Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem13 Structured version   Visualization version   GIF version

Theorem stoweidlem13 45990
Description: Lemma for stoweid 46040. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem13.1 (𝜑𝐸 ∈ ℝ+)
stoweidlem13.2 (𝜑𝑋 ∈ ℝ)
stoweidlem13.3 (𝜑𝑌 ∈ ℝ)
stoweidlem13.4 (𝜑𝑗 ∈ ℝ)
stoweidlem13.5 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
stoweidlem13.6 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
stoweidlem13.7 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
stoweidlem13.8 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
Assertion
Ref Expression
stoweidlem13 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))

Proof of Theorem stoweidlem13
StepHypRef Expression
1 stoweidlem13.3 . . . 4 (𝜑𝑌 ∈ ℝ)
2 stoweidlem13.2 . . . 4 (𝜑𝑋 ∈ ℝ)
31, 2resubcld 11663 . . 3 (𝜑 → (𝑌𝑋) ∈ ℝ)
4 2re 12312 . . . 4 2 ∈ ℝ
5 stoweidlem13.1 . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 13049 . . . 4 (𝜑𝐸 ∈ ℝ)
7 remulcl 11212 . . . 4 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (2 · 𝐸) ∈ ℝ)
84, 6, 7sylancr 587 . . 3 (𝜑 → (2 · 𝐸) ∈ ℝ)
91recnd 11261 . . . . 5 (𝜑𝑌 ∈ ℂ)
102recnd 11261 . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10negsubdi2d 11608 . . . 4 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
122, 1resubcld 11663 . . . . 5 (𝜑 → (𝑋𝑌) ∈ ℝ)
13 1red 11234 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1413, 6remulcld 11263 . . . . 5 (𝜑 → (1 · 𝐸) ∈ ℝ)
15 stoweidlem13.4 . . . . . . . . . . 11 (𝜑𝑗 ∈ ℝ)
16 3re 12318 . . . . . . . . . . . . 13 3 ∈ ℝ
17 3ne0 12344 . . . . . . . . . . . . 13 3 ≠ 0
1816, 17rereccli 12004 . . . . . . . . . . . 12 (1 / 3) ∈ ℝ
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 3) ∈ ℝ)
2015, 19resubcld 11663 . . . . . . . . . 10 (𝜑 → (𝑗 − (1 / 3)) ∈ ℝ)
2120, 6remulcld 11263 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
2221, 1resubcld 11663 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) ∈ ℝ)
23 4re 12322 . . . . . . . . . . . . 13 4 ∈ ℝ
2423, 16, 173pm3.2i 1340 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
25 redivcl 11958 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (4 / 3) ∈ ℝ)
2624, 25mp1i 13 . . . . . . . . . . 11 (𝜑 → (4 / 3) ∈ ℝ)
2715, 26resubcld 11663 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) ∈ ℝ)
2827, 6remulcld 11263 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
2921, 28resubcld 11663 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) ∈ ℝ)
30 stoweidlem13.6 . . . . . . . . 9 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
312, 21, 1, 30lesub1dd 11851 . . . . . . . 8 (𝜑 → (𝑋𝑌) ≤ (((𝑗 − (1 / 3)) · 𝐸) − 𝑌))
32 stoweidlem13.7 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
3328, 1, 21, 32ltsub2dd 11848 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3412, 22, 29, 31, 33lelttrd 11391 . . . . . . 7 (𝜑 → (𝑋𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3515recnd 11261 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
3619recnd 11261 . . . . . . . . . 10 (𝜑 → (1 / 3) ∈ ℂ)
3735, 36subcld 11592 . . . . . . . . 9 (𝜑 → (𝑗 − (1 / 3)) ∈ ℂ)
3826recnd 11261 . . . . . . . . . 10 (𝜑 → (4 / 3) ∈ ℂ)
3935, 38subcld 11592 . . . . . . . . 9 (𝜑 → (𝑗 − (4 / 3)) ∈ ℂ)
406recnd 11261 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
4137, 39, 40subdird 11692 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
4235, 36, 35, 38sub4d 11641 . . . . . . . . . 10 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) − ((1 / 3) − (4 / 3))))
4335, 35subcld 11592 . . . . . . . . . . 11 (𝜑 → (𝑗𝑗) ∈ ℂ)
4443, 36, 38subsub2d 11621 . . . . . . . . . 10 (𝜑 → ((𝑗𝑗) − ((1 / 3) − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4542, 44eqtrd 2770 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4645oveq1d 7418 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4741, 46eqtr3d 2772 . . . . . . 7 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4834, 47breqtrd 5145 . . . . . 6 (𝜑 → (𝑋𝑌) < (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4935subidd 11580 . . . . . . . . 9 (𝜑 → (𝑗𝑗) = 0)
5049oveq1d 7418 . . . . . . . 8 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = (0 + ((4 / 3) − (1 / 3))))
51 4cn 12323 . . . . . . . . . . . 12 4 ∈ ℂ
52 3cn 12319 . . . . . . . . . . . 12 3 ∈ ℂ
5351, 52, 17divcli 11981 . . . . . . . . . . 11 (4 / 3) ∈ ℂ
54 ax-1cn 11185 . . . . . . . . . . . 12 1 ∈ ℂ
5554, 52, 17divcli 11981 . . . . . . . . . . 11 (1 / 3) ∈ ℂ
56 1div1e1 11930 . . . . . . . . . . . . . 14 (1 / 1) = 1
5756oveq2i 7414 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = ((1 / 3) + 1)
58 ax-1ne0 11196 . . . . . . . . . . . . . 14 1 ≠ 0
5954, 52, 54, 54, 17, 58divadddivi 12001 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = (((1 · 1) + (1 · 3)) / (3 · 1))
6057, 59eqtr3i 2760 . . . . . . . . . . . 12 ((1 / 3) + 1) = (((1 · 1) + (1 · 3)) / (3 · 1))
6152, 54addcomi 11424 . . . . . . . . . . . . . 14 (3 + 1) = (1 + 3)
62 df-4 12303 . . . . . . . . . . . . . 14 4 = (3 + 1)
63 1t1e1 12400 . . . . . . . . . . . . . . 15 (1 · 1) = 1
6452mullidi 11238 . . . . . . . . . . . . . . 15 (1 · 3) = 3
6563, 64oveq12i 7415 . . . . . . . . . . . . . 14 ((1 · 1) + (1 · 3)) = (1 + 3)
6661, 62, 653eqtr4ri 2769 . . . . . . . . . . . . 13 ((1 · 1) + (1 · 3)) = 4
6766oveq1i 7413 . . . . . . . . . . . 12 (((1 · 1) + (1 · 3)) / (3 · 1)) = (4 / (3 · 1))
68 3t1e3 12403 . . . . . . . . . . . . 13 (3 · 1) = 3
6968oveq2i 7414 . . . . . . . . . . . 12 (4 / (3 · 1)) = (4 / 3)
7060, 67, 693eqtri 2762 . . . . . . . . . . 11 ((1 / 3) + 1) = (4 / 3)
7153, 55, 54, 70subaddrii 11570 . . . . . . . . . 10 ((4 / 3) − (1 / 3)) = 1
7271oveq2i 7414 . . . . . . . . 9 (0 + ((4 / 3) − (1 / 3))) = (0 + 1)
73 1e0p1 12748 . . . . . . . . 9 1 = (0 + 1)
7472, 73eqtr4i 2761 . . . . . . . 8 (0 + ((4 / 3) − (1 / 3))) = 1
7550, 74eqtrdi 2786 . . . . . . 7 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = 1)
7675oveq1d 7418 . . . . . 6 (𝜑 → (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸) = (1 · 𝐸))
7748, 76breqtrd 5145 . . . . 5 (𝜑 → (𝑋𝑌) < (1 · 𝐸))
78 1lt2 12409 . . . . . 6 1 < 2
794a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
8013, 79, 5ltmul1d 13090 . . . . . 6 (𝜑 → (1 < 2 ↔ (1 · 𝐸) < (2 · 𝐸)))
8178, 80mpbii 233 . . . . 5 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
8212, 14, 8, 77, 81lttrd 11394 . . . 4 (𝜑 → (𝑋𝑌) < (2 · 𝐸))
8311, 82eqbrtrd 5141 . . 3 (𝜑 → -(𝑌𝑋) < (2 · 𝐸))
843, 8, 83ltnegcon1d 11815 . 2 (𝜑 → -(2 · 𝐸) < (𝑌𝑋))
85 5re 12325 . . . . . 6 5 ∈ ℝ
8685a1i 11 . . . . 5 (𝜑 → 5 ∈ ℝ)
8716a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
8817a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
8986, 87, 88redivcld 12067 . . . 4 (𝜑 → (5 / 3) ∈ ℝ)
9089, 6remulcld 11263 . . 3 (𝜑 → ((5 / 3) · 𝐸) ∈ ℝ)
912renegcld 11662 . . . . 5 (𝜑 → -𝑋 ∈ ℝ)
9215, 19readdcld 11262 . . . . . 6 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
9392, 6remulcld 11263 . . . . 5 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
9428renegcld 11662 . . . . 5 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
95 stoweidlem13.8 . . . . 5 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
96 stoweidlem13.5 . . . . . 6 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
9728, 2ltnegd 11813 . . . . . 6 (𝜑 → (((𝑗 − (4 / 3)) · 𝐸) < 𝑋 ↔ -𝑋 < -((𝑗 − (4 / 3)) · 𝐸)))
9896, 97mpbid 232 . . . . 5 (𝜑 → -𝑋 < -((𝑗 − (4 / 3)) · 𝐸))
991, 91, 93, 94, 95, 98lt2addd 11858 . . . 4 (𝜑 → (𝑌 + -𝑋) < (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)))
1009, 10negsubd 11598 . . . 4 (𝜑 → (𝑌 + -𝑋) = (𝑌𝑋))
10135, 36, 40adddird 11258 . . . . . 6 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑗 · 𝐸) + ((1 / 3) · 𝐸)))
10235, 38negsubd 11598 . . . . . . . . . . 11 (𝜑 → (𝑗 + -(4 / 3)) = (𝑗 − (4 / 3)))
103102eqcomd 2741 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) = (𝑗 + -(4 / 3)))
104103oveq1d 7418 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 + -(4 / 3)) · 𝐸))
10538negcld 11579 . . . . . . . . . 10 (𝜑 → -(4 / 3) ∈ ℂ)
10635, 105, 40adddird 11258 . . . . . . . . 9 (𝜑 → ((𝑗 + -(4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)))
10738, 40mulneg1d 11688 . . . . . . . . . 10 (𝜑 → (-(4 / 3) · 𝐸) = -((4 / 3) · 𝐸))
108107oveq2d 7419 . . . . . . . . 9 (𝜑 → ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
109104, 106, 1083eqtrd 2774 . . . . . . . 8 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
110109negeqd 11474 . . . . . . 7 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
11135, 40mulcld 11253 . . . . . . . 8 (𝜑 → (𝑗 · 𝐸) ∈ ℂ)
11238, 40mulcld 11253 . . . . . . . . 9 (𝜑 → ((4 / 3) · 𝐸) ∈ ℂ)
113112negcld 11579 . . . . . . . 8 (𝜑 → -((4 / 3) · 𝐸) ∈ ℂ)
114111, 113negdid 11605 . . . . . . 7 (𝜑 → -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)))
115112negnegd 11583 . . . . . . . 8 (𝜑 → --((4 / 3) · 𝐸) = ((4 / 3) · 𝐸))
116115oveq2d 7419 . . . . . . 7 (𝜑 → (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
117110, 114, 1163eqtrd 2774 . . . . . 6 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
118101, 117oveq12d 7421 . . . . 5 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))))
11936, 40mulcld 11253 . . . . . . . 8 (𝜑 → ((1 / 3) · 𝐸) ∈ ℂ)
120111negcld 11579 . . . . . . . 8 (𝜑 → -(𝑗 · 𝐸) ∈ ℂ)
121111, 119, 120, 112add4d 11462 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
122111negidd 11582 . . . . . . . 8 (𝜑 → ((𝑗 · 𝐸) + -(𝑗 · 𝐸)) = 0)
123122oveq1d 7418 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
124119, 112addcld 11252 . . . . . . . 8 (𝜑 → (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)) ∈ ℂ)
125124addlidd 11434 . . . . . . 7 (𝜑 → (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
126121, 123, 1253eqtrd 2774 . . . . . 6 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12736, 38, 40adddird 11258 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12887recnd 11261 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
12936, 38addcld 11252 . . . . . . . 8 (𝜑 → ((1 / 3) + (4 / 3)) ∈ ℂ)
130128, 36, 38adddid 11257 . . . . . . . . 9 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = ((3 · (1 / 3)) + (3 · (4 / 3))))
13154, 51addcomi 11424 . . . . . . . . . 10 (1 + 4) = (4 + 1)
13254, 52, 17divcan2i 11982 . . . . . . . . . . 11 (3 · (1 / 3)) = 1
13351, 52, 17divcan2i 11982 . . . . . . . . . . 11 (3 · (4 / 3)) = 4
134132, 133oveq12i 7415 . . . . . . . . . 10 ((3 · (1 / 3)) + (3 · (4 / 3))) = (1 + 4)
135 df-5 12304 . . . . . . . . . 10 5 = (4 + 1)
136131, 134, 1353eqtr4i 2768 . . . . . . . . 9 ((3 · (1 / 3)) + (3 · (4 / 3))) = 5
137130, 136eqtrdi 2786 . . . . . . . 8 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = 5)
138128, 129, 88, 137mvllmuld 12071 . . . . . . 7 (𝜑 → ((1 / 3) + (4 / 3)) = (5 / 3))
139138oveq1d 7418 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = ((5 / 3) · 𝐸))
140126, 127, 1393eqtr2d 2776 . . . . 5 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = ((5 / 3) · 𝐸))
141118, 140eqtrd 2770 . . . 4 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = ((5 / 3) · 𝐸))
14299, 100, 1413brtr3d 5150 . . 3 (𝜑 → (𝑌𝑋) < ((5 / 3) · 𝐸))
143 5lt6 12419 . . . . . . 7 5 < 6
144 3t2e6 12404 . . . . . . 7 (3 · 2) = 6
145143, 144breqtrri 5146 . . . . . 6 5 < (3 · 2)
146 3pos 12343 . . . . . . . 8 0 < 3
14716, 146pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
148 ltdivmul 12115 . . . . . . 7 ((5 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((5 / 3) < 2 ↔ 5 < (3 · 2)))
14985, 4, 147, 148mp3an 1463 . . . . . 6 ((5 / 3) < 2 ↔ 5 < (3 · 2))
150145, 149mpbir 231 . . . . 5 (5 / 3) < 2
151150a1i 11 . . . 4 (𝜑 → (5 / 3) < 2)
15289, 79, 5, 151ltmul1dd 13104 . . 3 (𝜑 → ((5 / 3) · 𝐸) < (2 · 𝐸))
1533, 90, 8, 142, 152lttrd 11394 . 2 (𝜑 → (𝑌𝑋) < (2 · 𝐸))
1543, 8absltd 15446 . 2 (𝜑 → ((abs‘(𝑌𝑋)) < (2 · 𝐸) ↔ (-(2 · 𝐸) < (𝑌𝑋) ∧ (𝑌𝑋) < (2 · 𝐸))))
15584, 153, 154mpbir2and 713 1 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cle 11268  cmin 11464  -cneg 11465   / cdiv 11892  2c2 12293  3c3 12294  4c4 12295  5c5 12296  6c6 12297  +crp 13006  abscabs 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253
This theorem is referenced by:  stoweidlem61  46038
  Copyright terms: Public domain W3C validator