| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12257 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7401 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 12274 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12268 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 11193 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 12354 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 12353 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 7402 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2753 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 12348 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2753 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2753 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 · cmul 11080 2c2 12248 3c3 12249 6c6 12252 9c9 12255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 |
| This theorem is referenced by: sq3 14170 3dvds 16308 3dvdsdec 16309 3dvds2dec 16310 9nprm 17090 11prm 17092 43prm 17099 83prm 17100 317prm 17103 1259lem2 17109 1259lem4 17111 1259prm 17113 2503lem2 17115 mcubic 26764 log2tlbnd 26862 log2ublem3 26865 log2ub 26866 bposlem9 27210 lgsdir2lem5 27247 ex-lcm 30394 hgt750lem 34649 hgt750lem2 34650 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 3cubeslem3l 42681 3cubeslem3r 42682 inductionexd 44151 fmtno5lem3 47560 fmtno4prmfac193 47578 fmtno4nprmfac193 47579 127prm 47604 2exp340mod341 47738 9fppr8 47742 |
| Copyright terms: Public domain | W3C validator |