Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem13 Structured version   Visualization version   GIF version

Theorem stoweidlem13 45934
Description: Lemma for stoweid 45984. This lemma is used to prove the statement abs( f(t) - g(t) ) < 2 epsilon, in the last step of the proof in [BrosowskiDeutsh] p. 92. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem13.1 (𝜑𝐸 ∈ ℝ+)
stoweidlem13.2 (𝜑𝑋 ∈ ℝ)
stoweidlem13.3 (𝜑𝑌 ∈ ℝ)
stoweidlem13.4 (𝜑𝑗 ∈ ℝ)
stoweidlem13.5 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
stoweidlem13.6 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
stoweidlem13.7 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
stoweidlem13.8 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
Assertion
Ref Expression
stoweidlem13 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))

Proof of Theorem stoweidlem13
StepHypRef Expression
1 stoweidlem13.3 . . . 4 (𝜑𝑌 ∈ ℝ)
2 stoweidlem13.2 . . . 4 (𝜑𝑋 ∈ ℝ)
31, 2resubcld 11718 . . 3 (𝜑 → (𝑌𝑋) ∈ ℝ)
4 2re 12367 . . . 4 2 ∈ ℝ
5 stoweidlem13.1 . . . . 5 (𝜑𝐸 ∈ ℝ+)
65rpred 13099 . . . 4 (𝜑𝐸 ∈ ℝ)
7 remulcl 11269 . . . 4 ((2 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (2 · 𝐸) ∈ ℝ)
84, 6, 7sylancr 586 . . 3 (𝜑 → (2 · 𝐸) ∈ ℝ)
91recnd 11318 . . . . 5 (𝜑𝑌 ∈ ℂ)
102recnd 11318 . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10negsubdi2d 11663 . . . 4 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
122, 1resubcld 11718 . . . . 5 (𝜑 → (𝑋𝑌) ∈ ℝ)
13 1red 11291 . . . . . 6 (𝜑 → 1 ∈ ℝ)
1413, 6remulcld 11320 . . . . 5 (𝜑 → (1 · 𝐸) ∈ ℝ)
15 stoweidlem13.4 . . . . . . . . . . 11 (𝜑𝑗 ∈ ℝ)
16 3re 12373 . . . . . . . . . . . . 13 3 ∈ ℝ
17 3ne0 12399 . . . . . . . . . . . . 13 3 ≠ 0
1816, 17rereccli 12059 . . . . . . . . . . . 12 (1 / 3) ∈ ℝ
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 3) ∈ ℝ)
2015, 19resubcld 11718 . . . . . . . . . 10 (𝜑 → (𝑗 − (1 / 3)) ∈ ℝ)
2120, 6remulcld 11320 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) · 𝐸) ∈ ℝ)
2221, 1resubcld 11718 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) ∈ ℝ)
23 4re 12377 . . . . . . . . . . . . 13 4 ∈ ℝ
2423, 16, 173pm3.2i 1339 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0)
25 redivcl 12013 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0) → (4 / 3) ∈ ℝ)
2624, 25mp1i 13 . . . . . . . . . . 11 (𝜑 → (4 / 3) ∈ ℝ)
2715, 26resubcld 11718 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) ∈ ℝ)
2827, 6remulcld 11320 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
2921, 28resubcld 11718 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) ∈ ℝ)
30 stoweidlem13.6 . . . . . . . . 9 (𝜑𝑋 ≤ ((𝑗 − (1 / 3)) · 𝐸))
312, 21, 1, 30lesub1dd 11906 . . . . . . . 8 (𝜑 → (𝑋𝑌) ≤ (((𝑗 − (1 / 3)) · 𝐸) − 𝑌))
32 stoweidlem13.7 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑌)
3328, 1, 21, 32ltsub2dd 11903 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − 𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3412, 22, 29, 31, 33lelttrd 11448 . . . . . . 7 (𝜑 → (𝑋𝑌) < (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
3515recnd 11318 . . . . . . . . . 10 (𝜑𝑗 ∈ ℂ)
3619recnd 11318 . . . . . . . . . 10 (𝜑 → (1 / 3) ∈ ℂ)
3735, 36subcld 11647 . . . . . . . . 9 (𝜑 → (𝑗 − (1 / 3)) ∈ ℂ)
3826recnd 11318 . . . . . . . . . 10 (𝜑 → (4 / 3) ∈ ℂ)
3935, 38subcld 11647 . . . . . . . . 9 (𝜑 → (𝑗 − (4 / 3)) ∈ ℂ)
406recnd 11318 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
4137, 39, 40subdird 11747 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)))
4235, 36, 35, 38sub4d 11696 . . . . . . . . . 10 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) − ((1 / 3) − (4 / 3))))
4335, 35subcld 11647 . . . . . . . . . . 11 (𝜑 → (𝑗𝑗) ∈ ℂ)
4443, 36, 38subsub2d 11676 . . . . . . . . . 10 (𝜑 → ((𝑗𝑗) − ((1 / 3) − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4542, 44eqtrd 2780 . . . . . . . . 9 (𝜑 → ((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) = ((𝑗𝑗) + ((4 / 3) − (1 / 3))))
4645oveq1d 7463 . . . . . . . 8 (𝜑 → (((𝑗 − (1 / 3)) − (𝑗 − (4 / 3))) · 𝐸) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4741, 46eqtr3d 2782 . . . . . . 7 (𝜑 → (((𝑗 − (1 / 3)) · 𝐸) − ((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4834, 47breqtrd 5192 . . . . . 6 (𝜑 → (𝑋𝑌) < (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸))
4935subidd 11635 . . . . . . . . 9 (𝜑 → (𝑗𝑗) = 0)
5049oveq1d 7463 . . . . . . . 8 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = (0 + ((4 / 3) − (1 / 3))))
51 4cn 12378 . . . . . . . . . . . 12 4 ∈ ℂ
52 3cn 12374 . . . . . . . . . . . 12 3 ∈ ℂ
5351, 52, 17divcli 12036 . . . . . . . . . . 11 (4 / 3) ∈ ℂ
54 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
5554, 52, 17divcli 12036 . . . . . . . . . . 11 (1 / 3) ∈ ℂ
56 1div1e1 11985 . . . . . . . . . . . . . 14 (1 / 1) = 1
5756oveq2i 7459 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = ((1 / 3) + 1)
58 ax-1ne0 11253 . . . . . . . . . . . . . 14 1 ≠ 0
5954, 52, 54, 54, 17, 58divadddivi 12056 . . . . . . . . . . . . 13 ((1 / 3) + (1 / 1)) = (((1 · 1) + (1 · 3)) / (3 · 1))
6057, 59eqtr3i 2770 . . . . . . . . . . . 12 ((1 / 3) + 1) = (((1 · 1) + (1 · 3)) / (3 · 1))
6152, 54addcomi 11481 . . . . . . . . . . . . . 14 (3 + 1) = (1 + 3)
62 df-4 12358 . . . . . . . . . . . . . 14 4 = (3 + 1)
63 1t1e1 12455 . . . . . . . . . . . . . . 15 (1 · 1) = 1
6452mullidi 11295 . . . . . . . . . . . . . . 15 (1 · 3) = 3
6563, 64oveq12i 7460 . . . . . . . . . . . . . 14 ((1 · 1) + (1 · 3)) = (1 + 3)
6661, 62, 653eqtr4ri 2779 . . . . . . . . . . . . 13 ((1 · 1) + (1 · 3)) = 4
6766oveq1i 7458 . . . . . . . . . . . 12 (((1 · 1) + (1 · 3)) / (3 · 1)) = (4 / (3 · 1))
68 3t1e3 12458 . . . . . . . . . . . . 13 (3 · 1) = 3
6968oveq2i 7459 . . . . . . . . . . . 12 (4 / (3 · 1)) = (4 / 3)
7060, 67, 693eqtri 2772 . . . . . . . . . . 11 ((1 / 3) + 1) = (4 / 3)
7153, 55, 54, 70subaddrii 11625 . . . . . . . . . 10 ((4 / 3) − (1 / 3)) = 1
7271oveq2i 7459 . . . . . . . . 9 (0 + ((4 / 3) − (1 / 3))) = (0 + 1)
73 1e0p1 12800 . . . . . . . . 9 1 = (0 + 1)
7472, 73eqtr4i 2771 . . . . . . . 8 (0 + ((4 / 3) − (1 / 3))) = 1
7550, 74eqtrdi 2796 . . . . . . 7 (𝜑 → ((𝑗𝑗) + ((4 / 3) − (1 / 3))) = 1)
7675oveq1d 7463 . . . . . 6 (𝜑 → (((𝑗𝑗) + ((4 / 3) − (1 / 3))) · 𝐸) = (1 · 𝐸))
7748, 76breqtrd 5192 . . . . 5 (𝜑 → (𝑋𝑌) < (1 · 𝐸))
78 1lt2 12464 . . . . . 6 1 < 2
794a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
8013, 79, 5ltmul1d 13140 . . . . . 6 (𝜑 → (1 < 2 ↔ (1 · 𝐸) < (2 · 𝐸)))
8178, 80mpbii 233 . . . . 5 (𝜑 → (1 · 𝐸) < (2 · 𝐸))
8212, 14, 8, 77, 81lttrd 11451 . . . 4 (𝜑 → (𝑋𝑌) < (2 · 𝐸))
8311, 82eqbrtrd 5188 . . 3 (𝜑 → -(𝑌𝑋) < (2 · 𝐸))
843, 8, 83ltnegcon1d 11870 . 2 (𝜑 → -(2 · 𝐸) < (𝑌𝑋))
85 5re 12380 . . . . . 6 5 ∈ ℝ
8685a1i 11 . . . . 5 (𝜑 → 5 ∈ ℝ)
8716a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ)
8817a1i 11 . . . . 5 (𝜑 → 3 ≠ 0)
8986, 87, 88redivcld 12122 . . . 4 (𝜑 → (5 / 3) ∈ ℝ)
9089, 6remulcld 11320 . . 3 (𝜑 → ((5 / 3) · 𝐸) ∈ ℝ)
912renegcld 11717 . . . . 5 (𝜑 → -𝑋 ∈ ℝ)
9215, 19readdcld 11319 . . . . . 6 (𝜑 → (𝑗 + (1 / 3)) ∈ ℝ)
9392, 6remulcld 11320 . . . . 5 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) ∈ ℝ)
9428renegcld 11717 . . . . 5 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) ∈ ℝ)
95 stoweidlem13.8 . . . . 5 (𝜑𝑌 < ((𝑗 + (1 / 3)) · 𝐸))
96 stoweidlem13.5 . . . . . 6 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) < 𝑋)
9728, 2ltnegd 11868 . . . . . 6 (𝜑 → (((𝑗 − (4 / 3)) · 𝐸) < 𝑋 ↔ -𝑋 < -((𝑗 − (4 / 3)) · 𝐸)))
9896, 97mpbid 232 . . . . 5 (𝜑 → -𝑋 < -((𝑗 − (4 / 3)) · 𝐸))
991, 91, 93, 94, 95, 98lt2addd 11913 . . . 4 (𝜑 → (𝑌 + -𝑋) < (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)))
1009, 10negsubd 11653 . . . 4 (𝜑 → (𝑌 + -𝑋) = (𝑌𝑋))
10135, 36, 40adddird 11315 . . . . . 6 (𝜑 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑗 · 𝐸) + ((1 / 3) · 𝐸)))
10235, 38negsubd 11653 . . . . . . . . . . 11 (𝜑 → (𝑗 + -(4 / 3)) = (𝑗 − (4 / 3)))
103102eqcomd 2746 . . . . . . . . . 10 (𝜑 → (𝑗 − (4 / 3)) = (𝑗 + -(4 / 3)))
104103oveq1d 7463 . . . . . . . . 9 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 + -(4 / 3)) · 𝐸))
10538negcld 11634 . . . . . . . . . 10 (𝜑 → -(4 / 3) ∈ ℂ)
10635, 105, 40adddird 11315 . . . . . . . . 9 (𝜑 → ((𝑗 + -(4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)))
10738, 40mulneg1d 11743 . . . . . . . . . 10 (𝜑 → (-(4 / 3) · 𝐸) = -((4 / 3) · 𝐸))
108107oveq2d 7464 . . . . . . . . 9 (𝜑 → ((𝑗 · 𝐸) + (-(4 / 3) · 𝐸)) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
109104, 106, 1083eqtrd 2784 . . . . . . . 8 (𝜑 → ((𝑗 − (4 / 3)) · 𝐸) = ((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
110109negeqd 11530 . . . . . . 7 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)))
11135, 40mulcld 11310 . . . . . . . 8 (𝜑 → (𝑗 · 𝐸) ∈ ℂ)
11238, 40mulcld 11310 . . . . . . . . 9 (𝜑 → ((4 / 3) · 𝐸) ∈ ℂ)
113112negcld 11634 . . . . . . . 8 (𝜑 → -((4 / 3) · 𝐸) ∈ ℂ)
114111, 113negdid 11660 . . . . . . 7 (𝜑 → -((𝑗 · 𝐸) + -((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)))
115112negnegd 11638 . . . . . . . 8 (𝜑 → --((4 / 3) · 𝐸) = ((4 / 3) · 𝐸))
116115oveq2d 7464 . . . . . . 7 (𝜑 → (-(𝑗 · 𝐸) + --((4 / 3) · 𝐸)) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
117110, 114, 1163eqtrd 2784 . . . . . 6 (𝜑 → -((𝑗 − (4 / 3)) · 𝐸) = (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸)))
118101, 117oveq12d 7466 . . . . 5 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))))
11936, 40mulcld 11310 . . . . . . . 8 (𝜑 → ((1 / 3) · 𝐸) ∈ ℂ)
120111negcld 11634 . . . . . . . 8 (𝜑 → -(𝑗 · 𝐸) ∈ ℂ)
121111, 119, 120, 112add4d 11518 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
122111negidd 11637 . . . . . . . 8 (𝜑 → ((𝑗 · 𝐸) + -(𝑗 · 𝐸)) = 0)
123122oveq1d 7463 . . . . . . 7 (𝜑 → (((𝑗 · 𝐸) + -(𝑗 · 𝐸)) + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))))
124119, 112addcld 11309 . . . . . . . 8 (𝜑 → (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)) ∈ ℂ)
125124addlidd 11491 . . . . . . 7 (𝜑 → (0 + (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
126121, 123, 1253eqtrd 2784 . . . . . 6 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12736, 38, 40adddird 11315 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = (((1 / 3) · 𝐸) + ((4 / 3) · 𝐸)))
12887recnd 11318 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
12936, 38addcld 11309 . . . . . . . 8 (𝜑 → ((1 / 3) + (4 / 3)) ∈ ℂ)
130128, 36, 38adddid 11314 . . . . . . . . 9 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = ((3 · (1 / 3)) + (3 · (4 / 3))))
13154, 51addcomi 11481 . . . . . . . . . 10 (1 + 4) = (4 + 1)
13254, 52, 17divcan2i 12037 . . . . . . . . . . 11 (3 · (1 / 3)) = 1
13351, 52, 17divcan2i 12037 . . . . . . . . . . 11 (3 · (4 / 3)) = 4
134132, 133oveq12i 7460 . . . . . . . . . 10 ((3 · (1 / 3)) + (3 · (4 / 3))) = (1 + 4)
135 df-5 12359 . . . . . . . . . 10 5 = (4 + 1)
136131, 134, 1353eqtr4i 2778 . . . . . . . . 9 ((3 · (1 / 3)) + (3 · (4 / 3))) = 5
137130, 136eqtrdi 2796 . . . . . . . 8 (𝜑 → (3 · ((1 / 3) + (4 / 3))) = 5)
138128, 129, 88, 137mvllmuld 12126 . . . . . . 7 (𝜑 → ((1 / 3) + (4 / 3)) = (5 / 3))
139138oveq1d 7463 . . . . . 6 (𝜑 → (((1 / 3) + (4 / 3)) · 𝐸) = ((5 / 3) · 𝐸))
140126, 127, 1393eqtr2d 2786 . . . . 5 (𝜑 → (((𝑗 · 𝐸) + ((1 / 3) · 𝐸)) + (-(𝑗 · 𝐸) + ((4 / 3) · 𝐸))) = ((5 / 3) · 𝐸))
141118, 140eqtrd 2780 . . . 4 (𝜑 → (((𝑗 + (1 / 3)) · 𝐸) + -((𝑗 − (4 / 3)) · 𝐸)) = ((5 / 3) · 𝐸))
14299, 100, 1413brtr3d 5197 . . 3 (𝜑 → (𝑌𝑋) < ((5 / 3) · 𝐸))
143 5lt6 12474 . . . . . . 7 5 < 6
144 3t2e6 12459 . . . . . . 7 (3 · 2) = 6
145143, 144breqtrri 5193 . . . . . 6 5 < (3 · 2)
146 3pos 12398 . . . . . . . 8 0 < 3
14716, 146pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
148 ltdivmul 12170 . . . . . . 7 ((5 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((5 / 3) < 2 ↔ 5 < (3 · 2)))
14985, 4, 147, 148mp3an 1461 . . . . . 6 ((5 / 3) < 2 ↔ 5 < (3 · 2))
150145, 149mpbir 231 . . . . 5 (5 / 3) < 2
151150a1i 11 . . . 4 (𝜑 → (5 / 3) < 2)
15289, 79, 5, 151ltmul1dd 13154 . . 3 (𝜑 → ((5 / 3) · 𝐸) < (2 · 𝐸))
1533, 90, 8, 142, 152lttrd 11451 . 2 (𝜑 → (𝑌𝑋) < (2 · 𝐸))
1543, 8absltd 15478 . 2 (𝜑 → ((abs‘(𝑌𝑋)) < (2 · 𝐸) ↔ (-(2 · 𝐸) < (𝑌𝑋) ∧ (𝑌𝑋) < (2 · 𝐸))))
15584, 153, 154mpbir2and 712 1 (𝜑 → (abs‘(𝑌𝑋)) < (2 · 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  +crp 13057  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  stoweidlem61  45982
  Copyright terms: Public domain W3C validator