MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17118
Description: Lemma for 4001prm 17122. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12468 . . . . . 6 4 ∈ ℕ0
3 0nn0 12464 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12671 . . . . 5 40 ∈ ℕ0
54, 3deccl 12671 . . . 4 400 ∈ ℕ0
6 1nn 12204 . . . 4 1 ∈ ℕ
75, 6decnncl 12676 . . 3 4001 ∈ ℕ
81, 7eqeltri 2825 . 2 𝑁 ∈ ℕ
9 2nn 12266 . 2 2 ∈ ℕ
10 10nn0 12674 . . 3 10 ∈ ℕ0
1110, 3deccl 12671 . 2 100 ∈ ℕ0
12 9nn0 12473 . . . 4 9 ∈ ℕ0
1312, 2deccl 12671 . . 3 94 ∈ ℕ0
1413nn0zi 12565 . 2 94 ∈ ℤ
15 6nn0 12470 . . . 4 6 ∈ ℕ0
16 1nn0 12465 . . . 4 1 ∈ ℕ0
1715, 16deccl 12671 . . 3 61 ∈ ℕ0
1817, 2deccl 12671 . 2 614 ∈ ℕ0
1912, 3deccl 12671 . . 3 90 ∈ ℕ0
20 2nn0 12466 . . 3 2 ∈ ℕ0
2119, 20deccl 12671 . 2 902 ∈ ℕ0
22 5nn0 12469 . . . 4 5 ∈ ℕ0
2322, 3deccl 12671 . . 3 50 ∈ ℕ0
24 8nn0 12472 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12671 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12671 . . . 4 286 ∈ ℕ0
2726nn0zi 12565 . . 3 286 ∈ ℤ
28 7nn0 12471 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12671 . . . 4 107 ∈ ℕ0
3029, 3deccl 12671 . . 3 1070 ∈ ℕ0
3120, 22deccl 12671 . . . 4 25 ∈ ℕ0
3210, 2deccl 12671 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12671 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12565 . . . 4 1046 ∈ ℤ
3520, 3deccl 12671 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12671 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12671 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12671 . . . . 5 24 ∈ ℕ0
39 0z 12547 . . . . 5 0 ∈ ℤ
4010, 20deccl 12671 . . . . . 6 102 ∈ ℕ0
41 3nn0 12467 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12671 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12671 . . . . . 6 12 ∈ ℕ0
44 2z 12572 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12671 . . . . . 6 95 ∈ ℕ0
46 1z 12570 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12671 . . . . . . 7 64 ∈ ℕ0
48 2exp6 17064 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7400 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12284 . . . . . . . 8 6 ∈ ℂ
51 2cn 12268 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12760 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11190 . . . . . . 7 (2 · 6) = 12
54 eqid 2730 . . . . . . . . 9 95 = 95
55 eqid 2730 . . . . . . . . . 10 400 = 400
56 9cn 12293 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11368 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12678 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2753 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2730 . . . . . . . . . . 11 40 = 40
61 00id 11356 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12678 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2753 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12278 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11186 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7402 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11368 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2753 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11133 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11371 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7400 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2757 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12709 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7400 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11369 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2757 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12709 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11185 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7400 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12281 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12335 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11373 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12678 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2757 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12709 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2730 . . . . . . . . 9 64 = 64
87 eqid 2730 . . . . . . . . . 10 25 = 25
88 2p2e4 12323 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7401 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12764 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12333 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12728 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12718 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2753 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12762 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11190 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12346 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11373 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12716 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12708 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12334 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12687 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12755 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12721 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12722 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2756 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 17047 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2730 . . . . . . 7 12 = 12
10951mulridi 11185 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7400 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11368 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2753 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12352 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12678 . . . . . . . 8 4 = 04
115113, 114eqtri 2753 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12722 . . . . . 6 (2 · 12) = 24
117 eqid 2730 . . . . . . . 8 1023 = 1023
11840nn0cni 12461 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11368 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12699 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12356 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11190 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11368 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7402 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12338 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2753 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11371 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7400 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2757 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12709 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7400 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11369 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12678 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2757 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12709 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7400 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12274 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12339 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11373 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12678 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2757 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12709 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12671 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2730 . . . . . . . . 9 47 = 47
14598oveq2i 7401 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12785 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12658 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11373 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12718 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2753 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12781 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11190 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12287 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12733 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11373 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12717 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12708 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12344 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12716 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12759 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12721 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12722 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2756 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 17047 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2730 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12687 . . . . 5 (24 + 1) = 25
16737nn0cni 12461 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11369 . . . . . 6 (0 + 2046) = 2046
1698nncni 12203 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11370 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7400 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2730 . . . . . . . 8 102 = 102
17320dec0u 12677 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12720 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12354 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12720 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2763 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 17048 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7400 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2753 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12756 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11190 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12722 . . . 4 (2 · 25) = 50
184 eqid 2730 . . . . . 6 1070 = 1070
18520, 16deccl 12671 . . . . . . 7 21 ∈ ℕ0
186 eqid 2730 . . . . . . . 8 107 = 107
187 eqid 2730 . . . . . . . 8 104 = 104
188 0p1e1 12310 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12751 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12687 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12732 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12711 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12461 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11368 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2825 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2730 . . . . . . . . 9 1046 = 1046
197 dfdec10 12659 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2739 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12347 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12716 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12714 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7402 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12341 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12716 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2753 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12714 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12461 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11371 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7400 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12678 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2757 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12709 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12709 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11185 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7400 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11368 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2753 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12709 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2730 . . . . . 6 2046 = 2046
22043, 20deccl 12671 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12671 . . . . . 6 1227 ∈ ℕ0
222 eqid 2730 . . . . . . 7 204 = 204
223 eqid 2730 . . . . . . 7 1227 = 1227
22424, 16deccl 12671 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12671 . . . . . . 7 819 ∈ ℕ0
226 eqid 2730 . . . . . . . 8 20 = 20
227 eqid 2730 . . . . . . . . 9 122 = 122
228 eqid 2730 . . . . . . . . 9 819 = 819
229 eqid 2730 . . . . . . . . . . 11 81 = 81
230 8cn 12290 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11373 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12330 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12710 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12687 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12743 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11373 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12711 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12461 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11368 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2825 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11370 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7402 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2753 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12713 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7400 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11368 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12678 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2757 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12708 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11373 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12716 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12708 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11371 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7400 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2757 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12709 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12678 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2825 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11370 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7402 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2753 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12713 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12348 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12716 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12708 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11373 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12717 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12714 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12709 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11370 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7400 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2753 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12713 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12342 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12716 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12714 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12721 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12722 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2756 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 17047 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12461 . . . 4 50 ∈ ℂ
282 eqid 2730 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12720 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11190 . . 3 (2 · 50) = 100
285 eqid 2730 . . . . 5 614 = 614
28620, 12deccl 12671 . . . . 5 29 ∈ ℕ0
287 eqid 2730 . . . . . . 7 61 = 61
288 eqid 2730 . . . . . . 7 29 = 29
289199oveq1i 7400 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2753 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12712 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2825 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2730 . . . . . . . 8 286 = 286
294 eqid 2730 . . . . . . . . 9 28 = 28
295122oveq1i 7400 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12737 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2753 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12773 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12716 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12714 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7402 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12461 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11368 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2753 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12714 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12461 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11371 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7400 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2757 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12709 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7400 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2757 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12709 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11185 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12720 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12687 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11185 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7400 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2753 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12714 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12709 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12671 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12671 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12671 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12671 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12671 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12671 . . . . . . 7 749 ∈ ℕ0
328 eqid 2730 . . . . . . . 8 10 = 10
329 eqid 2730 . . . . . . . 8 749 = 749
330326nn0cni 12461 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11368 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11368 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2825 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12461 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11185 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12687 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11185 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7402 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12735 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2753 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12714 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11370 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7400 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11369 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2757 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12708 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12461 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11371 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7400 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2757 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12709 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12659 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2739 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12770 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12721 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11370 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12720 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12722 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12716 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2753 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12722 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2756 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 17047 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12461 . . 3 100 ∈ ℂ
365 eqid 2730 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12720 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11190 . 2 (2 · 100) = 200
368 eqid 2730 . . . 4 902 = 902
369 eqid 2730 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12716 . . . . 5 (90 + 9) = 99
371 eqid 2730 . . . . . . 7 94 = 94
372 6p1e7 12336 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12780 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12687 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7402 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12671 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12461 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11368 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2753 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12714 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11371 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7400 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2757 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12709 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12709 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11185 . . . . 5 (9 · 1) = 9
38764mulridi 11185 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7400 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2753 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12713 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12709 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12671 . . . 4 245 ∈ ℕ0
393 eqid 2730 . . . . 5 245 = 245
39450, 51, 199addcomli 11373 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12710 . . . . . 6 (24 + 61) = 85
396 8p2e10 12736 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12687 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11186 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7400 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11368 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2753 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12707 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12708 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12720 . . . . . 6 (61 · 1) = 61
405387oveq1i 7400 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2753 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12713 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12709 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7400 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2753 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12713 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12721 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12722 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2756 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 17047 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cn 12193  2c2 12248  3c3 12249  4c4 12250  5c5 12251  6c6 12252  7c7 12253  8c8 12254  9c9 12255  0cn0 12449  cdc 12656   mod cmo 13838  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034
This theorem is referenced by:  4001lem2  17119  4001lem3  17120
  Copyright terms: Public domain W3C validator