Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version |
Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2t2e4 | ⊢ (2 · 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11978 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | 2timesi 12041 | . 2 ⊢ (2 · 2) = (2 + 2) |
3 | 2p2e4 12038 | . 2 ⊢ (2 + 2) = 4 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (2 · 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 + caddc 10805 · cmul 10807 2c2 11958 4c4 11960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-1rid 10872 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 |
This theorem is referenced by: 4d2e2 12073 halfpm6th 12124 div4p1lem1div2 12158 3halfnz 12329 decbin0 12506 fldiv4lem1div2uz2 13484 sq2 13842 sq4e2t8 13844 discr 13883 sqoddm1div8 13886 faclbnd2 13933 4bc2eq6 13971 amgm2 15009 bpoly3 15696 sin4lt0 15832 z4even 16009 flodddiv4 16050 flodddiv4t2lthalf 16053 4nprm 16328 2exp4 16714 2exp16 16720 5prm 16738 631prm 16756 1259lem1 16760 1259lem4 16763 2503lem1 16766 2503lem2 16767 2503lem3 16768 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001prm 16774 pcoass 24093 minveclem2 24495 uniioombllem5 24656 uniioombl 24658 dveflem 25048 pilem2 25516 sinhalfpilem 25525 sincosq1lem 25559 tangtx 25567 sincos4thpi 25575 heron 25893 quad2 25894 dquartlem1 25906 dquart 25908 quart1 25911 atan1 25983 log2ublem3 26003 log2ub 26004 chtub 26265 bclbnd 26333 bpos1 26336 bposlem2 26338 bposlem6 26342 bposlem9 26345 gausslemma2dlem3 26421 m1lgs 26441 2lgslem1a2 26443 2lgslem3a 26449 2lgslem3b 26450 2lgslem3c 26451 2lgslem3d 26452 pntibndlem2 26644 pntlemg 26651 pntlemr 26655 ex-fl 28712 minvecolem2 29138 polid2i 29420 quad3 33528 420lcm8e840 39947 3exp7 39989 3lexlogpow5ineq1 39990 3lexlogpow2ineq2 39995 3lexlogpow5ineq5 39996 aks4d1p1p2 40006 aks4d1p1 40012 2ap1caineq 40029 flt4lem 40398 3cubeslem3l 40424 3cubeslem3r 40425 wallispi2lem1 43502 wallispi2lem2 43503 stirlinglem3 43507 stirlinglem10 43514 fmtnorec4 44889 2exp340mod341 45073 8exp8mod9 45076 ackval2012 45925 |
Copyright terms: Public domain | W3C validator |