| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12315 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12378 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12375 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2758 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 + caddc 11132 · cmul 11134 2c2 12295 4c4 12297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-1rid 11199 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-2 12303 df-3 12304 df-4 12305 |
| This theorem is referenced by: 4d2e2 12410 div4p1lem1div2 12496 3halfnz 12672 decbin0 12848 fldiv4lem1div2uz2 13853 sq2 14215 sq4e2t8 14217 discr 14258 sqoddm1div8 14261 faclbnd2 14309 4bc2eq6 14347 amgm2 15388 bpoly3 16074 sin4lt0 16213 z4even 16391 flodddiv4 16434 flodddiv4t2lthalf 16437 4nprm 16714 2exp4 17104 2exp16 17110 5prm 17128 631prm 17146 1259lem1 17150 1259lem4 17153 2503lem1 17156 2503lem2 17157 2503lem3 17158 4001lem1 17160 4001lem2 17161 4001lem3 17162 4001prm 17164 pcoass 24975 minveclem2 25378 uniioombllem5 25540 uniioombl 25542 dveflem 25935 pilem2 26414 sinhalfpilem 26424 sincosq1lem 26458 tangtx 26466 sincos4thpi 26474 heron 26800 quad2 26801 dquartlem1 26813 dquart 26815 quart1 26818 atan1 26890 log2ublem3 26910 log2ub 26911 chtub 27175 bclbnd 27243 bpos1 27246 bposlem2 27248 bposlem6 27252 bposlem9 27255 gausslemma2dlem3 27331 m1lgs 27351 2lgslem1a2 27353 2lgslem3a 27359 2lgslem3b 27360 2lgslem3c 27361 2lgslem3d 27362 pntibndlem2 27554 pntlemg 27561 pntlemr 27565 ex-fl 30428 minvecolem2 30856 polid2i 31138 binom2subadd 32719 quad3d 32727 quad3 35692 420lcm8e840 42024 3exp7 42066 3lexlogpow5ineq1 42067 3lexlogpow2ineq2 42072 3lexlogpow5ineq5 42073 aks4d1p1p2 42083 aks4d1p1 42089 2ap1caineq 42158 cxpi11d 42392 flt4lem 42668 3cubeslem3l 42709 3cubeslem3r 42710 wallispi2lem1 46100 wallispi2lem2 46101 stirlinglem3 46105 stirlinglem10 46112 2ltceilhalf 47357 ceil5half3 47369 fmtnorec4 47563 2exp340mod341 47747 8exp8mod9 47750 ackval2012 48671 |
| Copyright terms: Public domain | W3C validator |