| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12237 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12295 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12292 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 + caddc 11047 · cmul 11049 2c2 12217 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 4d2e2 12327 div4p1lem1div2 12413 3halfnz 12589 decbin0 12765 fldiv4lem1div2uz2 13774 sq2 14138 sq4e2t8 14140 discr 14181 sqoddm1div8 14184 faclbnd2 14232 4bc2eq6 14270 amgm2 15312 bpoly3 16000 sin4lt0 16139 z4even 16318 flodddiv4 16361 flodddiv4t2lthalf 16364 4nprm 16641 2exp4 17031 2exp16 17037 5prm 17055 631prm 17073 1259lem1 17077 1259lem4 17080 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001prm 17091 pcoass 24900 minveclem2 25302 uniioombllem5 25464 uniioombl 25466 dveflem 25859 pilem2 26338 sinhalfpilem 26348 sincosq1lem 26382 tangtx 26390 sincos4thpi 26398 heron 26724 quad2 26725 dquartlem1 26737 dquart 26739 quart1 26742 atan1 26814 log2ublem3 26834 log2ub 26835 chtub 27099 bclbnd 27167 bpos1 27170 bposlem2 27172 bposlem6 27176 bposlem9 27179 gausslemma2dlem3 27255 m1lgs 27275 2lgslem1a2 27277 2lgslem3a 27283 2lgslem3b 27284 2lgslem3c 27285 2lgslem3d 27286 pntibndlem2 27478 pntlemg 27485 pntlemr 27489 ex-fl 30349 minvecolem2 30777 polid2i 31059 binom2subadd 32638 quad3d 32646 quad3 35630 420lcm8e840 41972 3exp7 42014 3lexlogpow5ineq1 42015 3lexlogpow2ineq2 42020 3lexlogpow5ineq5 42021 aks4d1p1p2 42031 aks4d1p1 42037 2ap1caineq 42106 cxpi11d 42304 flt4lem 42606 3cubeslem3l 42647 3cubeslem3r 42648 wallispi2lem1 46042 wallispi2lem2 46043 stirlinglem3 46047 stirlinglem10 46054 2ltceilhalf 47302 ceil5half3 47314 modmkpkne 47335 fmtnorec4 47523 2exp340mod341 47707 8exp8mod9 47710 ackval2012 48653 |
| Copyright terms: Public domain | W3C validator |