Colors of
variables: wff
setvar class |
Syntax hints:
= wceq 1542 (class class class)co 7409
+ caddc 11113 ·
cmul 11115 2c2 12267
4c4 12269 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2704 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-mulcl 11172 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-1rid 11180 ax-cnre 11183 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-2 12275 df-3 12276
df-4 12277 |
This theorem is referenced by: 4d2e2
12382 halfpm6th
12433 div4p1lem1div2
12467 3halfnz
12641 decbin0
12817 fldiv4lem1div2uz2
13801 sq2
14161 sq4e2t8
14163 discr
14203 sqoddm1div8
14206 faclbnd2
14251 4bc2eq6
14289 amgm2
15316 bpoly3
16002 sin4lt0
16138 z4even
16315 flodddiv4
16356 flodddiv4t2lthalf
16359 4nprm
16632 2exp4
17018 2exp16
17024 5prm
17042 631prm
17060 1259lem1
17064 1259lem4
17067 2503lem1
17070 2503lem2
17071 2503lem3
17072 4001lem1
17074 4001lem2
17075 4001lem3
17076 4001prm
17078 pcoass
24540 minveclem2
24943 uniioombllem5
25104 uniioombl
25106 dveflem
25496 pilem2
25964 sinhalfpilem
25973 sincosq1lem
26007 tangtx
26015 sincos4thpi
26023 heron
26343 quad2
26344 dquartlem1
26356 dquart
26358 quart1
26361 atan1
26433 log2ublem3
26453 log2ub
26454 chtub
26715 bclbnd
26783 bpos1
26786 bposlem2
26788 bposlem6
26792 bposlem9
26795 gausslemma2dlem3
26871 m1lgs
26891 2lgslem1a2
26893 2lgslem3a
26899 2lgslem3b
26900 2lgslem3c
26901 2lgslem3d
26902 pntibndlem2
27094 pntlemg
27101 pntlemr
27105 ex-fl
29700 minvecolem2
30128 polid2i
30410 quad3
34655 420lcm8e840
40876 3exp7
40918 3lexlogpow5ineq1
40919 3lexlogpow2ineq2
40924 3lexlogpow5ineq5
40925 aks4d1p1p2
40935 aks4d1p1
40941 2ap1caineq
40961 flt4lem
41387 3cubeslem3l
41424 3cubeslem3r
41425 wallispi2lem1
44787 wallispi2lem2
44788 stirlinglem3
44792 stirlinglem10
44799 fmtnorec4
46217 2exp340mod341
46401 8exp8mod9
46404 ackval2012
47377 |