Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version |
Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2t2e4 | ⊢ (2 · 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12057 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | 2timesi 12120 | . 2 ⊢ (2 · 2) = (2 + 2) |
3 | 2p2e4 12117 | . 2 ⊢ (2 + 2) = 4 | |
4 | 2, 3 | eqtri 2767 | 1 ⊢ (2 · 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7284 + caddc 10883 · cmul 10885 2c2 12037 4c4 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-mulcl 10942 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-1rid 10950 ax-cnre 10953 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 df-2 12045 df-3 12046 df-4 12047 |
This theorem is referenced by: 4d2e2 12152 halfpm6th 12203 div4p1lem1div2 12237 3halfnz 12408 decbin0 12586 fldiv4lem1div2uz2 13565 sq2 13923 sq4e2t8 13925 discr 13964 sqoddm1div8 13967 faclbnd2 14014 4bc2eq6 14052 amgm2 15090 bpoly3 15777 sin4lt0 15913 z4even 16090 flodddiv4 16131 flodddiv4t2lthalf 16134 4nprm 16409 2exp4 16795 2exp16 16801 5prm 16819 631prm 16837 1259lem1 16841 1259lem4 16844 2503lem1 16847 2503lem2 16848 2503lem3 16849 4001lem1 16851 4001lem2 16852 4001lem3 16853 4001prm 16855 pcoass 24196 minveclem2 24599 uniioombllem5 24760 uniioombl 24762 dveflem 25152 pilem2 25620 sinhalfpilem 25629 sincosq1lem 25663 tangtx 25671 sincos4thpi 25679 heron 25997 quad2 25998 dquartlem1 26010 dquart 26012 quart1 26015 atan1 26087 log2ublem3 26107 log2ub 26108 chtub 26369 bclbnd 26437 bpos1 26440 bposlem2 26442 bposlem6 26446 bposlem9 26449 gausslemma2dlem3 26525 m1lgs 26545 2lgslem1a2 26547 2lgslem3a 26553 2lgslem3b 26554 2lgslem3c 26555 2lgslem3d 26556 pntibndlem2 26748 pntlemg 26755 pntlemr 26759 ex-fl 28820 minvecolem2 29246 polid2i 29528 quad3 33637 420lcm8e840 40026 3exp7 40068 3lexlogpow5ineq1 40069 3lexlogpow2ineq2 40074 3lexlogpow5ineq5 40075 aks4d1p1p2 40085 aks4d1p1 40091 2ap1caineq 40108 flt4lem 40489 3cubeslem3l 40515 3cubeslem3r 40516 wallispi2lem1 43619 wallispi2lem2 43620 stirlinglem3 43624 stirlinglem10 43631 fmtnorec4 45012 2exp340mod341 45196 8exp8mod9 45199 ackval2012 46048 |
Copyright terms: Public domain | W3C validator |