| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3t3e9 | Structured version Visualization version GIF version | ||
| Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3t3e9 | ⊢ (3 · 3) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12226 | . . 3 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 7380 | . 2 ⊢ (3 · 3) = (3 · (2 + 1)) |
| 3 | 3cn 12243 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | 2cn 12237 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | adddii 11162 | . . . 4 ⊢ (3 · (2 + 1)) = ((3 · 2) + (3 · 1)) |
| 7 | 3t2e6 12323 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 8 | 3t1e3 12322 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 9 | 7, 8 | oveq12i 7381 | . . . 4 ⊢ ((3 · 2) + (3 · 1)) = (6 + 3) |
| 10 | 6, 9 | eqtri 2752 | . . 3 ⊢ (3 · (2 + 1)) = (6 + 3) |
| 11 | 6p3e9 12317 | . . 3 ⊢ (6 + 3) = 9 | |
| 12 | 10, 11 | eqtri 2752 | . 2 ⊢ (3 · (2 + 1)) = 9 |
| 13 | 2, 12 | eqtri 2752 | 1 ⊢ (3 · 3) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 · cmul 11049 2c2 12217 3c3 12218 6c6 12221 9c9 12224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 |
| This theorem is referenced by: sq3 14139 3dvds 16277 3dvdsdec 16278 3dvds2dec 16279 9nprm 17059 11prm 17061 43prm 17068 83prm 17069 317prm 17072 1259lem2 17078 1259lem4 17080 1259prm 17082 2503lem2 17084 mcubic 26790 log2tlbnd 26888 log2ublem3 26891 log2ub 26892 bposlem9 27236 lgsdir2lem5 27273 ex-lcm 30437 hgt750lem 34635 hgt750lem2 34636 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 3cubeslem3l 42667 3cubeslem3r 42668 inductionexd 44137 fmtno5lem3 47549 fmtno4prmfac193 47567 fmtno4nprmfac193 47568 127prm 47593 2exp340mod341 47727 9fppr8 47731 |
| Copyright terms: Public domain | W3C validator |