| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12302 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7414 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 12319 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12313 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11185 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 11245 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 12404 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 12403 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 7415 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2758 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 12398 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2758 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2758 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 + caddc 11130 · cmul 11132 2c2 12293 3c3 12294 6c6 12297 9c9 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-1rid 11197 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 |
| This theorem is referenced by: sq3 14214 3dvds 16348 3dvdsdec 16349 3dvds2dec 16350 9nprm 17130 11prm 17132 43prm 17139 83prm 17140 317prm 17143 1259lem2 17149 1259lem4 17151 1259prm 17153 2503lem2 17155 mcubic 26807 log2tlbnd 26905 log2ublem3 26908 log2ub 26909 bposlem9 27253 lgsdir2lem5 27290 ex-lcm 30385 hgt750lem 34629 hgt750lem2 34630 3lexlogpow2ineq2 42018 3lexlogpow5ineq5 42019 3cubeslem3l 42656 3cubeslem3r 42657 inductionexd 44126 fmtno5lem3 47517 fmtno4prmfac193 47535 fmtno4nprmfac193 47536 127prm 47561 2exp340mod341 47695 9fppr8 47699 |
| Copyright terms: Public domain | W3C validator |