MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17111
Description: Lemma for 4001prm 17115. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12461 . . . . . 6 4 ∈ ℕ0
3 0nn0 12457 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12664 . . . . 5 40 ∈ ℕ0
54, 3deccl 12664 . . . 4 400 ∈ ℕ0
6 1nn 12197 . . . 4 1 ∈ ℕ
75, 6decnncl 12669 . . 3 4001 ∈ ℕ
81, 7eqeltri 2824 . 2 𝑁 ∈ ℕ
9 2nn 12259 . 2 2 ∈ ℕ
10 10nn0 12667 . . 3 10 ∈ ℕ0
1110, 3deccl 12664 . 2 100 ∈ ℕ0
12 9nn0 12466 . . . 4 9 ∈ ℕ0
1312, 2deccl 12664 . . 3 94 ∈ ℕ0
1413nn0zi 12558 . 2 94 ∈ ℤ
15 6nn0 12463 . . . 4 6 ∈ ℕ0
16 1nn0 12458 . . . 4 1 ∈ ℕ0
1715, 16deccl 12664 . . 3 61 ∈ ℕ0
1817, 2deccl 12664 . 2 614 ∈ ℕ0
1912, 3deccl 12664 . . 3 90 ∈ ℕ0
20 2nn0 12459 . . 3 2 ∈ ℕ0
2119, 20deccl 12664 . 2 902 ∈ ℕ0
22 5nn0 12462 . . . 4 5 ∈ ℕ0
2322, 3deccl 12664 . . 3 50 ∈ ℕ0
24 8nn0 12465 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12664 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12664 . . . 4 286 ∈ ℕ0
2726nn0zi 12558 . . 3 286 ∈ ℤ
28 7nn0 12464 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12664 . . . 4 107 ∈ ℕ0
3029, 3deccl 12664 . . 3 1070 ∈ ℕ0
3120, 22deccl 12664 . . . 4 25 ∈ ℕ0
3210, 2deccl 12664 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12664 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12558 . . . 4 1046 ∈ ℤ
3520, 3deccl 12664 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12664 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12664 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12664 . . . . 5 24 ∈ ℕ0
39 0z 12540 . . . . 5 0 ∈ ℤ
4010, 20deccl 12664 . . . . . 6 102 ∈ ℕ0
41 3nn0 12460 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12664 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12664 . . . . . 6 12 ∈ ℕ0
44 2z 12565 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12664 . . . . . 6 95 ∈ ℕ0
46 1z 12563 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12664 . . . . . . 7 64 ∈ ℕ0
48 2exp6 17057 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7397 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12277 . . . . . . . 8 6 ∈ ℂ
51 2cn 12261 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12753 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11183 . . . . . . 7 (2 · 6) = 12
54 eqid 2729 . . . . . . . . 9 95 = 95
55 eqid 2729 . . . . . . . . . 10 400 = 400
56 9cn 12286 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11361 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12671 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2752 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2729 . . . . . . . . . . 11 40 = 40
61 00id 11349 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12671 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2752 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12271 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11179 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7399 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11361 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2752 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11126 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11364 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7397 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2756 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12702 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7397 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11362 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2756 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12702 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11178 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7397 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12274 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12328 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11366 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12671 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2756 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12702 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2729 . . . . . . . . 9 64 = 64
87 eqid 2729 . . . . . . . . . 10 25 = 25
88 2p2e4 12316 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7398 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12757 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12326 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12721 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12711 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2752 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12755 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11183 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12339 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11366 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12709 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12701 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12327 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12680 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12748 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12714 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12715 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2755 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 17040 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2729 . . . . . . 7 12 = 12
10951mulridi 11178 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7397 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11361 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2752 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12345 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12671 . . . . . . . 8 4 = 04
115113, 114eqtri 2752 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12715 . . . . . 6 (2 · 12) = 24
117 eqid 2729 . . . . . . . 8 1023 = 1023
11840nn0cni 12454 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11361 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12692 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12349 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11183 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11361 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7399 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12331 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2752 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11364 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7397 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2756 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12702 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7397 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11362 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12671 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2756 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12702 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7397 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12267 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12332 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11366 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12671 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2756 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12702 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12664 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2729 . . . . . . . . 9 47 = 47
14598oveq2i 7398 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12778 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12651 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11366 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12711 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2752 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12774 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11183 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12280 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12726 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11366 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12710 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12701 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12337 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12709 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12752 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12714 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12715 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2755 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 17040 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2729 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12680 . . . . 5 (24 + 1) = 25
16737nn0cni 12454 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11362 . . . . . 6 (0 + 2046) = 2046
1698nncni 12196 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11363 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7397 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2729 . . . . . . . 8 102 = 102
17320dec0u 12670 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12713 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12347 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12713 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2762 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 17041 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7397 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2752 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12749 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11183 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12715 . . . 4 (2 · 25) = 50
184 eqid 2729 . . . . . 6 1070 = 1070
18520, 16deccl 12664 . . . . . . 7 21 ∈ ℕ0
186 eqid 2729 . . . . . . . 8 107 = 107
187 eqid 2729 . . . . . . . 8 104 = 104
188 0p1e1 12303 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12744 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12680 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12725 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12704 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12454 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11361 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2824 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2729 . . . . . . . . 9 1046 = 1046
197 dfdec10 12652 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2738 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12340 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12709 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12707 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7399 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12334 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12709 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2752 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12707 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12454 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11364 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7397 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12671 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2756 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12702 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12702 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11178 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7397 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11361 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2752 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12702 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2729 . . . . . 6 2046 = 2046
22043, 20deccl 12664 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12664 . . . . . 6 1227 ∈ ℕ0
222 eqid 2729 . . . . . . 7 204 = 204
223 eqid 2729 . . . . . . 7 1227 = 1227
22424, 16deccl 12664 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12664 . . . . . . 7 819 ∈ ℕ0
226 eqid 2729 . . . . . . . 8 20 = 20
227 eqid 2729 . . . . . . . . 9 122 = 122
228 eqid 2729 . . . . . . . . 9 819 = 819
229 eqid 2729 . . . . . . . . . . 11 81 = 81
230 8cn 12283 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11366 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12323 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12703 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12680 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12736 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11366 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12704 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12454 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11361 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2824 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11363 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7399 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2752 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12706 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7397 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11361 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12671 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2756 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12701 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11366 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12709 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12701 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11364 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7397 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2756 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12702 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12671 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2824 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11363 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7399 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2752 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12706 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12341 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12709 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12701 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11366 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12710 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12707 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12702 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11363 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7397 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2752 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12706 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12335 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12709 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12707 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12714 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12715 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2755 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 17040 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12454 . . . 4 50 ∈ ℂ
282 eqid 2729 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12713 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11183 . . 3 (2 · 50) = 100
285 eqid 2729 . . . . 5 614 = 614
28620, 12deccl 12664 . . . . 5 29 ∈ ℕ0
287 eqid 2729 . . . . . . 7 61 = 61
288 eqid 2729 . . . . . . 7 29 = 29
289199oveq1i 7397 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2752 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12705 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2824 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2729 . . . . . . . 8 286 = 286
294 eqid 2729 . . . . . . . . 9 28 = 28
295122oveq1i 7397 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12730 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2752 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12766 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12709 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12707 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7399 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12454 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11361 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2752 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12707 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12454 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11364 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7397 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2756 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12702 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7397 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2756 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12702 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11178 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12713 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12680 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11178 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7397 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2752 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12707 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12702 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12664 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12664 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12664 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12664 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12664 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12664 . . . . . . 7 749 ∈ ℕ0
328 eqid 2729 . . . . . . . 8 10 = 10
329 eqid 2729 . . . . . . . 8 749 = 749
330326nn0cni 12454 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11361 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11361 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2824 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12454 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11178 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12680 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11178 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7399 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12728 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2752 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12707 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11363 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7397 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11362 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2756 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12701 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12454 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11364 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7397 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2756 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12702 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12652 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2738 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12763 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12714 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11363 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12713 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12715 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12709 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2752 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12715 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2755 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 17040 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12454 . . 3 100 ∈ ℂ
365 eqid 2729 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12713 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11183 . 2 (2 · 100) = 200
368 eqid 2729 . . . 4 902 = 902
369 eqid 2729 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12709 . . . . 5 (90 + 9) = 99
371 eqid 2729 . . . . . . 7 94 = 94
372 6p1e7 12329 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12773 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12680 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7399 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12664 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12454 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11361 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2752 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12707 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11364 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7397 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2756 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12702 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12702 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11178 . . . . 5 (9 · 1) = 9
38764mulridi 11178 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7397 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2752 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12706 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12702 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12664 . . . 4 245 ∈ ℕ0
393 eqid 2729 . . . . 5 245 = 245
39450, 51, 199addcomli 11366 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12703 . . . . . 6 (24 + 61) = 85
396 8p2e10 12729 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12680 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11179 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7397 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11361 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2752 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12700 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12701 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12713 . . . . . 6 (61 · 1) = 61
405387oveq1i 7397 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2752 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12706 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12702 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7397 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2752 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12706 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12714 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12715 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2755 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 17040 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  7c7 12246  8c8 12247  9c9 12248  0cn0 12442  cdc 12649   mod cmo 13831  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027
This theorem is referenced by:  4001lem2  17112  4001lem3  17113
  Copyright terms: Public domain W3C validator