MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17052
Description: Lemma for 4001prm 17056. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12403 . . . . . 6 4 ∈ ℕ0
3 0nn0 12399 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12606 . . . . 5 40 ∈ ℕ0
54, 3deccl 12606 . . . 4 400 ∈ ℕ0
6 1nn 12139 . . . 4 1 ∈ ℕ
75, 6decnncl 12611 . . 3 4001 ∈ ℕ
81, 7eqeltri 2824 . 2 𝑁 ∈ ℕ
9 2nn 12201 . 2 2 ∈ ℕ
10 10nn0 12609 . . 3 10 ∈ ℕ0
1110, 3deccl 12606 . 2 100 ∈ ℕ0
12 9nn0 12408 . . . 4 9 ∈ ℕ0
1312, 2deccl 12606 . . 3 94 ∈ ℕ0
1413nn0zi 12500 . 2 94 ∈ ℤ
15 6nn0 12405 . . . 4 6 ∈ ℕ0
16 1nn0 12400 . . . 4 1 ∈ ℕ0
1715, 16deccl 12606 . . 3 61 ∈ ℕ0
1817, 2deccl 12606 . 2 614 ∈ ℕ0
1912, 3deccl 12606 . . 3 90 ∈ ℕ0
20 2nn0 12401 . . 3 2 ∈ ℕ0
2119, 20deccl 12606 . 2 902 ∈ ℕ0
22 5nn0 12404 . . . 4 5 ∈ ℕ0
2322, 3deccl 12606 . . 3 50 ∈ ℕ0
24 8nn0 12407 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12606 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12606 . . . 4 286 ∈ ℕ0
2726nn0zi 12500 . . 3 286 ∈ ℤ
28 7nn0 12406 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12606 . . . 4 107 ∈ ℕ0
3029, 3deccl 12606 . . 3 1070 ∈ ℕ0
3120, 22deccl 12606 . . . 4 25 ∈ ℕ0
3210, 2deccl 12606 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12606 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12500 . . . 4 1046 ∈ ℤ
3520, 3deccl 12606 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12606 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12606 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12606 . . . . 5 24 ∈ ℕ0
39 0z 12482 . . . . 5 0 ∈ ℤ
4010, 20deccl 12606 . . . . . 6 102 ∈ ℕ0
41 3nn0 12402 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12606 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12606 . . . . . 6 12 ∈ ℕ0
44 2z 12507 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12606 . . . . . 6 95 ∈ ℕ0
46 1z 12505 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12606 . . . . . . 7 64 ∈ ℕ0
48 2exp6 16998 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7359 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12219 . . . . . . . 8 6 ∈ ℂ
51 2cn 12203 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12695 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11124 . . . . . . 7 (2 · 6) = 12
54 eqid 2729 . . . . . . . . 9 95 = 95
55 eqid 2729 . . . . . . . . . 10 400 = 400
56 9cn 12228 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11303 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12613 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2752 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2729 . . . . . . . . . . 11 40 = 40
61 00id 11291 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12613 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2752 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12213 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11120 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7361 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11303 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2752 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11067 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11306 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7359 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2756 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12644 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7359 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11304 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2756 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12644 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11119 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7359 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12216 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12270 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11308 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12613 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2756 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12644 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2729 . . . . . . . . 9 64 = 64
87 eqid 2729 . . . . . . . . . 10 25 = 25
88 2p2e4 12258 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7360 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12699 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12268 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12663 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12653 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2752 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12697 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11124 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12281 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11308 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12651 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12643 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12269 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12622 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12690 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12656 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12657 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2755 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 16981 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2729 . . . . . . 7 12 = 12
10951mulridi 11119 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7359 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11303 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2752 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12287 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12613 . . . . . . . 8 4 = 04
115113, 114eqtri 2752 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12657 . . . . . 6 (2 · 12) = 24
117 eqid 2729 . . . . . . . 8 1023 = 1023
11840nn0cni 12396 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11303 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12634 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12291 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11124 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11303 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7361 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12273 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2752 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11306 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7359 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2756 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12644 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7359 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11304 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12613 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2756 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12644 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7359 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12209 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12274 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11308 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12613 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2756 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12644 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12606 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2729 . . . . . . . . 9 47 = 47
14598oveq2i 7360 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12720 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12593 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11308 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12653 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2752 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12716 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11124 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12222 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12668 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11308 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12652 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12643 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12279 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12651 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12694 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12656 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12657 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2755 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 16981 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2729 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12622 . . . . 5 (24 + 1) = 25
16737nn0cni 12396 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11304 . . . . . 6 (0 + 2046) = 2046
1698nncni 12138 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11305 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7359 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2729 . . . . . . . 8 102 = 102
17320dec0u 12612 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12655 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12289 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12655 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2762 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 16982 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7359 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2752 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12691 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11124 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12657 . . . 4 (2 · 25) = 50
184 eqid 2729 . . . . . 6 1070 = 1070
18520, 16deccl 12606 . . . . . . 7 21 ∈ ℕ0
186 eqid 2729 . . . . . . . 8 107 = 107
187 eqid 2729 . . . . . . . 8 104 = 104
188 0p1e1 12245 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12686 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12622 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12667 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12646 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12396 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11303 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2824 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2729 . . . . . . . . 9 1046 = 1046
197 dfdec10 12594 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2738 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12282 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12651 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12649 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7361 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12276 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12651 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2752 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12649 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12396 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11306 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7359 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12613 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2756 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12644 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12644 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11119 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7359 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11303 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2752 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12644 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2729 . . . . . 6 2046 = 2046
22043, 20deccl 12606 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12606 . . . . . 6 1227 ∈ ℕ0
222 eqid 2729 . . . . . . 7 204 = 204
223 eqid 2729 . . . . . . 7 1227 = 1227
22424, 16deccl 12606 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12606 . . . . . . 7 819 ∈ ℕ0
226 eqid 2729 . . . . . . . 8 20 = 20
227 eqid 2729 . . . . . . . . 9 122 = 122
228 eqid 2729 . . . . . . . . 9 819 = 819
229 eqid 2729 . . . . . . . . . . 11 81 = 81
230 8cn 12225 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11308 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12265 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12645 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12622 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12678 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11308 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12646 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12396 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11303 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2824 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11305 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7361 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2752 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12648 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7359 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11303 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12613 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2756 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12643 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11308 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12651 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12643 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11306 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7359 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2756 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12644 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12613 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2824 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11305 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7361 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2752 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12648 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12283 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12651 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12643 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11308 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12652 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12649 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12644 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11305 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7359 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2752 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12648 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12277 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12651 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12649 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12656 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12657 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2755 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 16981 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12396 . . . 4 50 ∈ ℂ
282 eqid 2729 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12655 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11124 . . 3 (2 · 50) = 100
285 eqid 2729 . . . . 5 614 = 614
28620, 12deccl 12606 . . . . 5 29 ∈ ℕ0
287 eqid 2729 . . . . . . 7 61 = 61
288 eqid 2729 . . . . . . 7 29 = 29
289199oveq1i 7359 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2752 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12647 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2824 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2729 . . . . . . . 8 286 = 286
294 eqid 2729 . . . . . . . . 9 28 = 28
295122oveq1i 7359 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12672 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2752 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12708 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12651 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12649 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7361 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12396 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11303 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2752 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12649 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12396 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11306 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7359 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2756 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12644 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7359 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2756 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12644 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11119 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12655 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12622 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11119 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7359 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2752 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12649 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12644 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12606 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12606 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12606 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12606 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12606 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12606 . . . . . . 7 749 ∈ ℕ0
328 eqid 2729 . . . . . . . 8 10 = 10
329 eqid 2729 . . . . . . . 8 749 = 749
330326nn0cni 12396 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11303 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11303 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2824 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12396 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11119 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12622 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11119 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7361 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12670 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2752 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12649 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11305 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7359 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11304 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2756 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12643 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12396 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11306 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7359 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2756 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12644 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12594 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2738 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12705 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12656 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11305 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12655 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12657 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12651 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2752 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12657 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2755 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 16981 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12396 . . 3 100 ∈ ℂ
365 eqid 2729 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12655 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11124 . 2 (2 · 100) = 200
368 eqid 2729 . . . 4 902 = 902
369 eqid 2729 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12651 . . . . 5 (90 + 9) = 99
371 eqid 2729 . . . . . . 7 94 = 94
372 6p1e7 12271 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12715 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12622 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7361 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12606 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12396 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11303 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2752 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12649 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11306 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7359 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2756 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12644 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12644 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11119 . . . . 5 (9 · 1) = 9
38764mulridi 11119 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7359 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2752 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12648 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12644 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12606 . . . 4 245 ∈ ℕ0
393 eqid 2729 . . . . 5 245 = 245
39450, 51, 199addcomli 11308 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12645 . . . . . 6 (24 + 61) = 85
396 8p2e10 12671 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12622 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11120 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7359 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11303 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2752 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12642 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12643 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12655 . . . . . 6 (61 · 1) = 61
405387oveq1i 7359 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2752 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12648 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12644 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7359 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2752 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12648 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12656 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12657 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2755 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 16981 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  6c6 12187  7c7 12188  8c8 12189  9c9 12190  0cn0 12384  cdc 12591   mod cmo 13773  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969
This theorem is referenced by:  4001lem2  17053  4001lem3  17054
  Copyright terms: Public domain W3C validator