MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17052
Description: Lemma for 4001prm 17056. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12400 . . . . . 6 4 ∈ ℕ0
3 0nn0 12396 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12603 . . . . 5 40 ∈ ℕ0
54, 3deccl 12603 . . . 4 400 ∈ ℕ0
6 1nn 12136 . . . 4 1 ∈ ℕ
75, 6decnncl 12608 . . 3 4001 ∈ ℕ
81, 7eqeltri 2827 . 2 𝑁 ∈ ℕ
9 2nn 12198 . 2 2 ∈ ℕ
10 10nn0 12606 . . 3 10 ∈ ℕ0
1110, 3deccl 12603 . 2 100 ∈ ℕ0
12 9nn0 12405 . . . 4 9 ∈ ℕ0
1312, 2deccl 12603 . . 3 94 ∈ ℕ0
1413nn0zi 12497 . 2 94 ∈ ℤ
15 6nn0 12402 . . . 4 6 ∈ ℕ0
16 1nn0 12397 . . . 4 1 ∈ ℕ0
1715, 16deccl 12603 . . 3 61 ∈ ℕ0
1817, 2deccl 12603 . 2 614 ∈ ℕ0
1912, 3deccl 12603 . . 3 90 ∈ ℕ0
20 2nn0 12398 . . 3 2 ∈ ℕ0
2119, 20deccl 12603 . 2 902 ∈ ℕ0
22 5nn0 12401 . . . 4 5 ∈ ℕ0
2322, 3deccl 12603 . . 3 50 ∈ ℕ0
24 8nn0 12404 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12603 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12603 . . . 4 286 ∈ ℕ0
2726nn0zi 12497 . . 3 286 ∈ ℤ
28 7nn0 12403 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12603 . . . 4 107 ∈ ℕ0
3029, 3deccl 12603 . . 3 1070 ∈ ℕ0
3120, 22deccl 12603 . . . 4 25 ∈ ℕ0
3210, 2deccl 12603 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12603 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12497 . . . 4 1046 ∈ ℤ
3520, 3deccl 12603 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12603 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12603 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12603 . . . . 5 24 ∈ ℕ0
39 0z 12479 . . . . 5 0 ∈ ℤ
4010, 20deccl 12603 . . . . . 6 102 ∈ ℕ0
41 3nn0 12399 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12603 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12603 . . . . . 6 12 ∈ ℕ0
44 2z 12504 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12603 . . . . . 6 95 ∈ ℕ0
46 1z 12502 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12603 . . . . . . 7 64 ∈ ℕ0
48 2exp6 16998 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7356 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12216 . . . . . . . 8 6 ∈ ℂ
51 2cn 12200 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12692 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11121 . . . . . . 7 (2 · 6) = 12
54 eqid 2731 . . . . . . . . 9 95 = 95
55 eqid 2731 . . . . . . . . . 10 400 = 400
56 9cn 12225 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11300 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12610 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2754 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2731 . . . . . . . . . . 11 40 = 40
61 00id 11288 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12610 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2754 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12210 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11117 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7358 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11300 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2754 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11064 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11303 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7356 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2758 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12641 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7356 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11301 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2758 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12641 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11116 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7356 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12213 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12267 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11305 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12610 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2758 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12641 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2731 . . . . . . . . 9 64 = 64
87 eqid 2731 . . . . . . . . . 10 25 = 25
88 2p2e4 12255 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7357 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12696 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12265 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12660 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12650 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2754 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12694 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11121 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12278 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11305 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12648 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12640 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12266 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12619 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12687 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12653 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12654 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2757 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 16981 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2731 . . . . . . 7 12 = 12
10951mulridi 11116 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7356 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11300 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2754 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12284 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12610 . . . . . . . 8 4 = 04
115113, 114eqtri 2754 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12654 . . . . . 6 (2 · 12) = 24
117 eqid 2731 . . . . . . . 8 1023 = 1023
11840nn0cni 12393 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11300 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12631 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12288 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11121 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11300 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7358 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12270 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2754 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11303 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7356 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2758 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12641 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7356 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11301 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12610 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2758 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12641 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7356 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12206 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12271 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11305 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12610 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2758 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12641 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12603 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2731 . . . . . . . . 9 47 = 47
14598oveq2i 7357 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12717 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12590 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11305 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12650 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2754 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12713 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11121 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12219 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12665 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11305 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12649 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12640 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12276 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12648 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12691 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12653 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12654 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2757 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 16981 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2731 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12619 . . . . 5 (24 + 1) = 25
16737nn0cni 12393 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11301 . . . . . 6 (0 + 2046) = 2046
1698nncni 12135 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11302 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7356 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2731 . . . . . . . 8 102 = 102
17320dec0u 12609 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12652 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12286 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12652 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2764 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 16982 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7356 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2754 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12688 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11121 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12654 . . . 4 (2 · 25) = 50
184 eqid 2731 . . . . . 6 1070 = 1070
18520, 16deccl 12603 . . . . . . 7 21 ∈ ℕ0
186 eqid 2731 . . . . . . . 8 107 = 107
187 eqid 2731 . . . . . . . 8 104 = 104
188 0p1e1 12242 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12683 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12619 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12664 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12643 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12393 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11300 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2827 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2731 . . . . . . . . 9 1046 = 1046
197 dfdec10 12591 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2740 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12279 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12648 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12646 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7358 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12273 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12648 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2754 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12646 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12393 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11303 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7356 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12610 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2758 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12641 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12641 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11116 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7356 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11300 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2754 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12641 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2731 . . . . . 6 2046 = 2046
22043, 20deccl 12603 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12603 . . . . . 6 1227 ∈ ℕ0
222 eqid 2731 . . . . . . 7 204 = 204
223 eqid 2731 . . . . . . 7 1227 = 1227
22424, 16deccl 12603 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12603 . . . . . . 7 819 ∈ ℕ0
226 eqid 2731 . . . . . . . 8 20 = 20
227 eqid 2731 . . . . . . . . 9 122 = 122
228 eqid 2731 . . . . . . . . 9 819 = 819
229 eqid 2731 . . . . . . . . . . 11 81 = 81
230 8cn 12222 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11305 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12262 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12642 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12619 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12675 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11305 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12643 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12393 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11300 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2827 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11302 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7358 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2754 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12645 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7356 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11300 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12610 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2758 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12640 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11305 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12648 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12640 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11303 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7356 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2758 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12641 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12610 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2827 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11302 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7358 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2754 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12645 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12280 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12648 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12640 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11305 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12649 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12646 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12641 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11302 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7356 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2754 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12645 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12274 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12648 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12646 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12653 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12654 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2757 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 16981 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12393 . . . 4 50 ∈ ℂ
282 eqid 2731 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12652 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11121 . . 3 (2 · 50) = 100
285 eqid 2731 . . . . 5 614 = 614
28620, 12deccl 12603 . . . . 5 29 ∈ ℕ0
287 eqid 2731 . . . . . . 7 61 = 61
288 eqid 2731 . . . . . . 7 29 = 29
289199oveq1i 7356 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2754 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12644 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2827 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2731 . . . . . . . 8 286 = 286
294 eqid 2731 . . . . . . . . 9 28 = 28
295122oveq1i 7356 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12669 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2754 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12705 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12648 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12646 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7358 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12393 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11300 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2754 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12646 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12393 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11303 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7356 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2758 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12641 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7356 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2758 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12641 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11116 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12652 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12619 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11116 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7356 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2754 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12646 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12641 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12603 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12603 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12603 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12603 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12603 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12603 . . . . . . 7 749 ∈ ℕ0
328 eqid 2731 . . . . . . . 8 10 = 10
329 eqid 2731 . . . . . . . 8 749 = 749
330326nn0cni 12393 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11300 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11300 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2827 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12393 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11116 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12619 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11116 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7358 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12667 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2754 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12646 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11302 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7356 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11301 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2758 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12640 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12393 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11303 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7356 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2758 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12641 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12591 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2740 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12702 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12653 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11302 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12652 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12654 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12648 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2754 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12654 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2757 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 16981 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12393 . . 3 100 ∈ ℂ
365 eqid 2731 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12652 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11121 . 2 (2 · 100) = 200
368 eqid 2731 . . . 4 902 = 902
369 eqid 2731 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12648 . . . . 5 (90 + 9) = 99
371 eqid 2731 . . . . . . 7 94 = 94
372 6p1e7 12268 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12712 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12619 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7358 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12603 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12393 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11300 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2754 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12646 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11303 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7356 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2758 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12641 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12641 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11116 . . . . 5 (9 · 1) = 9
38764mulridi 11116 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7356 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2754 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12645 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12641 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12603 . . . 4 245 ∈ ℕ0
393 eqid 2731 . . . . 5 245 = 245
39450, 51, 199addcomli 11305 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12642 . . . . . 6 (24 + 61) = 85
396 8p2e10 12668 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12619 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11117 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7356 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11300 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2754 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12639 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12640 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12652 . . . . . 6 (61 · 1) = 61
405387oveq1i 7356 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2754 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12645 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12641 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7356 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2754 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12645 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12653 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12654 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2757 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 16981 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  7c7 12185  8c8 12186  9c9 12187  0cn0 12381  cdc 12588   mod cmo 13773  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969
This theorem is referenced by:  4001lem2  17053  4001lem3  17054
  Copyright terms: Public domain W3C validator