MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17188
Description: Lemma for 4001prm 17192. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12572 . . . . . 6 4 ∈ ℕ0
3 0nn0 12568 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12773 . . . . 5 40 ∈ ℕ0
54, 3deccl 12773 . . . 4 400 ∈ ℕ0
6 1nn 12304 . . . 4 1 ∈ ℕ
75, 6decnncl 12778 . . 3 4001 ∈ ℕ
81, 7eqeltri 2840 . 2 𝑁 ∈ ℕ
9 2nn 12366 . 2 2 ∈ ℕ
10 10nn0 12776 . . 3 10 ∈ ℕ0
1110, 3deccl 12773 . 2 100 ∈ ℕ0
12 9nn0 12577 . . . 4 9 ∈ ℕ0
1312, 2deccl 12773 . . 3 94 ∈ ℕ0
1413nn0zi 12668 . 2 94 ∈ ℤ
15 6nn0 12574 . . . 4 6 ∈ ℕ0
16 1nn0 12569 . . . 4 1 ∈ ℕ0
1715, 16deccl 12773 . . 3 61 ∈ ℕ0
1817, 2deccl 12773 . 2 614 ∈ ℕ0
1912, 3deccl 12773 . . 3 90 ∈ ℕ0
20 2nn0 12570 . . 3 2 ∈ ℕ0
2119, 20deccl 12773 . 2 902 ∈ ℕ0
22 5nn0 12573 . . . 4 5 ∈ ℕ0
2322, 3deccl 12773 . . 3 50 ∈ ℕ0
24 8nn0 12576 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12773 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12773 . . . 4 286 ∈ ℕ0
2726nn0zi 12668 . . 3 286 ∈ ℤ
28 7nn0 12575 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12773 . . . 4 107 ∈ ℕ0
3029, 3deccl 12773 . . 3 1070 ∈ ℕ0
3120, 22deccl 12773 . . . 4 25 ∈ ℕ0
3210, 2deccl 12773 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12773 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12668 . . . 4 1046 ∈ ℤ
3520, 3deccl 12773 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12773 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12773 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12773 . . . . 5 24 ∈ ℕ0
39 0z 12650 . . . . 5 0 ∈ ℤ
4010, 20deccl 12773 . . . . . 6 102 ∈ ℕ0
41 3nn0 12571 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12773 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12773 . . . . . 6 12 ∈ ℕ0
44 2z 12675 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12773 . . . . . 6 95 ∈ ℕ0
46 1z 12673 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12773 . . . . . . 7 64 ∈ ℕ0
48 2exp6 17134 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7458 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12384 . . . . . . . 8 6 ∈ ℂ
51 2cn 12368 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12862 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11299 . . . . . . 7 (2 · 6) = 12
54 eqid 2740 . . . . . . . . 9 95 = 95
55 eqid 2740 . . . . . . . . . 10 400 = 400
56 9cn 12393 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11477 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12780 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2768 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2740 . . . . . . . . . . 11 40 = 40
61 00id 11465 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12780 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2768 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12378 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11295 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7460 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11477 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2768 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11242 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11480 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7458 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2772 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12811 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7458 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11478 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2772 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12811 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11294 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7458 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12381 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12440 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11482 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12780 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2772 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12811 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2740 . . . . . . . . 9 64 = 64
87 eqid 2740 . . . . . . . . . 10 25 = 25
88 2p2e4 12428 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7459 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12866 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12438 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12830 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12820 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2768 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12864 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11299 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12451 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11482 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12818 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12810 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12439 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12789 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12857 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12823 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12824 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2771 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 17116 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2740 . . . . . . 7 12 = 12
10951mulridi 11294 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7458 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11477 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2768 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12457 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12780 . . . . . . . 8 4 = 04
115113, 114eqtri 2768 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12824 . . . . . 6 (2 · 12) = 24
117 eqid 2740 . . . . . . . 8 1023 = 1023
11840nn0cni 12565 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11477 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12801 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12461 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11299 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11477 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7460 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12443 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2768 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11480 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7458 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2772 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12811 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7458 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11478 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12780 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2772 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12811 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7458 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12374 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12444 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11482 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12780 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2772 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12811 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12773 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2740 . . . . . . . . 9 47 = 47
14598oveq2i 7459 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12887 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12760 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11482 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12820 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2768 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12883 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11299 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12387 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12835 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11482 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12819 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12810 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12449 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12818 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12861 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12823 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12824 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2771 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 17116 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2740 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12789 . . . . 5 (24 + 1) = 25
16737nn0cni 12565 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11478 . . . . . 6 (0 + 2046) = 2046
1698nncni 12303 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11479 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7458 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2740 . . . . . . . 8 102 = 102
17320dec0u 12779 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12822 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12459 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12822 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2778 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 17117 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7458 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2768 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12858 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11299 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12824 . . . 4 (2 · 25) = 50
184 eqid 2740 . . . . . 6 1070 = 1070
18520, 16deccl 12773 . . . . . . 7 21 ∈ ℕ0
186 eqid 2740 . . . . . . . 8 107 = 107
187 eqid 2740 . . . . . . . 8 104 = 104
188 0p1e1 12415 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12853 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12789 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12834 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12813 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12565 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11477 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2840 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2740 . . . . . . . . 9 1046 = 1046
197 dfdec10 12761 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2749 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12452 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12818 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12816 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7460 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12446 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12818 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2768 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12816 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12565 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11480 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7458 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12780 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2772 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12811 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12811 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11294 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7458 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11477 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2768 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12811 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2740 . . . . . 6 2046 = 2046
22043, 20deccl 12773 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12773 . . . . . 6 1227 ∈ ℕ0
222 eqid 2740 . . . . . . 7 204 = 204
223 eqid 2740 . . . . . . 7 1227 = 1227
22424, 16deccl 12773 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12773 . . . . . . 7 819 ∈ ℕ0
226 eqid 2740 . . . . . . . 8 20 = 20
227 eqid 2740 . . . . . . . . 9 122 = 122
228 eqid 2740 . . . . . . . . 9 819 = 819
229 eqid 2740 . . . . . . . . . . 11 81 = 81
230 8cn 12390 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11482 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12435 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12812 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12789 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12845 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11482 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12813 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12565 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11477 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2840 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11479 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7460 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2768 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12815 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7458 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11477 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12780 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2772 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12810 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11482 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12818 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12810 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11480 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7458 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2772 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12811 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12780 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2840 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11479 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7460 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2768 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12815 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12453 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12818 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12810 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11482 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12819 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12816 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12811 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11479 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7458 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2768 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12815 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12447 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12818 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12816 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12823 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12824 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2771 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 17116 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12565 . . . 4 50 ∈ ℂ
282 eqid 2740 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12822 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11299 . . 3 (2 · 50) = 100
285 eqid 2740 . . . . 5 614 = 614
28620, 12deccl 12773 . . . . 5 29 ∈ ℕ0
287 eqid 2740 . . . . . . 7 61 = 61
288 eqid 2740 . . . . . . 7 29 = 29
289199oveq1i 7458 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2768 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12814 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2840 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2740 . . . . . . . 8 286 = 286
294 eqid 2740 . . . . . . . . 9 28 = 28
295122oveq1i 7458 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12839 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2768 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12875 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12818 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12816 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7460 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12565 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11477 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2768 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12816 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12565 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11480 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7458 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2772 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12811 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7458 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2772 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12811 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11294 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12822 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12789 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11294 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7458 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2768 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12816 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12811 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12773 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12773 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12773 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12773 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12773 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12773 . . . . . . 7 749 ∈ ℕ0
328 eqid 2740 . . . . . . . 8 10 = 10
329 eqid 2740 . . . . . . . 8 749 = 749
330326nn0cni 12565 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11477 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11477 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2840 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12565 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11294 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12789 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11294 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7460 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12837 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2768 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12816 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11479 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7458 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11478 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2772 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12810 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12565 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11480 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7458 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2772 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12811 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12761 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2749 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12872 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12823 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11479 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12822 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12824 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12818 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2768 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12824 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2771 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 17116 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12565 . . 3 100 ∈ ℂ
365 eqid 2740 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12822 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11299 . 2 (2 · 100) = 200
368 eqid 2740 . . . 4 902 = 902
369 eqid 2740 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12818 . . . . 5 (90 + 9) = 99
371 eqid 2740 . . . . . . 7 94 = 94
372 6p1e7 12441 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12882 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12789 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7460 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12773 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12565 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11477 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2768 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12816 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11480 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7458 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2772 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12811 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12811 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11294 . . . . 5 (9 · 1) = 9
38764mulridi 11294 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7458 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2768 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12815 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12811 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12773 . . . 4 245 ∈ ℕ0
393 eqid 2740 . . . . 5 245 = 245
39450, 51, 199addcomli 11482 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12812 . . . . . 6 (24 + 61) = 85
396 8p2e10 12838 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12789 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11295 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7458 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11477 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2768 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12809 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12810 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12822 . . . . . 6 (61 · 1) = 61
405387oveq1i 7458 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2768 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12815 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12811 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7458 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2768 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12815 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12823 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12824 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2771 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 17116 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  7c7 12353  8c8 12354  9c9 12355  0cn0 12553  cdc 12758   mod cmo 13920  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113
This theorem is referenced by:  4001lem2  17189  4001lem3  17190
  Copyright terms: Public domain W3C validator