ⊢ (3 · 2) = 6 | |
8 | 3t1e3 12428 | . . . . 5 ⊢ (3 · 1) = 3 | |
9 | 7, 8 | oveq12i 7442 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
10 | 6, 9 | eqtri 2762 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
11 | 6p3e9 12423 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 10, 11 | eqtri 2762 | . 2 ⊢ (3 · (2 + 1)) = 9 |
13 | 2, 12 | eqtri 2762 | 1 ⊢ (3 · 3) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 1c1 11153 + caddc 11155 · cmul 11157 2c2 12318 3c3 12319 6c6 12322 9c9 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-1rid 11222 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 |
This theorem is referenced by: sq3 14233 3dvds 16364 3dvdsdec 16365 3dvds2dec 16366 9nprm 17146 11prm 17148 43prm 17155 83prm 17156 317prm 17159 1259lem2 17165 1259lem4 17167 1259prm 17169 2503lem2 17171 mcubic 26904 log2tlbnd 27002 log2ublem3 27005 log2ub 27006 bposlem9 27350 lgsdir2lem5 27387 ex-lcm 30486 hgt750lem 34644 hgt750lem2 34645 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 3cubeslem3l 42673 3cubeslem3r 42674 inductionexd 44144 fmtno5lem3 47479 fmtno4prmfac193 47497 fmtno4nprmfac193 47498 127prm 47523 2exp340mod341 47657 9fppr8 47661 |
Copyright terms: Public domain | W3C validator |