![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2t2e4 | Structured version Visualization version GIF version |
Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2t2e4 | ⊢ (2 · 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12338 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | 2timesi 12401 | . 2 ⊢ (2 · 2) = (2 + 2) |
3 | 2p2e4 12398 | . 2 ⊢ (2 + 2) = 4 | |
4 | 2, 3 | eqtri 2762 | 1 ⊢ (2 · 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 (class class class)co 7430 + caddc 11155 · cmul 11157 2c2 12318 4c4 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-1rid 11222 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 |
This theorem is referenced by: 4d2e2 12433 halfpm6th 12484 div4p1lem1div2 12518 3halfnz 12694 decbin0 12870 fldiv4lem1div2uz2 13872 sq2 14232 sq4e2t8 14234 discr 14275 sqoddm1div8 14278 faclbnd2 14326 4bc2eq6 14364 amgm2 15404 bpoly3 16090 sin4lt0 16227 z4even 16405 flodddiv4 16448 flodddiv4t2lthalf 16451 4nprm 16728 2exp4 17118 2exp16 17124 5prm 17142 631prm 17160 1259lem1 17164 1259lem4 17167 2503lem1 17170 2503lem2 17171 2503lem3 17172 4001lem1 17174 4001lem2 17175 4001lem3 17176 4001prm 17178 pcoass 25070 minveclem2 25473 uniioombllem5 25635 uniioombl 25637 dveflem 26031 pilem2 26510 sinhalfpilem 26519 sincosq1lem 26553 tangtx 26561 sincos4thpi 26569 heron 26895 quad2 26896 dquartlem1 26908 dquart 26910 quart1 26913 atan1 26985 log2ublem3 27005 log2ub 27006 chtub 27270 bclbnd 27338 bpos1 27341 bposlem2 27343 bposlem6 27347 bposlem9 27350 gausslemma2dlem3 27426 m1lgs 27446 2lgslem1a2 27448 2lgslem3a 27454 2lgslem3b 27455 2lgslem3c 27456 2lgslem3d 27457 pntibndlem2 27649 pntlemg 27656 pntlemr 27660 ex-fl 30475 minvecolem2 30903 polid2i 31185 quad3d 32760 quad3 35654 420lcm8e840 41992 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1p1p2 42051 aks4d1p1 42057 2ap1caineq 42126 cxpi11d 42357 flt4lem 42631 3cubeslem3l 42673 3cubeslem3r 42674 wallispi2lem1 46026 wallispi2lem2 46027 stirlinglem3 46031 stirlinglem10 46038 ceil5half3 47279 fmtnorec4 47473 2exp340mod341 47657 8exp8mod9 47660 2ltceilhalf 47949 ackval2012 48540 |
Copyright terms: Public domain | W3C validator |