MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5prm Structured version   Visualization version   GIF version

Theorem 5prm 17043
Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
5prm 5 ∈ ℙ

Proof of Theorem 5prm
StepHypRef Expression
1 5nn 12296 . 2 5 ∈ ℕ
2 1lt5 12390 . 2 1 < 5
3 2nn 12283 . . 3 2 ∈ ℕ
4 2nn0 12487 . . 3 2 ∈ ℕ0
5 1nn 12221 . . 3 1 ∈ ℕ
6 2t2e4 12374 . . . . 5 (2 · 2) = 4
76oveq1i 7412 . . . 4 ((2 · 2) + 1) = (4 + 1)
8 df-5 12276 . . . 4 5 = (4 + 1)
97, 8eqtr4i 2755 . . 3 ((2 · 2) + 1) = 5
10 1lt2 12381 . . 3 1 < 2
113, 4, 5, 9, 10ndvdsi 16354 . 2 ¬ 2 ∥ 5
12 3nn 12289 . . 3 3 ∈ ℕ
13 1nn0 12486 . . 3 1 ∈ ℕ0
14 3t1e3 12375 . . . . 5 (3 · 1) = 3
1514oveq1i 7412 . . . 4 ((3 · 1) + 2) = (3 + 2)
16 3p2e5 12361 . . . 4 (3 + 2) = 5
1715, 16eqtri 2752 . . 3 ((3 · 1) + 2) = 5
18 2lt3 12382 . . 3 2 < 3
1912, 13, 3, 17, 18ndvdsi 16354 . 2 ¬ 3 ∥ 5
20 5nn0 12490 . . 3 5 ∈ ℕ0
21 5lt10 12810 . . 3 5 < 10
223, 20, 20, 21declti 12713 . 2 5 < 25
231, 2, 11, 19, 22prmlem1 17042 1 5 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  (class class class)co 7402  1c1 11108   + caddc 11110   · cmul 11112  2c2 12265  3c3 12266  4c4 12267  5c5 12268  cprime 16607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-rp 12973  df-fz 13483  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-dvds 16197  df-prm 16608
This theorem is referenced by:  prmo5  17063  4001prm  17079  lt6abl  19807  bpos1  27135  12gcd5e1  41365  fmtno1prm  46737  fmtnofac1  46748  8gbe  46951  11gbo  46953  nnsum3primesle9  46972
  Copyright terms: Public domain W3C validator