| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12203 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12261 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12258 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 + caddc 11012 · cmul 11014 2c2 12183 4c4 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-1rid 11079 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 |
| This theorem is referenced by: 4d2e2 12293 div4p1lem1div2 12379 3halfnz 12555 decbin0 12731 fldiv4lem1div2uz2 13740 sq2 14104 sq4e2t8 14106 discr 14147 sqoddm1div8 14150 faclbnd2 14198 4bc2eq6 14236 amgm2 15277 bpoly3 15965 sin4lt0 16104 z4even 16283 flodddiv4 16326 flodddiv4t2lthalf 16329 4nprm 16606 2exp4 16996 2exp16 17002 5prm 17020 631prm 17038 1259lem1 17042 1259lem4 17045 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001prm 17056 pcoass 24922 minveclem2 25324 uniioombllem5 25486 uniioombl 25488 dveflem 25881 pilem2 26360 sinhalfpilem 26370 sincosq1lem 26404 tangtx 26412 sincos4thpi 26420 heron 26746 quad2 26747 dquartlem1 26759 dquart 26761 quart1 26764 atan1 26836 log2ublem3 26856 log2ub 26857 chtub 27121 bclbnd 27189 bpos1 27192 bposlem2 27194 bposlem6 27198 bposlem9 27201 gausslemma2dlem3 27277 m1lgs 27297 2lgslem1a2 27299 2lgslem3a 27305 2lgslem3b 27306 2lgslem3c 27307 2lgslem3d 27308 pntibndlem2 27500 pntlemg 27507 pntlemr 27511 ex-fl 30391 minvecolem2 30819 polid2i 31101 binom2subadd 32685 quad3d 32693 quad3 35647 420lcm8e840 41988 3exp7 42030 3lexlogpow5ineq1 42031 3lexlogpow2ineq2 42036 3lexlogpow5ineq5 42037 aks4d1p1p2 42047 aks4d1p1 42053 2ap1caineq 42122 cxpi11d 42320 flt4lem 42622 3cubeslem3l 42663 3cubeslem3r 42664 wallispi2lem1 46056 wallispi2lem2 46057 stirlinglem3 46061 stirlinglem10 46068 2ltceilhalf 47316 ceil5half3 47328 modmkpkne 47349 fmtnorec4 47537 2exp340mod341 47721 8exp8mod9 47724 ackval2012 48680 |
| Copyright terms: Public domain | W3C validator |