MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17087
Description: Lemma for 4001prm 17091. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12437 . . . . . 6 4 ∈ ℕ0
3 0nn0 12433 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12640 . . . . 5 40 ∈ ℕ0
54, 3deccl 12640 . . . 4 400 ∈ ℕ0
6 1nn 12173 . . . 4 1 ∈ ℕ
75, 6decnncl 12645 . . 3 4001 ∈ ℕ
81, 7eqeltri 2824 . 2 𝑁 ∈ ℕ
9 2nn 12235 . 2 2 ∈ ℕ
10 10nn0 12643 . . 3 10 ∈ ℕ0
1110, 3deccl 12640 . 2 100 ∈ ℕ0
12 9nn0 12442 . . . 4 9 ∈ ℕ0
1312, 2deccl 12640 . . 3 94 ∈ ℕ0
1413nn0zi 12534 . 2 94 ∈ ℤ
15 6nn0 12439 . . . 4 6 ∈ ℕ0
16 1nn0 12434 . . . 4 1 ∈ ℕ0
1715, 16deccl 12640 . . 3 61 ∈ ℕ0
1817, 2deccl 12640 . 2 614 ∈ ℕ0
1912, 3deccl 12640 . . 3 90 ∈ ℕ0
20 2nn0 12435 . . 3 2 ∈ ℕ0
2119, 20deccl 12640 . 2 902 ∈ ℕ0
22 5nn0 12438 . . . 4 5 ∈ ℕ0
2322, 3deccl 12640 . . 3 50 ∈ ℕ0
24 8nn0 12441 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12640 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12640 . . . 4 286 ∈ ℕ0
2726nn0zi 12534 . . 3 286 ∈ ℤ
28 7nn0 12440 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12640 . . . 4 107 ∈ ℕ0
3029, 3deccl 12640 . . 3 1070 ∈ ℕ0
3120, 22deccl 12640 . . . 4 25 ∈ ℕ0
3210, 2deccl 12640 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12640 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12534 . . . 4 1046 ∈ ℤ
3520, 3deccl 12640 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12640 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12640 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12640 . . . . 5 24 ∈ ℕ0
39 0z 12516 . . . . 5 0 ∈ ℤ
4010, 20deccl 12640 . . . . . 6 102 ∈ ℕ0
41 3nn0 12436 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12640 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12640 . . . . . 6 12 ∈ ℕ0
44 2z 12541 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12640 . . . . . 6 95 ∈ ℕ0
46 1z 12539 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12640 . . . . . . 7 64 ∈ ℕ0
48 2exp6 17033 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7379 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12253 . . . . . . . 8 6 ∈ ℂ
51 2cn 12237 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12729 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11159 . . . . . . 7 (2 · 6) = 12
54 eqid 2729 . . . . . . . . 9 95 = 95
55 eqid 2729 . . . . . . . . . 10 400 = 400
56 9cn 12262 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11337 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12647 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2752 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2729 . . . . . . . . . . 11 40 = 40
61 00id 11325 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12647 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2752 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12247 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11155 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7381 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11337 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2752 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11102 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11340 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7379 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2756 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12678 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7379 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11338 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2756 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12678 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11154 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7379 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12250 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12304 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11342 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12647 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2756 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12678 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2729 . . . . . . . . 9 64 = 64
87 eqid 2729 . . . . . . . . . 10 25 = 25
88 2p2e4 12292 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7380 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12733 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12302 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12697 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12687 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2752 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12731 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11159 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12315 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11342 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12685 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12677 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12303 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12656 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12724 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12690 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12691 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2755 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 17016 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2729 . . . . . . 7 12 = 12
10951mulridi 11154 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7379 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11337 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2752 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12321 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12647 . . . . . . . 8 4 = 04
115113, 114eqtri 2752 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12691 . . . . . 6 (2 · 12) = 24
117 eqid 2729 . . . . . . . 8 1023 = 1023
11840nn0cni 12430 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11337 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12668 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12325 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11159 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11337 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7381 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12307 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2752 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11340 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7379 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2756 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12678 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7379 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11338 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12647 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2756 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12678 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7379 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12243 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12308 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11342 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12647 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2756 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12678 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12640 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2729 . . . . . . . . 9 47 = 47
14598oveq2i 7380 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12754 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12627 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11342 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12687 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2752 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12750 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11159 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12256 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12702 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11342 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12686 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12677 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12313 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12685 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12728 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12690 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12691 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2755 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 17016 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2729 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12656 . . . . 5 (24 + 1) = 25
16737nn0cni 12430 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11338 . . . . . 6 (0 + 2046) = 2046
1698nncni 12172 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11339 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7379 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2729 . . . . . . . 8 102 = 102
17320dec0u 12646 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12689 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12323 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12689 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2762 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 17017 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7379 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2752 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12725 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11159 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12691 . . . 4 (2 · 25) = 50
184 eqid 2729 . . . . . 6 1070 = 1070
18520, 16deccl 12640 . . . . . . 7 21 ∈ ℕ0
186 eqid 2729 . . . . . . . 8 107 = 107
187 eqid 2729 . . . . . . . 8 104 = 104
188 0p1e1 12279 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12720 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12656 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12701 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12680 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12430 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11337 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2824 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2729 . . . . . . . . 9 1046 = 1046
197 dfdec10 12628 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2738 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12316 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12685 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12683 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7381 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12310 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12685 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2752 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12683 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12430 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11340 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7379 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12647 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2756 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12678 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12678 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11154 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7379 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11337 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2752 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12678 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2729 . . . . . 6 2046 = 2046
22043, 20deccl 12640 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12640 . . . . . 6 1227 ∈ ℕ0
222 eqid 2729 . . . . . . 7 204 = 204
223 eqid 2729 . . . . . . 7 1227 = 1227
22424, 16deccl 12640 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12640 . . . . . . 7 819 ∈ ℕ0
226 eqid 2729 . . . . . . . 8 20 = 20
227 eqid 2729 . . . . . . . . 9 122 = 122
228 eqid 2729 . . . . . . . . 9 819 = 819
229 eqid 2729 . . . . . . . . . . 11 81 = 81
230 8cn 12259 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11342 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12299 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12679 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12656 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12712 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11342 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12680 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12430 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11337 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2824 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11339 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7381 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2752 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12682 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7379 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11337 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12647 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2756 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12677 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11342 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12685 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12677 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11340 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7379 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2756 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12678 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12647 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2824 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11339 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7381 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2752 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12682 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12317 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12685 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12677 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11342 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12686 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12683 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12678 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11339 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7379 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2752 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12682 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12311 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12685 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12683 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12690 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12691 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2755 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 17016 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12430 . . . 4 50 ∈ ℂ
282 eqid 2729 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12689 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11159 . . 3 (2 · 50) = 100
285 eqid 2729 . . . . 5 614 = 614
28620, 12deccl 12640 . . . . 5 29 ∈ ℕ0
287 eqid 2729 . . . . . . 7 61 = 61
288 eqid 2729 . . . . . . 7 29 = 29
289199oveq1i 7379 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2752 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12681 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2824 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2729 . . . . . . . 8 286 = 286
294 eqid 2729 . . . . . . . . 9 28 = 28
295122oveq1i 7379 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12706 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2752 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12742 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12685 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12683 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7381 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12430 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11337 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2752 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12683 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12430 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11340 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7379 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2756 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12678 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7379 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2756 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12678 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11154 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12689 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12656 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11154 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7379 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2752 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12683 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12678 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12640 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12640 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12640 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12640 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12640 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12640 . . . . . . 7 749 ∈ ℕ0
328 eqid 2729 . . . . . . . 8 10 = 10
329 eqid 2729 . . . . . . . 8 749 = 749
330326nn0cni 12430 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11337 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11337 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2824 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12430 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11154 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12656 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11154 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7381 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12704 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2752 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12683 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11339 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7379 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11338 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2756 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12677 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12430 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11340 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7379 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2756 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12678 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12628 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2738 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12739 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12690 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11339 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12689 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12691 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12685 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2752 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12691 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2755 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 17016 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12430 . . 3 100 ∈ ℂ
365 eqid 2729 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12689 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11159 . 2 (2 · 100) = 200
368 eqid 2729 . . . 4 902 = 902
369 eqid 2729 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12685 . . . . 5 (90 + 9) = 99
371 eqid 2729 . . . . . . 7 94 = 94
372 6p1e7 12305 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12749 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12656 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7381 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12640 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12430 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11337 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2752 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12683 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11340 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7379 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2756 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12678 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12678 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11154 . . . . 5 (9 · 1) = 9
38764mulridi 11154 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7379 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2752 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12682 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12678 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12640 . . . 4 245 ∈ ℕ0
393 eqid 2729 . . . . 5 245 = 245
39450, 51, 199addcomli 11342 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12679 . . . . . 6 (24 + 61) = 85
396 8p2e10 12705 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12656 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11155 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7379 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11337 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2752 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12676 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12677 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12689 . . . . . 6 (61 · 1) = 61
405387oveq1i 7379 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2752 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12682 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12678 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7379 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2752 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12682 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12690 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12691 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2755 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 17016 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  6c6 12221  7c7 12222  8c8 12223  9c9 12224  0cn0 12418  cdc 12625   mod cmo 13807  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003
This theorem is referenced by:  4001lem2  17088  4001lem3  17089
  Copyright terms: Public domain W3C validator