Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5prm | Structured version Visualization version GIF version |
Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
5prm | ⊢ 5 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12138 | . 2 ⊢ 5 ∈ ℕ | |
2 | 1lt5 12232 | . 2 ⊢ 1 < 5 | |
3 | 2nn 12125 | . . 3 ⊢ 2 ∈ ℕ | |
4 | 2nn0 12329 | . . 3 ⊢ 2 ∈ ℕ0 | |
5 | 1nn 12063 | . . 3 ⊢ 1 ∈ ℕ | |
6 | 2t2e4 12216 | . . . . 5 ⊢ (2 · 2) = 4 | |
7 | 6 | oveq1i 7326 | . . . 4 ⊢ ((2 · 2) + 1) = (4 + 1) |
8 | df-5 12118 | . . . 4 ⊢ 5 = (4 + 1) | |
9 | 7, 8 | eqtr4i 2767 | . . 3 ⊢ ((2 · 2) + 1) = 5 |
10 | 1lt2 12223 | . . 3 ⊢ 1 < 2 | |
11 | 3, 4, 5, 9, 10 | ndvdsi 16197 | . 2 ⊢ ¬ 2 ∥ 5 |
12 | 3nn 12131 | . . 3 ⊢ 3 ∈ ℕ | |
13 | 1nn0 12328 | . . 3 ⊢ 1 ∈ ℕ0 | |
14 | 3t1e3 12217 | . . . . 5 ⊢ (3 · 1) = 3 | |
15 | 14 | oveq1i 7326 | . . . 4 ⊢ ((3 · 1) + 2) = (3 + 2) |
16 | 3p2e5 12203 | . . . 4 ⊢ (3 + 2) = 5 | |
17 | 15, 16 | eqtri 2764 | . . 3 ⊢ ((3 · 1) + 2) = 5 |
18 | 2lt3 12224 | . . 3 ⊢ 2 < 3 | |
19 | 12, 13, 3, 17, 18 | ndvdsi 16197 | . 2 ⊢ ¬ 3 ∥ 5 |
20 | 5nn0 12332 | . . 3 ⊢ 5 ∈ ℕ0 | |
21 | 5lt10 12651 | . . 3 ⊢ 5 < ;10 | |
22 | 3, 20, 20, 21 | declti 12554 | . 2 ⊢ 5 < ;25 |
23 | 1, 2, 11, 19, 22 | prmlem1 16883 | 1 ⊢ 5 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7316 1c1 10951 + caddc 10953 · cmul 10955 2c2 12107 3c3 12108 4c4 12109 5c5 12110 ℙcprime 16450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-rp 12810 df-fz 13319 df-seq 13801 df-exp 13862 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-dvds 16040 df-prm 16451 |
This theorem is referenced by: prmo5 16904 4001prm 16920 lt6abl 19568 bpos1 26511 12gcd5e1 40237 fmtno1prm 45281 fmtnofac1 45292 8gbe 45495 11gbo 45497 nnsum3primesle9 45516 |
Copyright terms: Public domain | W3C validator |