| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12261 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12319 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12316 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 + caddc 11071 · cmul 11073 2c2 12241 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 |
| This theorem is referenced by: 4d2e2 12351 div4p1lem1div2 12437 3halfnz 12613 decbin0 12789 fldiv4lem1div2uz2 13798 sq2 14162 sq4e2t8 14164 discr 14205 sqoddm1div8 14208 faclbnd2 14256 4bc2eq6 14294 amgm2 15336 bpoly3 16024 sin4lt0 16163 z4even 16342 flodddiv4 16385 flodddiv4t2lthalf 16388 4nprm 16665 2exp4 17055 2exp16 17061 5prm 17079 631prm 17097 1259lem1 17101 1259lem4 17104 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001prm 17115 pcoass 24924 minveclem2 25326 uniioombllem5 25488 uniioombl 25490 dveflem 25883 pilem2 26362 sinhalfpilem 26372 sincosq1lem 26406 tangtx 26414 sincos4thpi 26422 heron 26748 quad2 26749 dquartlem1 26761 dquart 26763 quart1 26766 atan1 26838 log2ublem3 26858 log2ub 26859 chtub 27123 bclbnd 27191 bpos1 27194 bposlem2 27196 bposlem6 27200 bposlem9 27203 gausslemma2dlem3 27279 m1lgs 27299 2lgslem1a2 27301 2lgslem3a 27307 2lgslem3b 27308 2lgslem3c 27309 2lgslem3d 27310 pntibndlem2 27502 pntlemg 27509 pntlemr 27513 ex-fl 30376 minvecolem2 30804 polid2i 31086 binom2subadd 32665 quad3d 32673 quad3 35657 420lcm8e840 41999 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow2ineq2 42047 3lexlogpow5ineq5 42048 aks4d1p1p2 42058 aks4d1p1 42064 2ap1caineq 42133 cxpi11d 42331 flt4lem 42633 3cubeslem3l 42674 3cubeslem3r 42675 wallispi2lem1 46069 wallispi2lem2 46070 stirlinglem3 46074 stirlinglem10 46081 2ltceilhalf 47329 ceil5half3 47341 modmkpkne 47362 fmtnorec4 47550 2exp340mod341 47734 8exp8mod9 47737 ackval2012 48680 |
| Copyright terms: Public domain | W3C validator |