| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12258 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12255 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2754 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 + caddc 11009 · cmul 11011 2c2 12180 4c4 12182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-1rid 11076 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 |
| This theorem is referenced by: 4d2e2 12290 div4p1lem1div2 12376 3halfnz 12552 decbin0 12728 fldiv4lem1div2uz2 13740 sq2 14104 sq4e2t8 14106 discr 14147 sqoddm1div8 14150 faclbnd2 14198 4bc2eq6 14236 amgm2 15277 bpoly3 15965 sin4lt0 16104 z4even 16283 flodddiv4 16326 flodddiv4t2lthalf 16329 4nprm 16606 2exp4 16996 2exp16 17002 5prm 17020 631prm 17038 1259lem1 17042 1259lem4 17045 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001prm 17056 pcoass 24951 minveclem2 25353 uniioombllem5 25515 uniioombl 25517 dveflem 25910 pilem2 26389 sinhalfpilem 26399 sincosq1lem 26433 tangtx 26441 sincos4thpi 26449 heron 26775 quad2 26776 dquartlem1 26788 dquart 26790 quart1 26793 atan1 26865 log2ublem3 26885 log2ub 26886 chtub 27150 bclbnd 27218 bpos1 27221 bposlem2 27223 bposlem6 27227 bposlem9 27230 gausslemma2dlem3 27306 m1lgs 27326 2lgslem1a2 27328 2lgslem3a 27334 2lgslem3b 27335 2lgslem3c 27336 2lgslem3d 27337 pntibndlem2 27529 pntlemg 27536 pntlemr 27540 ex-fl 30427 minvecolem2 30855 polid2i 31137 binom2subadd 32725 quad3d 32733 quad3 35714 420lcm8e840 42114 3exp7 42156 3lexlogpow5ineq1 42157 3lexlogpow2ineq2 42162 3lexlogpow5ineq5 42163 aks4d1p1p2 42173 aks4d1p1 42179 2ap1caineq 42248 cxpi11d 42446 flt4lem 42748 3cubeslem3l 42789 3cubeslem3r 42790 wallispi2lem1 46179 wallispi2lem2 46180 stirlinglem3 46184 stirlinglem10 46191 2ltceilhalf 47438 ceil5half3 47450 modmkpkne 47471 fmtnorec4 47659 2exp340mod341 47843 8exp8mod9 47846 ackval2012 48802 |
| Copyright terms: Public domain | W3C validator |