MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 16842
Description: Lemma for 4001prm 16846. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12252 . . . . . 6 4 ∈ ℕ0
3 0nn0 12248 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12452 . . . . 5 40 ∈ ℕ0
54, 3deccl 12452 . . . 4 400 ∈ ℕ0
6 1nn 11984 . . . 4 1 ∈ ℕ
75, 6decnncl 12457 . . 3 4001 ∈ ℕ
81, 7eqeltri 2835 . 2 𝑁 ∈ ℕ
9 2nn 12046 . 2 2 ∈ ℕ
10 10nn0 12455 . . 3 10 ∈ ℕ0
1110, 3deccl 12452 . 2 100 ∈ ℕ0
12 9nn0 12257 . . . 4 9 ∈ ℕ0
1312, 2deccl 12452 . . 3 94 ∈ ℕ0
1413nn0zi 12345 . 2 94 ∈ ℤ
15 6nn0 12254 . . . 4 6 ∈ ℕ0
16 1nn0 12249 . . . 4 1 ∈ ℕ0
1715, 16deccl 12452 . . 3 61 ∈ ℕ0
1817, 2deccl 12452 . 2 614 ∈ ℕ0
1912, 3deccl 12452 . . 3 90 ∈ ℕ0
20 2nn0 12250 . . 3 2 ∈ ℕ0
2119, 20deccl 12452 . 2 902 ∈ ℕ0
22 5nn0 12253 . . . 4 5 ∈ ℕ0
2322, 3deccl 12452 . . 3 50 ∈ ℕ0
24 8nn0 12256 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12452 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12452 . . . 4 286 ∈ ℕ0
2726nn0zi 12345 . . 3 286 ∈ ℤ
28 7nn0 12255 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12452 . . . 4 107 ∈ ℕ0
3029, 3deccl 12452 . . 3 1070 ∈ ℕ0
3120, 22deccl 12452 . . . 4 25 ∈ ℕ0
3210, 2deccl 12452 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12452 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12345 . . . 4 1046 ∈ ℤ
3520, 3deccl 12452 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12452 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12452 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12452 . . . . 5 24 ∈ ℕ0
39 0z 12330 . . . . 5 0 ∈ ℤ
4010, 20deccl 12452 . . . . . 6 102 ∈ ℕ0
41 3nn0 12251 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12452 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12452 . . . . . 6 12 ∈ ℕ0
44 2z 12352 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12452 . . . . . 6 95 ∈ ℕ0
46 1z 12350 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12452 . . . . . . 7 64 ∈ ℕ0
48 2exp6 16788 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7285 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12064 . . . . . . . 8 6 ∈ ℂ
51 2cn 12048 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12541 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 10984 . . . . . . 7 (2 · 6) = 12
54 eqid 2738 . . . . . . . . 9 95 = 95
55 eqid 2738 . . . . . . . . . 10 400 = 400
56 9cn 12073 . . . . . . . . . . . 12 9 ∈ ℂ
5756addid1i 11162 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12459 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2766 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2738 . . . . . . . . . . 11 40 = 40
61 00id 11150 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12459 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2766 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12058 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mulid2i 10980 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7287 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addid1i 11162 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2766 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 10929 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11165 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7285 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2770 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12490 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7285 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addid2i 11163 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2770 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12490 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulid1i 10979 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7285 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12061 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12120 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11167 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12459 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2770 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12490 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2738 . . . . . . . . 9 64 = 64
87 eqid 2738 . . . . . . . . . 10 25 = 25
88 2p2e4 12108 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7286 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12545 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12118 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12509 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12499 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2766 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12543 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 10984 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12131 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11167 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12497 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12489 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12119 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12468 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12536 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12502 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12503 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2769 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 16770 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2738 . . . . . . 7 12 = 12
10951mulid1i 10979 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7285 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addid1i 11162 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2766 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12137 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12459 . . . . . . . 8 4 = 04
115113, 114eqtri 2766 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12503 . . . . . 6 (2 · 12) = 24
117 eqid 2738 . . . . . . . 8 1023 = 1023
11840nn0cni 12245 . . . . . . . . . 10 102 ∈ ℂ
119118addid1i 11162 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12480 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12141 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 10984 . . . . . . . . . . . 12 (2 · 4) = 8
12369addid1i 11162 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7287 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12123 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2766 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11165 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7285 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2770 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12490 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7285 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addid2i 11163 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12459 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2770 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12490 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7285 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12054 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12124 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11167 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12459 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2770 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12490 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12452 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2738 . . . . . . . . 9 47 = 47
14598oveq2i 7286 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12566 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12439 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11167 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12499 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2766 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12562 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 10984 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12067 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12514 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11167 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12498 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12489 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12129 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12497 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12540 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12502 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12503 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2769 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 16770 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2738 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12468 . . . . 5 (24 + 1) = 25
16737nn0cni 12245 . . . . . . 7 2046 ∈ ℂ
168167addid2i 11163 . . . . . 6 (0 + 2046) = 2046
1698nncni 11983 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11164 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7285 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2738 . . . . . . . 8 102 = 102
17320dec0u 12458 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12501 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12139 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12501 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2776 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 16771 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7285 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2766 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12537 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 10984 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12503 . . . 4 (2 · 25) = 50
184 eqid 2738 . . . . . 6 1070 = 1070
18520, 16deccl 12452 . . . . . . 7 21 ∈ ℕ0
186 eqid 2738 . . . . . . . 8 107 = 107
187 eqid 2738 . . . . . . . 8 104 = 104
188 0p1e1 12095 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12532 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12468 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12513 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12492 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12245 . . . . . . . . 9 21 ∈ ℂ
194193addid1i 11162 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2835 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2738 . . . . . . . . 9 1046 = 1046
197 dfdec10 12440 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2747 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12132 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12497 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12495 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7287 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12126 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12497 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2766 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12495 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12245 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11165 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7285 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12459 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2770 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12490 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12490 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulid1i 10979 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7285 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addid1i 11162 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2766 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12490 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2738 . . . . . 6 2046 = 2046
22043, 20deccl 12452 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12452 . . . . . 6 1227 ∈ ℕ0
222 eqid 2738 . . . . . . 7 204 = 204
223 eqid 2738 . . . . . . 7 1227 = 1227
22424, 16deccl 12452 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12452 . . . . . . 7 819 ∈ ℕ0
226 eqid 2738 . . . . . . . 8 20 = 20
227 eqid 2738 . . . . . . . . 9 122 = 122
228 eqid 2738 . . . . . . . . 9 819 = 819
229 eqid 2738 . . . . . . . . . . 11 81 = 81
230 8cn 12070 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11167 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12115 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12491 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12468 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12524 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11167 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12492 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12245 . . . . . . . . . 10 94 ∈ ℂ
239238addid1i 11162 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2835 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11164 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7287 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2766 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12494 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7285 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addid1i 11162 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12459 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2770 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12489 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11167 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12497 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12489 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11165 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7285 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2770 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12490 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12459 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2835 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11164 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7287 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2766 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12494 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12133 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12497 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12489 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11167 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12498 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12495 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12490 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11164 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7285 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2766 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12494 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12127 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12497 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12495 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12502 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12503 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2769 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 16770 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12245 . . . 4 50 ∈ ℂ
282 eqid 2738 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12501 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 10984 . . 3 (2 · 50) = 100
285 eqid 2738 . . . . 5 614 = 614
28620, 12deccl 12452 . . . . 5 29 ∈ ℕ0
287 eqid 2738 . . . . . . 7 61 = 61
288 eqid 2738 . . . . . . 7 29 = 29
289199oveq1i 7285 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2766 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12493 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2835 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2738 . . . . . . . 8 286 = 286
294 eqid 2738 . . . . . . . . 9 28 = 28
295122oveq1i 7285 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12518 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2766 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12554 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12497 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12495 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7287 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12245 . . . . . . . . . 10 24 ∈ ℂ
303302addid1i 11162 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2766 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12495 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12245 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11165 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7285 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2770 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12490 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7285 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2770 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12490 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulid1i 10979 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12501 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12468 . . . . . 6 ((28 · 1) + 1) = 29
31750mulid1i 10979 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7285 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2766 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12495 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12490 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12452 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12452 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12452 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12452 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12452 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12452 . . . . . . 7 749 ∈ ℕ0
328 eqid 2738 . . . . . . . 8 10 = 10
329 eqid 2738 . . . . . . . 8 749 = 749
330326nn0cni 12245 . . . . . . . . . 10 74 ∈ ℂ
331330addid1i 11162 . . . . . . . . 9 (74 + 0) = 74
332153addid1i 11162 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2835 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12245 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulid1i 10979 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12468 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulid1i 10979 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7287 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12516 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2766 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12495 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11164 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7285 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addid2i 11163 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2770 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12489 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12245 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11165 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7285 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2770 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12490 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12440 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2747 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12551 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12502 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11164 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12501 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12503 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12497 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2766 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12503 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2769 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 16770 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12245 . . 3 100 ∈ ℂ
365 eqid 2738 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12501 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 10984 . 2 (2 · 100) = 200
368 eqid 2738 . . . 4 902 = 902
369 eqid 2738 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12497 . . . . 5 (90 + 9) = 99
371 eqid 2738 . . . . . . 7 94 = 94
372 6p1e7 12121 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12561 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12468 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7287 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12452 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12245 . . . . . . . . 9 16 ∈ ℂ
378377addid1i 11162 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2766 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12495 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11165 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7285 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2770 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12490 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12490 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulid1i 10979 . . . . 5 (9 · 1) = 9
38764mulid1i 10979 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7285 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2766 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12494 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12490 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12452 . . . 4 245 ∈ ℕ0
393 eqid 2738 . . . . 5 245 = 245
39450, 51, 199addcomli 11167 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12491 . . . . . 6 (24 + 61) = 85
396 8p2e10 12517 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12468 . . . . . . 7 ((6 · 6) + 1) = 37
39850mulid2i 10980 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7285 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addid1i 11162 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2766 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12488 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12489 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12501 . . . . . 6 (61 · 1) = 61
405387oveq1i 7285 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2766 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12494 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12490 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7285 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2766 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12494 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12502 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12503 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2769 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 16770 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  6c6 12032  7c7 12033  8c8 12034  9c9 12035  0cn0 12233  cdc 12437   mod cmo 13589  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783
This theorem is referenced by:  4001lem2  16843  4001lem3  16844
  Copyright terms: Public domain W3C validator