Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version |
Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3t3e9 | ⊢ (3 · 3) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11967 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 7266 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
3 | 3cn 11984 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | 2cn 11978 | . . . . 5 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | adddii 10918 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
7 | 3t2e6 12069 | . . . . 5 ⊢ (3 · 2) = 6 | |
8 | 3t1e3 12068 | . . . . 5 ⊢ (3 · 1) = 3 | |
9 | 7, 8 | oveq12i 7267 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
10 | 6, 9 | eqtri 2766 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
11 | 6p3e9 12063 | . . 3 ⊢ (6 + 3) = 9 | |
12 | 10, 11 | eqtri 2766 | . 2 ⊢ (3 · (2 + 1)) = 9 |
13 | 2, 12 | eqtri 2766 | 1 ⊢ (3 · 3) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 · cmul 10807 2c2 11958 3c3 11959 6c6 11962 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: sq3 13843 3dvds 15968 3dvdsdec 15969 3dvds2dec 15970 9nprm 16742 11prm 16744 43prm 16751 83prm 16752 317prm 16755 1259lem2 16761 1259lem4 16763 1259prm 16765 2503lem2 16767 mcubic 25902 log2tlbnd 26000 log2ublem3 26003 log2ub 26004 bposlem9 26345 lgsdir2lem5 26382 ex-lcm 28723 hgt750lem 32531 hgt750lem2 32532 3lexlogpow2ineq2 39995 3lexlogpow5ineq5 39996 3cubeslem3l 40424 3cubeslem3r 40425 inductionexd 41654 fmtno5lem3 44895 fmtno4prmfac193 44913 fmtno4nprmfac193 44914 127prm 44939 2exp340mod341 45073 9fppr8 45077 |
Copyright terms: Public domain | W3C validator |