| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version | ||
| Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2t2e4 | ⊢ (2 · 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12268 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | 2timesi 12326 | . 2 ⊢ (2 · 2) = (2 + 2) |
| 3 | 2p2e4 12323 | . 2 ⊢ (2 + 2) = 4 | |
| 4 | 2, 3 | eqtri 2753 | 1 ⊢ (2 · 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 + caddc 11078 · cmul 11080 2c2 12248 4c4 12250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-1rid 11145 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 |
| This theorem is referenced by: 4d2e2 12358 div4p1lem1div2 12444 3halfnz 12620 decbin0 12796 fldiv4lem1div2uz2 13805 sq2 14169 sq4e2t8 14171 discr 14212 sqoddm1div8 14215 faclbnd2 14263 4bc2eq6 14301 amgm2 15343 bpoly3 16031 sin4lt0 16170 z4even 16349 flodddiv4 16392 flodddiv4t2lthalf 16395 4nprm 16672 2exp4 17062 2exp16 17068 5prm 17086 631prm 17104 1259lem1 17108 1259lem4 17111 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001prm 17122 pcoass 24931 minveclem2 25333 uniioombllem5 25495 uniioombl 25497 dveflem 25890 pilem2 26369 sinhalfpilem 26379 sincosq1lem 26413 tangtx 26421 sincos4thpi 26429 heron 26755 quad2 26756 dquartlem1 26768 dquart 26770 quart1 26773 atan1 26845 log2ublem3 26865 log2ub 26866 chtub 27130 bclbnd 27198 bpos1 27201 bposlem2 27203 bposlem6 27207 bposlem9 27210 gausslemma2dlem3 27286 m1lgs 27306 2lgslem1a2 27308 2lgslem3a 27314 2lgslem3b 27315 2lgslem3c 27316 2lgslem3d 27317 pntibndlem2 27509 pntlemg 27516 pntlemr 27520 ex-fl 30383 minvecolem2 30811 polid2i 31093 binom2subadd 32672 quad3d 32680 quad3 35664 420lcm8e840 42006 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 aks4d1p1p2 42065 aks4d1p1 42071 2ap1caineq 42140 cxpi11d 42338 flt4lem 42640 3cubeslem3l 42681 3cubeslem3r 42682 wallispi2lem1 46076 wallispi2lem2 46077 stirlinglem3 46081 stirlinglem10 46088 2ltceilhalf 47333 ceil5half3 47345 modmkpkne 47366 fmtnorec4 47554 2exp340mod341 47738 8exp8mod9 47741 ackval2012 48684 |
| Copyright terms: Public domain | W3C validator |