Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem13 Structured version   Visualization version   GIF version

Theorem stoweidlem13 45403
Description: Lemma for stoweid 45453. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem13.1 (𝜑𝐸 ∈ ℝ+)
stoweidlem13.2 (𝜑𝑋 ∈ ℝ)
stoweidlem13.3 (𝜑𝑌 ∈ ℝ)
stoweidlem13.4 (𝜑𝑗 ∈ ℝ)
stoweidlem13.5 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
stoweidlem13.6 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
stoweidlem13.7 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
stoweidlem13.8 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
Assertion
Ref Expression
stoweidlem13 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))

Proof of Theorem stoweidlem13
StepHypRef Expression
1 stoweidlem13.3 . . . 4 (𝜑𝑌 ∈ ℝ)
2 stoweidlem13.2 . . . 4 (𝜑𝑋 ∈ ℝ)
31, 2resubcld 11678 . . 3 (𝜑 → (𝑌𝑋) ∈ ℝ)
4 2re 12322 . . . 4 2 ∈ ℝ
5 stoweidlem13.1 . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 13054 . . . 4 (𝜑𝐸 ∈ ℝ)
7 remulcl 11229 . . . 4 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (2 · 𝐸) ∈ ℝ)
84, 6, 7sylancr 585 . . 3 (𝜑 → (2 · 𝐸) ∈ ℝ)
91recnd 11278 . . . . 5 (𝜑𝑌 ∈ ℂ)
102recnd 11278 . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10negsubdi2d 11623 . . . 4 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
122, 1resubcld 11678 . . . . 5 (𝜑 → (𝑋𝑌) ∈ ℝ)
13 1red 11251 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1413, 6remulcld 11280 . . . . 5 (𝜑 → (1 · 𝐸) ∈ ℝ)
15 stoweidlem13.4 . . . . . . . . . . 11 (𝜑𝑗 ∈ ℝ)
16 3re 12328 . . . . . . . . . . . . 13 3 ∈ ℝ
17 3ne0 12354 . . . . . . . . . . . . 13 3 ≠ 0
1816, 17rereccli 12015 . . . . . . . . . . . 12 (1 / 3) ∈ ℝ
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 3) ∈ ℝ)
2015, 19resubcld 11678 . . . . . . . . . 10 (𝜑 → (𝑗 − (1 / 3)) ∈ ℝ)
2120, 6remulcld 11280 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
2221, 1resubcld 11678 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) ∈ ℝ)
23 4re 12332 . . . . . . . . . . . . 13 4 ∈ ℝ
2423, 16, 173pm3.2i 1336 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
25 redivcl 11969 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (4 / 3) ∈ ℝ)
2624, 25mp1i 13 . . . . . . . . . . 11 (𝜑 → (4 / 3) ∈ ℝ)
2715, 26resubcld 11678 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) ∈ ℝ)
2827, 6remulcld 11280 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
2921, 28resubcld 11678 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) ∈ ℝ)
30 stoweidlem13.6 . . . . . . . . 9 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
312, 21, 1, 30lesub1dd 11866 . . . . . . . 8 (𝜑 → (𝑋𝑌) ≤ (((𝑗 − (1 / 3)) · 𝐸) − 𝑌))
32 stoweidlem13.7 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
3328, 1, 21, 32ltsub2dd 11863 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3412, 22, 29, 31, 33lelttrd 11408 . . . . . . 7 (𝜑 → (𝑋𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3515recnd 11278 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
3619recnd 11278 . . . . . . . . . 10 (𝜑 → (1 / 3) ∈ ℂ)
3735, 36subcld 11607 . . . . . . . . 9 (𝜑 → (𝑗 − (1 / 3)) ∈ ℂ)
3826recnd 11278 . . . . . . . . . 10 (𝜑 → (4 / 3) ∈ ℂ)
3935, 38subcld 11607 . . . . . . . . 9 (𝜑 → (𝑗 − (4 / 3)) ∈ ℂ)
406recnd 11278 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
4137, 39, 40subdird 11707 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
4235, 36, 35, 38sub4d 11656 . . . . . . . . . 10 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) − ((1 / 3) − (4 / 3))))
4335, 35subcld 11607 . . . . . . . . . . 11 (𝜑 → (𝑗𝑗) ∈ ℂ)
4443, 36, 38subsub2d 11636 . . . . . . . . . 10 (𝜑 → ((𝑗𝑗) − ((1 / 3) − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4542, 44eqtrd 2767 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4645oveq1d 7439 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4741, 46eqtr3d 2769 . . . . . . 7 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4834, 47breqtrd 5176 . . . . . 6 (𝜑 → (𝑋𝑌) < (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4935subidd 11595 . . . . . . . . 9 (𝜑 → (𝑗𝑗) = 0)
5049oveq1d 7439 . . . . . . . 8 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = (0 + ((4 / 3) − (1 / 3))))
51 4cn 12333 . . . . . . . . . . . 12 4 ∈ ℂ
52 3cn 12329 . . . . . . . . . . . 12 3 ∈ ℂ
5351, 52, 17divcli 11992 . . . . . . . . . . 11 (4 / 3) ∈ ℂ
54 ax-1cn 11202 . . . . . . . . . . . 12 1 ∈ ℂ
5554, 52, 17divcli 11992 . . . . . . . . . . 11 (1 / 3) ∈ ℂ
56 1div1e1 11940 . . . . . . . . . . . . . 14 (1 / 1) = 1
5756oveq2i 7435 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = ((1 / 3) + 1)
58 ax-1ne0 11213 . . . . . . . . . . . . . 14 1 ≠ 0
5954, 52, 54, 54, 17, 58divadddivi 12012 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = (((1 · 1) + (1 · 3)) / (3 · 1))
6057, 59eqtr3i 2757 . . . . . . . . . . . 12 ((1 / 3) + 1) = (((1 · 1) + (1 · 3)) / (3 · 1))
6152, 54addcomi 11441 . . . . . . . . . . . . . 14 (3 + 1) = (1 + 3)
62 df-4 12313 . . . . . . . . . . . . . 14 4 = (3 + 1)
63 1t1e1 12410 . . . . . . . . . . . . . . 15 (1 · 1) = 1
6452mullidi 11255 . . . . . . . . . . . . . . 15 (1 · 3) = 3
6563, 64oveq12i 7436 . . . . . . . . . . . . . 14 ((1 · 1) + (1 · 3)) = (1 + 3)
6661, 62, 653eqtr4ri 2766 . . . . . . . . . . . . 13 ((1 · 1) + (1 · 3)) = 4
6766oveq1i 7434 . . . . . . . . . . . 12 (((1 · 1) + (1 · 3)) / (3 · 1)) = (4 / (3 · 1))
68 3t1e3 12413 . . . . . . . . . . . . 13 (3 · 1) = 3
6968oveq2i 7435 . . . . . . . . . . . 12 (4 / (3 · 1)) = (4 / 3)
7060, 67, 693eqtri 2759 . . . . . . . . . . 11 ((1 / 3) + 1) = (4 / 3)
7153, 55, 54, 70subaddrii 11585 . . . . . . . . . 10 ((4 / 3) − (1 / 3)) = 1
7271oveq2i 7435 . . . . . . . . 9 (0 + ((4 / 3) − (1 / 3))) = (0 + 1)
73 1e0p1 12755 . . . . . . . . 9 1 = (0 + 1)
7472, 73eqtr4i 2758 . . . . . . . 8 (0 + ((4 / 3) − (1 / 3))) = 1
7550, 74eqtrdi 2783 . . . . . . 7 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = 1)
7675oveq1d 7439 . . . . . 6 (𝜑 → (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸) = (1 · 𝐸))
7748, 76breqtrd 5176 . . . . 5 (𝜑 → (𝑋𝑌) < (1 · 𝐸))
78 1lt2 12419 . . . . . 6 1 < 2
794a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
8013, 79, 5ltmul1d 13095 . . . . . 6 (𝜑 → (1 < 2 ↔ (1 · 𝐸) < (2 · 𝐸)))
8178, 80mpbii 232 . . . . 5 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
8212, 14, 8, 77, 81lttrd 11411 . . . 4 (𝜑 → (𝑋𝑌) < (2 · 𝐸))
8311, 82eqbrtrd 5172 . . 3 (𝜑 → -(𝑌𝑋) < (2 · 𝐸))
843, 8, 83ltnegcon1d 11830 . 2 (𝜑 → -(2 · 𝐸) < (𝑌𝑋))
85 5re 12335 . . . . . 6 5 ∈ ℝ
8685a1i 11 . . . . 5 (𝜑 → 5 ∈ ℝ)
8716a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
8817a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
8986, 87, 88redivcld 12078 . . . 4 (𝜑 → (5 / 3) ∈ ℝ)
9089, 6remulcld 11280 . . 3 (𝜑 → ((5 / 3) · 𝐸) ∈ ℝ)
912renegcld 11677 . . . . 5 (𝜑 → -𝑋 ∈ ℝ)
9215, 19readdcld 11279 . . . . . 6 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
9392, 6remulcld 11280 . . . . 5 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
9428renegcld 11677 . . . . 5 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
95 stoweidlem13.8 . . . . 5 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
96 stoweidlem13.5 . . . . . 6 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
9728, 2ltnegd 11828 . . . . . 6 (𝜑 → (((𝑗 − (4 / 3)) · 𝐸) < 𝑋 ↔ -𝑋 < -((𝑗 − (4 / 3)) · 𝐸)))
9896, 97mpbid 231 . . . . 5 (𝜑 → -𝑋 < -((𝑗 − (4 / 3)) · 𝐸))
991, 91, 93, 94, 95, 98lt2addd 11873 . . . 4 (𝜑 → (𝑌 + -𝑋) < (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)))
1009, 10negsubd 11613 . . . 4 (𝜑 → (𝑌 + -𝑋) = (𝑌𝑋))
10135, 36, 40adddird 11275 . . . . . 6 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑗 · 𝐸) + ((1 / 3) · 𝐸)))
10235, 38negsubd 11613 . . . . . . . . . . 11 (𝜑 → (𝑗 + -(4 / 3)) = (𝑗 − (4 / 3)))
103102eqcomd 2733 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) = (𝑗 + -(4 / 3)))
104103oveq1d 7439 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 + -(4 / 3)) · 𝐸))
10538negcld 11594 . . . . . . . . . 10 (𝜑 → -(4 / 3) ∈ ℂ)
10635, 105, 40adddird 11275 . . . . . . . . 9 (𝜑 → ((𝑗 + -(4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)))
10738, 40mulneg1d 11703 . . . . . . . . . 10 (𝜑 → (-(4 / 3) · 𝐸) = -((4 / 3) · 𝐸))
108107oveq2d 7440 . . . . . . . . 9 (𝜑 → ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
109104, 106, 1083eqtrd 2771 . . . . . . . 8 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
110109negeqd 11490 . . . . . . 7 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
11135, 40mulcld 11270 . . . . . . . 8 (𝜑 → (𝑗 · 𝐸) ∈ ℂ)
11238, 40mulcld 11270 . . . . . . . . 9 (𝜑 → ((4 / 3) · 𝐸) ∈ ℂ)
113112negcld 11594 . . . . . . . 8 (𝜑 → -((4 / 3) · 𝐸) ∈ ℂ)
114111, 113negdid 11620 . . . . . . 7 (𝜑 → -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)))
115112negnegd 11598 . . . . . . . 8 (𝜑 → --((4 / 3) · 𝐸) = ((4 / 3) · 𝐸))
116115oveq2d 7440 . . . . . . 7 (𝜑 → (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
117110, 114, 1163eqtrd 2771 . . . . . 6 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
118101, 117oveq12d 7442 . . . . 5 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))))
11936, 40mulcld 11270 . . . . . . . 8 (𝜑 → ((1 / 3) · 𝐸) ∈ ℂ)
120111negcld 11594 . . . . . . . 8 (𝜑 → -(𝑗 · 𝐸) ∈ ℂ)
121111, 119, 120, 112add4d 11478 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
122111negidd 11597 . . . . . . . 8 (𝜑 → ((𝑗 · 𝐸) + -(𝑗 · 𝐸)) = 0)
123122oveq1d 7439 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
124119, 112addcld 11269 . . . . . . . 8 (𝜑 → (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)) ∈ ℂ)
125124addlidd 11451 . . . . . . 7 (𝜑 → (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
126121, 123, 1253eqtrd 2771 . . . . . 6 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12736, 38, 40adddird 11275 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12887recnd 11278 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
12936, 38addcld 11269 . . . . . . . 8 (𝜑 → ((1 / 3) + (4 / 3)) ∈ ℂ)
130128, 36, 38adddid 11274 . . . . . . . . 9 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = ((3 · (1 / 3)) + (3 · (4 / 3))))
13154, 51addcomi 11441 . . . . . . . . . 10 (1 + 4) = (4 + 1)
13254, 52, 17divcan2i 11993 . . . . . . . . . . 11 (3 · (1 / 3)) = 1
13351, 52, 17divcan2i 11993 . . . . . . . . . . 11 (3 · (4 / 3)) = 4
134132, 133oveq12i 7436 . . . . . . . . . 10 ((3 · (1 / 3)) + (3 · (4 / 3))) = (1 + 4)
135 df-5 12314 . . . . . . . . . 10 5 = (4 + 1)
136131, 134, 1353eqtr4i 2765 . . . . . . . . 9 ((3 · (1 / 3)) + (3 · (4 / 3))) = 5
137130, 136eqtrdi 2783 . . . . . . . 8 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = 5)
138128, 129, 88, 137mvllmuld 12082 . . . . . . 7 (𝜑 → ((1 / 3) + (4 / 3)) = (5 / 3))
139138oveq1d 7439 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = ((5 / 3) · 𝐸))
140126, 127, 1393eqtr2d 2773 . . . . 5 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = ((5 / 3) · 𝐸))
141118, 140eqtrd 2767 . . . 4 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = ((5 / 3) · 𝐸))
14299, 100, 1413brtr3d 5181 . . 3 (𝜑 → (𝑌𝑋) < ((5 / 3) · 𝐸))
143 5lt6 12429 . . . . . . 7 5 < 6
144 3t2e6 12414 . . . . . . 7 (3 · 2) = 6
145143, 144breqtrri 5177 . . . . . 6 5 < (3 · 2)
146 3pos 12353 . . . . . . . 8 0 < 3
14716, 146pm3.2i 469 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
148 ltdivmul 12125 . . . . . . 7 ((5 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((5 / 3) < 2 ↔ 5 < (3 · 2)))
14985, 4, 147, 148mp3an 1457 . . . . . 6 ((5 / 3) < 2 ↔ 5 < (3 · 2))
150145, 149mpbir 230 . . . . 5 (5 / 3) < 2
151150a1i 11 . . . 4 (𝜑 → (5 / 3) < 2)
15289, 79, 5, 151ltmul1dd 13109 . . 3 (𝜑 → ((5 / 3) · 𝐸) < (2 · 𝐸))
1533, 90, 8, 142, 152lttrd 11411 . 2 (𝜑 → (𝑌𝑋) < (2 · 𝐸))
1543, 8absltd 15414 . 2 (𝜑 → ((abs‘(𝑌𝑋)) < (2 · 𝐸) ↔ (-(2 · 𝐸) < (𝑌𝑋) ∧ (𝑌𝑋) < (2 · 𝐸))))
15584, 153, 154mpbir2and 711 1 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  wne 2936   class class class wbr 5150  cfv 6551  (class class class)co 7424  cr 11143  0cc0 11144  1c1 11145   + caddc 11147   · cmul 11149   < clt 11284  cle 11285  cmin 11480  -cneg 11481   / cdiv 11907  2c2 12303  3c3 12304  4c4 12305  5c5 12306  6c6 12307  +crp 13012  abscabs 15219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-seq 14005  df-exp 14065  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221
This theorem is referenced by:  stoweidlem61  45451
  Copyright terms: Public domain W3C validator