| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12237 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12295 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12292 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 + caddc 11047 · cmul 11049 2c2 12217 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-1rid 11114 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 4d2e2 12327 div4p1lem1div2 12413 3halfnz 12589 decbin0 12765 fldiv4lem1div2uz2 13774 sq2 14138 sq4e2t8 14140 discr 14181 sqoddm1div8 14184 faclbnd2 14232 4bc2eq6 14270 amgm2 15312 bpoly3 16000 sin4lt0 16139 z4even 16318 flodddiv4 16361 flodddiv4t2lthalf 16364 4nprm 16641 2exp4 17031 2exp16 17037 5prm 17055 631prm 17073 1259lem1 17077 1259lem4 17080 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem1 17087 4001lem2 17088 4001lem3 17089 4001prm 17091 pcoass 24957 minveclem2 25359 uniioombllem5 25521 uniioombl 25523 dveflem 25916 pilem2 26395 sinhalfpilem 26405 sincosq1lem 26439 tangtx 26447 sincos4thpi 26455 heron 26781 quad2 26782 dquartlem1 26794 dquart 26796 quart1 26799 atan1 26871 log2ublem3 26891 log2ub 26892 chtub 27156 bclbnd 27224 bpos1 27227 bposlem2 27229 bposlem6 27233 bposlem9 27236 gausslemma2dlem3 27312 m1lgs 27332 2lgslem1a2 27334 2lgslem3a 27340 2lgslem3b 27341 2lgslem3c 27342 2lgslem3d 27343 pntibndlem2 27535 pntlemg 27542 pntlemr 27546 ex-fl 30426 minvecolem2 30854 polid2i 31136 binom2subadd 32715 quad3d 32723 quad3 35650 420lcm8e840 41992 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1p1p2 42051 aks4d1p1 42057 2ap1caineq 42126 cxpi11d 42324 flt4lem 42626 3cubeslem3l 42667 3cubeslem3r 42668 wallispi2lem1 46062 wallispi2lem2 46063 stirlinglem3 46067 stirlinglem10 46074 2ltceilhalf 47322 ceil5half3 47334 modmkpkne 47355 fmtnorec4 47543 2exp340mod341 47727 8exp8mod9 47730 ackval2012 48673 |
| Copyright terms: Public domain | W3C validator |