MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   GIF version

Theorem 4001lem1 17070
Description: Lemma for 4001prm 17074. Calculate a power mod. In decimal, we calculate 2↑12 = 4096 = 𝑁 + 95, 2↑24 = (2↑12)↑2≡95↑2 = 2𝑁 + 1023, 2↑25 = 2↑24 · 2≡1023 · 2 = 2046, 2↑50 = (2↑25)↑2≡2046↑2 = 1046𝑁 + 1070, 2↑100 = (2↑50)↑2≡1070↑2 = 286𝑁 + 614 and 2↑200 = (2↑100)↑2≡614↑2 = 94𝑁 + 902 ≡902. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1 𝑁 = 4001
Assertion
Ref Expression
4001lem1 ((2↑200) mod 𝑁) = (902 mod 𝑁)

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3 𝑁 = 4001
2 4nn0 12487 . . . . . 6 4 ∈ ℕ0
3 0nn0 12483 . . . . . 6 0 ∈ ℕ0
42, 3deccl 12688 . . . . 5 40 ∈ ℕ0
54, 3deccl 12688 . . . 4 400 ∈ ℕ0
6 1nn 12219 . . . 4 1 ∈ ℕ
75, 6decnncl 12693 . . 3 4001 ∈ ℕ
81, 7eqeltri 2821 . 2 𝑁 ∈ ℕ
9 2nn 12281 . 2 2 ∈ ℕ
10 10nn0 12691 . . 3 10 ∈ ℕ0
1110, 3deccl 12688 . 2 100 ∈ ℕ0
12 9nn0 12492 . . . 4 9 ∈ ℕ0
1312, 2deccl 12688 . . 3 94 ∈ ℕ0
1413nn0zi 12583 . 2 94 ∈ ℤ
15 6nn0 12489 . . . 4 6 ∈ ℕ0
16 1nn0 12484 . . . 4 1 ∈ ℕ0
1715, 16deccl 12688 . . 3 61 ∈ ℕ0
1817, 2deccl 12688 . 2 614 ∈ ℕ0
1912, 3deccl 12688 . . 3 90 ∈ ℕ0
20 2nn0 12485 . . 3 2 ∈ ℕ0
2119, 20deccl 12688 . 2 902 ∈ ℕ0
22 5nn0 12488 . . . 4 5 ∈ ℕ0
2322, 3deccl 12688 . . 3 50 ∈ ℕ0
24 8nn0 12491 . . . . . 6 8 ∈ ℕ0
2520, 24deccl 12688 . . . . 5 28 ∈ ℕ0
2625, 15deccl 12688 . . . 4 286 ∈ ℕ0
2726nn0zi 12583 . . 3 286 ∈ ℤ
28 7nn0 12490 . . . . 5 7 ∈ ℕ0
2910, 28deccl 12688 . . . 4 107 ∈ ℕ0
3029, 3deccl 12688 . . 3 1070 ∈ ℕ0
3120, 22deccl 12688 . . . 4 25 ∈ ℕ0
3210, 2deccl 12688 . . . . . 6 104 ∈ ℕ0
3332, 15deccl 12688 . . . . 5 1046 ∈ ℕ0
3433nn0zi 12583 . . . 4 1046 ∈ ℤ
3520, 3deccl 12688 . . . . . 6 20 ∈ ℕ0
3635, 2deccl 12688 . . . . 5 204 ∈ ℕ0
3736, 15deccl 12688 . . . 4 2046 ∈ ℕ0
3820, 2deccl 12688 . . . . 5 24 ∈ ℕ0
39 0z 12565 . . . . 5 0 ∈ ℤ
4010, 20deccl 12688 . . . . . 6 102 ∈ ℕ0
41 3nn0 12486 . . . . . 6 3 ∈ ℕ0
4240, 41deccl 12688 . . . . 5 1023 ∈ ℕ0
4316, 20deccl 12688 . . . . . 6 12 ∈ ℕ0
44 2z 12590 . . . . . 6 2 ∈ ℤ
4512, 22deccl 12688 . . . . . 6 95 ∈ ℕ0
46 1z 12588 . . . . . . 7 1 ∈ ℤ
4715, 2deccl 12688 . . . . . . 7 64 ∈ ℕ0
48 2exp6 17016 . . . . . . . 8 (2↑6) = 64
4948oveq1i 7411 . . . . . . 7 ((2↑6) mod 𝑁) = (64 mod 𝑁)
50 6cn 12299 . . . . . . . 8 6 ∈ ℂ
51 2cn 12283 . . . . . . . 8 2 ∈ ℂ
52 6t2e12 12777 . . . . . . . 8 (6 · 2) = 12
5350, 51, 52mulcomli 11219 . . . . . . 7 (2 · 6) = 12
54 eqid 2724 . . . . . . . . 9 95 = 95
55 eqid 2724 . . . . . . . . . 10 400 = 400
56 9cn 12308 . . . . . . . . . . . 12 9 ∈ ℂ
5756addridi 11397 . . . . . . . . . . 11 (9 + 0) = 9
5812dec0h 12695 . . . . . . . . . . 11 9 = 09
5957, 58eqtri 2752 . . . . . . . . . 10 (9 + 0) = 09
60 eqid 2724 . . . . . . . . . . 11 40 = 40
61 00id 11385 . . . . . . . . . . . 12 (0 + 0) = 0
623dec0h 12695 . . . . . . . . . . . 12 0 = 00
6361, 62eqtri 2752 . . . . . . . . . . 11 (0 + 0) = 00
64 4cn 12293 . . . . . . . . . . . . . 14 4 ∈ ℂ
6564mullidi 11215 . . . . . . . . . . . . 13 (1 · 4) = 4
6665, 61oveq12i 7413 . . . . . . . . . . . 12 ((1 · 4) + (0 + 0)) = (4 + 0)
6764addridi 11397 . . . . . . . . . . . 12 (4 + 0) = 4
6866, 67eqtri 2752 . . . . . . . . . . 11 ((1 · 4) + (0 + 0)) = 4
69 ax-1cn 11163 . . . . . . . . . . . . . 14 1 ∈ ℂ
7069mul01i 11400 . . . . . . . . . . . . 13 (1 · 0) = 0
7170oveq1i 7411 . . . . . . . . . . . 12 ((1 · 0) + 0) = (0 + 0)
7271, 61, 623eqtri 2756 . . . . . . . . . . 11 ((1 · 0) + 0) = 00
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 12726 . . . . . . . . . 10 ((1 · 40) + (0 + 0)) = 40
7470oveq1i 7411 . . . . . . . . . . 11 ((1 · 0) + 9) = (0 + 9)
7556addlidi 11398 . . . . . . . . . . 11 (0 + 9) = 9
7674, 75, 583eqtri 2756 . . . . . . . . . 10 ((1 · 0) + 9) = 09
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 12726 . . . . . . . . 9 ((1 · 400) + (9 + 0)) = 409
7869mulridi 11214 . . . . . . . . . . 11 (1 · 1) = 1
7978oveq1i 7411 . . . . . . . . . 10 ((1 · 1) + 5) = (1 + 5)
80 5cn 12296 . . . . . . . . . . 11 5 ∈ ℂ
81 5p1e6 12355 . . . . . . . . . . 11 (5 + 1) = 6
8280, 69, 81addcomli 11402 . . . . . . . . . 10 (1 + 5) = 6
8315dec0h 12695 . . . . . . . . . 10 6 = 06
8479, 82, 833eqtri 2756 . . . . . . . . 9 ((1 · 1) + 5) = 06
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 12726 . . . . . . . 8 ((1 · 𝑁) + 95) = 4096
86 eqid 2724 . . . . . . . . 9 64 = 64
87 eqid 2724 . . . . . . . . . 10 25 = 25
88 2p2e4 12343 . . . . . . . . . . . 12 (2 + 2) = 4
8988oveq2i 7412 . . . . . . . . . . 11 ((6 · 6) + (2 + 2)) = ((6 · 6) + 4)
90 6t6e36 12781 . . . . . . . . . . . 12 (6 · 6) = 36
91 3p1e4 12353 . . . . . . . . . . . 12 (3 + 1) = 4
92 6p4e10 12745 . . . . . . . . . . . 12 (6 + 4) = 10
9341, 15, 2, 90, 91, 92decaddci2 12735 . . . . . . . . . . 11 ((6 · 6) + 4) = 40
9489, 93eqtri 2752 . . . . . . . . . 10 ((6 · 6) + (2 + 2)) = 40
95 6t4e24 12779 . . . . . . . . . . . 12 (6 · 4) = 24
9650, 64, 95mulcomli 11219 . . . . . . . . . . 11 (4 · 6) = 24
97 5p4e9 12366 . . . . . . . . . . . 12 (5 + 4) = 9
9880, 64, 97addcomli 11402 . . . . . . . . . . 11 (4 + 5) = 9
9920, 2, 22, 96, 98decaddi 12733 . . . . . . . . . 10 ((4 · 6) + 5) = 29
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 12725 . . . . . . . . 9 ((64 · 6) + 25) = 409
101 4p1e5 12354 . . . . . . . . . . 11 (4 + 1) = 5
10220, 2, 101, 95decsuc 12704 . . . . . . . . . 10 ((6 · 4) + 1) = 25
103 4t4e16 12772 . . . . . . . . . 10 (4 · 4) = 16
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 12738 . . . . . . . . 9 (64 · 4) = 256
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 12739 . . . . . . . 8 (64 · 64) = 4096
10685, 105eqtr4i 2755 . . . . . . 7 ((1 · 𝑁) + 95) = (64 · 64)
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 16998 . . . . . 6 ((2↑12) mod 𝑁) = (95 mod 𝑁)
108 eqid 2724 . . . . . . 7 12 = 12
10951mulridi 11214 . . . . . . . . 9 (2 · 1) = 2
110109oveq1i 7411 . . . . . . . 8 ((2 · 1) + 0) = (2 + 0)
11151addridi 11397 . . . . . . . 8 (2 + 0) = 2
112110, 111eqtri 2752 . . . . . . 7 ((2 · 1) + 0) = 2
113 2t2e4 12372 . . . . . . . 8 (2 · 2) = 4
1142dec0h 12695 . . . . . . . 8 4 = 04
115113, 114eqtri 2752 . . . . . . 7 (2 · 2) = 04
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 12739 . . . . . 6 (2 · 12) = 24
117 eqid 2724 . . . . . . . 8 1023 = 1023
11840nn0cni 12480 . . . . . . . . . 10 102 ∈ ℂ
119118addridi 11397 . . . . . . . . 9 (102 + 0) = 102
120 dec10p 12716 . . . . . . . . . 10 (10 + 0) = 10
121 4t2e8 12376 . . . . . . . . . . . . 13 (4 · 2) = 8
12264, 51, 121mulcomli 11219 . . . . . . . . . . . 12 (2 · 4) = 8
12369addridi 11397 . . . . . . . . . . . 12 (1 + 0) = 1
124122, 123oveq12i 7413 . . . . . . . . . . 11 ((2 · 4) + (1 + 0)) = (8 + 1)
125 8p1e9 12358 . . . . . . . . . . 11 (8 + 1) = 9
126124, 125eqtri 2752 . . . . . . . . . 10 ((2 · 4) + (1 + 0)) = 9
12751mul01i 11400 . . . . . . . . . . . 12 (2 · 0) = 0
128127oveq1i 7411 . . . . . . . . . . 11 ((2 · 0) + 0) = (0 + 0)
129128, 61, 623eqtri 2756 . . . . . . . . . 10 ((2 · 0) + 0) = 00
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 12726 . . . . . . . . 9 ((2 · 40) + (10 + 0)) = 90
131127oveq1i 7411 . . . . . . . . . 10 ((2 · 0) + 2) = (0 + 2)
13251addlidi 11398 . . . . . . . . . 10 (0 + 2) = 2
13320dec0h 12695 . . . . . . . . . 10 2 = 02
134131, 132, 1333eqtri 2756 . . . . . . . . 9 ((2 · 0) + 2) = 02
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 12726 . . . . . . . 8 ((2 · 400) + (102 + 0)) = 902
136109oveq1i 7411 . . . . . . . . 9 ((2 · 1) + 3) = (2 + 3)
137 3cn 12289 . . . . . . . . . 10 3 ∈ ℂ
138 3p2e5 12359 . . . . . . . . . 10 (3 + 2) = 5
139137, 51, 138addcomli 11402 . . . . . . . . 9 (2 + 3) = 5
14022dec0h 12695 . . . . . . . . 9 5 = 05
141136, 139, 1403eqtri 2756 . . . . . . . 8 ((2 · 1) + 3) = 05
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 12726 . . . . . . 7 ((2 · 𝑁) + 1023) = 9025
1432, 28deccl 12688 . . . . . . . 8 47 ∈ ℕ0
144 eqid 2724 . . . . . . . . 9 47 = 47
14598oveq2i 7412 . . . . . . . . . 10 ((9 · 9) + (4 + 5)) = ((9 · 9) + 9)
146 9t9e81 12802 . . . . . . . . . . 11 (9 · 9) = 81
147 9p1e10 12675 . . . . . . . . . . . 12 (9 + 1) = 10
14856, 69, 147addcomli 11402 . . . . . . . . . . 11 (1 + 9) = 10
14924, 16, 12, 146, 125, 148decaddci2 12735 . . . . . . . . . 10 ((9 · 9) + 9) = 90
150145, 149eqtri 2752 . . . . . . . . 9 ((9 · 9) + (4 + 5)) = 90
151 9t5e45 12798 . . . . . . . . . . 11 (9 · 5) = 45
15256, 80, 151mulcomli 11219 . . . . . . . . . 10 (5 · 9) = 45
153 7cn 12302 . . . . . . . . . . 11 7 ∈ ℂ
154 7p5e12 12750 . . . . . . . . . . 11 (7 + 5) = 12
155153, 80, 154addcomli 11402 . . . . . . . . . 10 (5 + 7) = 12
1562, 22, 28, 152, 101, 20, 155decaddci 12734 . . . . . . . . 9 ((5 · 9) + 7) = 52
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 12725 . . . . . . . 8 ((95 · 9) + 47) = 902
158 5p2e7 12364 . . . . . . . . . 10 (5 + 2) = 7
1592, 22, 20, 151, 158decaddi 12733 . . . . . . . . 9 ((9 · 5) + 2) = 47
160 5t5e25 12776 . . . . . . . . 9 (5 · 5) = 25
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 12738 . . . . . . . 8 (95 · 5) = 475
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 12739 . . . . . . 7 (95 · 95) = 9025
163142, 162eqtr4i 2755 . . . . . 6 ((2 · 𝑁) + 1023) = (95 · 95)
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 16998 . . . . 5 ((2↑24) mod 𝑁) = (1023 mod 𝑁)
165 eqid 2724 . . . . . 6 24 = 24
16620, 2, 101, 165decsuc 12704 . . . . 5 (24 + 1) = 25
16737nn0cni 12480 . . . . . . 7 2046 ∈ ℂ
168167addlidi 11398 . . . . . 6 (0 + 2046) = 2046
1698nncni 12218 . . . . . . . 8 𝑁 ∈ ℂ
170169mul02i 11399 . . . . . . 7 (0 · 𝑁) = 0
171170oveq1i 7411 . . . . . 6 ((0 · 𝑁) + 2046) = (0 + 2046)
172 eqid 2724 . . . . . . . 8 102 = 102
17320dec0u 12694 . . . . . . . 8 (10 · 2) = 20
17420, 10, 20, 172, 173, 113decmul1 12737 . . . . . . 7 (102 · 2) = 204
175 3t2e6 12374 . . . . . . 7 (3 · 2) = 6
17620, 40, 41, 117, 174, 175decmul1 12737 . . . . . 6 (1023 · 2) = 2046
177168, 171, 1763eqtr4i 2762 . . . . 5 ((0 · 𝑁) + 2046) = (1023 · 2)
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 16999 . . . 4 ((2↑25) mod 𝑁) = (2046 mod 𝑁)
179113oveq1i 7411 . . . . . 6 ((2 · 2) + 1) = (4 + 1)
180179, 101eqtri 2752 . . . . 5 ((2 · 2) + 1) = 5
181 5t2e10 12773 . . . . . 6 (5 · 2) = 10
18280, 51, 181mulcomli 11219 . . . . 5 (2 · 5) = 10
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 12739 . . . 4 (2 · 25) = 50
184 eqid 2724 . . . . . 6 1070 = 1070
18520, 16deccl 12688 . . . . . . 7 21 ∈ ℕ0
186 eqid 2724 . . . . . . . 8 107 = 107
187 eqid 2724 . . . . . . . 8 104 = 104
188 0p1e1 12330 . . . . . . . . 9 (0 + 1) = 1
189 10p10e20 12768 . . . . . . . . 9 (10 + 10) = 20
19020, 3, 188, 189decsuc 12704 . . . . . . . 8 ((10 + 10) + 1) = 21
191 7p4e11 12749 . . . . . . . 8 (7 + 4) = 11
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 12728 . . . . . . 7 (107 + 104) = 211
193185nn0cni 12480 . . . . . . . . 9 21 ∈ ℂ
194193addridi 11397 . . . . . . . 8 (21 + 0) = 21
195111, 20eqeltri 2821 . . . . . . . . 9 (2 + 0) ∈ ℕ0
196 eqid 2724 . . . . . . . . 9 1046 = 1046
197 dfdec10 12676 . . . . . . . . . . 11 41 = ((10 · 4) + 1)
198197eqcomi 2733 . . . . . . . . . 10 ((10 · 4) + 1) = 41
199 6p2e8 12367 . . . . . . . . . . 11 (6 + 2) = 8
20016, 15, 20, 103, 199decaddi 12733 . . . . . . . . . 10 ((4 · 4) + 2) = 18
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 12731 . . . . . . . . 9 ((104 · 4) + 2) = 418
20295, 111oveq12i 7413 . . . . . . . . . 10 ((6 · 4) + (2 + 0)) = (24 + 2)
203 4p2e6 12361 . . . . . . . . . . 11 (4 + 2) = 6
20420, 2, 20, 165, 203decaddi 12733 . . . . . . . . . 10 (24 + 2) = 26
205202, 204eqtri 2752 . . . . . . . . 9 ((6 · 4) + (2 + 0)) = 26
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 12731 . . . . . . . 8 ((1046 · 4) + (2 + 0)) = 4186
20733nn0cni 12480 . . . . . . . . . . 11 1046 ∈ ℂ
208207mul01i 11400 . . . . . . . . . 10 (1046 · 0) = 0
209208oveq1i 7411 . . . . . . . . 9 ((1046 · 0) + 1) = (0 + 1)
21016dec0h 12695 . . . . . . . . 9 1 = 01
211209, 188, 2103eqtri 2756 . . . . . . . 8 ((1046 · 0) + 1) = 01
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 12726 . . . . . . 7 ((1046 · 40) + (21 + 0)) = 41861
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 12726 . . . . . 6 ((1046 · 400) + (107 + 104)) = 418611
214207mulridi 11214 . . . . . . . 8 (1046 · 1) = 1046
215214oveq1i 7411 . . . . . . 7 ((1046 · 1) + 0) = (1046 + 0)
216207addridi 11397 . . . . . . 7 (1046 + 0) = 1046
217215, 216eqtri 2752 . . . . . 6 ((1046 · 1) + 0) = 1046
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 12726 . . . . 5 ((1046 · 𝑁) + 1070) = 4186116
219 eqid 2724 . . . . . 6 2046 = 2046
22043, 20deccl 12688 . . . . . . 7 122 ∈ ℕ0
221220, 28deccl 12688 . . . . . 6 1227 ∈ ℕ0
222 eqid 2724 . . . . . . 7 204 = 204
223 eqid 2724 . . . . . . 7 1227 = 1227
22424, 16deccl 12688 . . . . . . . 8 81 ∈ ℕ0
225224, 12deccl 12688 . . . . . . 7 819 ∈ ℕ0
226 eqid 2724 . . . . . . . 8 20 = 20
227 eqid 2724 . . . . . . . . 9 122 = 122
228 eqid 2724 . . . . . . . . 9 819 = 819
229 eqid 2724 . . . . . . . . . . 11 81 = 81
230 8cn 12305 . . . . . . . . . . . 12 8 ∈ ℂ
231230, 69, 125addcomli 11402 . . . . . . . . . . 11 (1 + 8) = 9
232 2p1e3 12350 . . . . . . . . . . 11 (2 + 1) = 3
23316, 20, 24, 16, 108, 229, 231, 232decadd 12727 . . . . . . . . . 10 (12 + 81) = 93
23412, 41, 91, 233decsuc 12704 . . . . . . . . 9 ((12 + 81) + 1) = 94
235 9p2e11 12760 . . . . . . . . . 10 (9 + 2) = 11
23656, 51, 235addcomli 11402 . . . . . . . . 9 (2 + 9) = 11
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 12728 . . . . . . . 8 (122 + 819) = 941
23813nn0cni 12480 . . . . . . . . . 10 94 ∈ ℂ
239238addridi 11397 . . . . . . . . 9 (94 + 0) = 94
240123, 16eqeltri 2821 . . . . . . . . . . 11 (1 + 0) ∈ ℕ0
24151mul02i 11399 . . . . . . . . . . . . 13 (0 · 2) = 0
242241, 123oveq12i 7413 . . . . . . . . . . . 12 ((0 · 2) + (1 + 0)) = (0 + 1)
243242, 188eqtri 2752 . . . . . . . . . . 11 ((0 · 2) + (1 + 0)) = 1
24420, 3, 240, 226, 20, 113, 243decrmanc 12730 . . . . . . . . . 10 ((20 · 2) + (1 + 0)) = 41
245121oveq1i 7411 . . . . . . . . . . 11 ((4 · 2) + 0) = (8 + 0)
246230addridi 11397 . . . . . . . . . . 11 (8 + 0) = 8
24724dec0h 12695 . . . . . . . . . . 11 8 = 08
248245, 246, 2473eqtri 2756 . . . . . . . . . 10 ((4 · 2) + 0) = 08
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 12725 . . . . . . . . 9 ((204 · 2) + (9 + 1)) = 418
25064, 51, 203addcomli 11402 . . . . . . . . . 10 (2 + 4) = 6
25116, 20, 2, 52, 250decaddi 12733 . . . . . . . . 9 ((6 · 2) + 4) = 16
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 12725 . . . . . . . 8 ((2046 · 2) + (94 + 0)) = 4186
253167mul01i 11400 . . . . . . . . . 10 (2046 · 0) = 0
254253oveq1i 7411 . . . . . . . . 9 ((2046 · 0) + 1) = (0 + 1)
255254, 188, 2103eqtri 2756 . . . . . . . 8 ((2046 · 0) + 1) = 01
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 12726 . . . . . . 7 ((2046 · 20) + (122 + 819)) = 41861
25741dec0h 12695 . . . . . . . . 9 3 = 03
258188, 16eqeltri 2821 . . . . . . . . . 10 (0 + 1) ∈ ℕ0
25964mul02i 11399 . . . . . . . . . . . 12 (0 · 4) = 0
260259, 188oveq12i 7413 . . . . . . . . . . 11 ((0 · 4) + (0 + 1)) = (0 + 1)
261260, 188eqtri 2752 . . . . . . . . . 10 ((0 · 4) + (0 + 1)) = 1
26220, 3, 258, 226, 2, 122, 261decrmanc 12730 . . . . . . . . 9 ((20 · 4) + (0 + 1)) = 81
263 6p3e9 12368 . . . . . . . . . 10 (6 + 3) = 9
26416, 15, 41, 103, 263decaddi 12733 . . . . . . . . 9 ((4 · 4) + 3) = 19
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 12725 . . . . . . . 8 ((204 · 4) + 3) = 819
266153, 64, 191addcomli 11402 . . . . . . . . 9 (4 + 7) = 11
26720, 2, 28, 95, 232, 16, 266decaddci 12734 . . . . . . . 8 ((6 · 4) + 7) = 31
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 12731 . . . . . . 7 ((2046 · 4) + 7) = 8191
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 12726 . . . . . 6 ((2046 · 204) + 1227) = 418611
27050mul02i 11399 . . . . . . . . . . 11 (0 · 6) = 0
271270oveq1i 7411 . . . . . . . . . 10 ((0 · 6) + 2) = (0 + 2)
272271, 132eqtri 2752 . . . . . . . . 9 ((0 · 6) + 2) = 2
27320, 3, 20, 226, 15, 53, 272decrmanc 12730 . . . . . . . 8 ((20 · 6) + 2) = 122
274 4p3e7 12362 . . . . . . . . 9 (4 + 3) = 7
27520, 2, 41, 96, 274decaddi 12733 . . . . . . . 8 ((4 · 6) + 3) = 27
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 12731 . . . . . . 7 ((204 · 6) + 3) = 1227
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 12738 . . . . . 6 (2046 · 6) = 12276
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 12739 . . . . 5 (2046 · 2046) = 4186116
279218, 278eqtr4i 2755 . . . 4 ((1046 · 𝑁) + 1070) = (2046 · 2046)
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 16998 . . 3 ((2↑50) mod 𝑁) = (1070 mod 𝑁)
28123nn0cni 12480 . . . 4 50 ∈ ℂ
282 eqid 2724 . . . . 5 50 = 50
28320, 22, 3, 282, 181, 241decmul1 12737 . . . 4 (50 · 2) = 100
284281, 51, 283mulcomli 11219 . . 3 (2 · 50) = 100
285 eqid 2724 . . . . 5 614 = 614
28620, 12deccl 12688 . . . . 5 29 ∈ ℕ0
287 eqid 2724 . . . . . . 7 61 = 61
288 eqid 2724 . . . . . . 7 29 = 29
289199oveq1i 7411 . . . . . . . 8 ((6 + 2) + 1) = (8 + 1)
290289, 125eqtri 2752 . . . . . . 7 ((6 + 2) + 1) = 9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 12729 . . . . . 6 (61 + 29) = 90
29261, 3eqeltri 2821 . . . . . . . 8 (0 + 0) ∈ ℕ0
293 eqid 2724 . . . . . . . 8 286 = 286
294 eqid 2724 . . . . . . . . 9 28 = 28
295122oveq1i 7411 . . . . . . . . . 10 ((2 · 4) + 3) = (8 + 3)
296 8p3e11 12754 . . . . . . . . . 10 (8 + 3) = 11
297295, 296eqtri 2752 . . . . . . . . 9 ((2 · 4) + 3) = 11
298 8t4e32 12790 . . . . . . . . . 10 (8 · 4) = 32
29941, 20, 20, 298, 88decaddi 12733 . . . . . . . . 9 ((8 · 4) + 2) = 34
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 12731 . . . . . . . 8 ((28 · 4) + 2) = 114
30195, 61oveq12i 7413 . . . . . . . . 9 ((6 · 4) + (0 + 0)) = (24 + 0)
30238nn0cni 12480 . . . . . . . . . 10 24 ∈ ℂ
303302addridi 11397 . . . . . . . . 9 (24 + 0) = 24
304301, 303eqtri 2752 . . . . . . . 8 ((6 · 4) + (0 + 0)) = 24
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 12731 . . . . . . 7 ((286 · 4) + (0 + 0)) = 1144
30626nn0cni 12480 . . . . . . . . . 10 286 ∈ ℂ
307306mul01i 11400 . . . . . . . . 9 (286 · 0) = 0
308307oveq1i 7411 . . . . . . . 8 ((286 · 0) + 9) = (0 + 9)
309308, 75, 583eqtri 2756 . . . . . . 7 ((286 · 0) + 9) = 09
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 12726 . . . . . 6 ((286 · 40) + (9 + 0)) = 11449
311307oveq1i 7411 . . . . . . 7 ((286 · 0) + 0) = (0 + 0)
312311, 61, 623eqtri 2756 . . . . . 6 ((286 · 0) + 0) = 00
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 12726 . . . . 5 ((286 · 400) + (61 + 29)) = 114490
314230mulridi 11214 . . . . . . . 8 (8 · 1) = 8
31516, 20, 24, 294, 109, 314decmul1 12737 . . . . . . 7 (28 · 1) = 28
31620, 24, 125, 315decsuc 12704 . . . . . 6 ((28 · 1) + 1) = 29
31750mulridi 11214 . . . . . . . 8 (6 · 1) = 6
318317oveq1i 7411 . . . . . . 7 ((6 · 1) + 4) = (6 + 4)
319318, 92eqtri 2752 . . . . . 6 ((6 · 1) + 4) = 10
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 12731 . . . . 5 ((286 · 1) + 4) = 290
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 12726 . . . 4 ((286 · 𝑁) + 614) = 1144900
32216, 16deccl 12688 . . . . . . . . 9 11 ∈ ℕ0
323322, 2deccl 12688 . . . . . . . 8 114 ∈ ℕ0
324323, 2deccl 12688 . . . . . . 7 1144 ∈ ℕ0
325324, 12deccl 12688 . . . . . 6 11449 ∈ ℕ0
32628, 2deccl 12688 . . . . . . . 8 74 ∈ ℕ0
327326, 12deccl 12688 . . . . . . 7 749 ∈ ℕ0
328 eqid 2724 . . . . . . . 8 10 = 10
329 eqid 2724 . . . . . . . 8 749 = 749
330326nn0cni 12480 . . . . . . . . . 10 74 ∈ ℂ
331330addridi 11397 . . . . . . . . 9 (74 + 0) = 74
332153addridi 11397 . . . . . . . . . . 11 (7 + 0) = 7
333332, 28eqeltri 2821 . . . . . . . . . 10 (7 + 0) ∈ ℕ0
33410nn0cni 12480 . . . . . . . . . . . 12 10 ∈ ℂ
335334mulridi 11214 . . . . . . . . . . 11 (10 · 1) = 10
33616, 3, 188, 335decsuc 12704 . . . . . . . . . 10 ((10 · 1) + 1) = 11
337153mulridi 11214 . . . . . . . . . . . 12 (7 · 1) = 7
338337, 332oveq12i 7413 . . . . . . . . . . 11 ((7 · 1) + (7 + 0)) = (7 + 7)
339 7p7e14 12752 . . . . . . . . . . 11 (7 + 7) = 14
340338, 339eqtri 2752 . . . . . . . . . 10 ((7 · 1) + (7 + 0)) = 14
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 12731 . . . . . . . . 9 ((107 · 1) + (7 + 0)) = 114
34269mul02i 11399 . . . . . . . . . . 11 (0 · 1) = 0
343342oveq1i 7411 . . . . . . . . . 10 ((0 · 1) + 4) = (0 + 4)
34464addlidi 11398 . . . . . . . . . 10 (0 + 4) = 4
345343, 344, 1143eqtri 2756 . . . . . . . . 9 ((0 · 1) + 4) = 04
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 12725 . . . . . . . 8 ((1070 · 1) + (74 + 0)) = 1144
34730nn0cni 12480 . . . . . . . . . . 11 1070 ∈ ℂ
348347mul01i 11400 . . . . . . . . . 10 (1070 · 0) = 0
349348oveq1i 7411 . . . . . . . . 9 ((1070 · 0) + 9) = (0 + 9)
350349, 75, 583eqtri 2756 . . . . . . . 8 ((1070 · 0) + 9) = 09
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 12726 . . . . . . 7 ((1070 · 10) + 749) = 11449
352 dfdec10 12676 . . . . . . . . . 10 74 = ((10 · 7) + 4)
353352eqcomi 2733 . . . . . . . . 9 ((10 · 7) + 4) = 74
354 7t7e49 12787 . . . . . . . . 9 (7 · 7) = 49
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 12738 . . . . . . . 8 (107 · 7) = 749
356153mul02i 11399 . . . . . . . 8 (0 · 7) = 0
35728, 29, 3, 184, 355, 356decmul1 12737 . . . . . . 7 (1070 · 7) = 7490
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 12739 . . . . . 6 (1070 · 107) = 114490
359325, 3, 3, 358, 61decaddi 12733 . . . . 5 ((1070 · 107) + 0) = 114490
360348, 62eqtri 2752 . . . . 5 (1070 · 0) = 00
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 12739 . . . 4 (1070 · 1070) = 1144900
362321, 361eqtr4i 2755 . . 3 ((286 · 𝑁) + 614) = (1070 · 1070)
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 16998 . 2 ((2↑100) mod 𝑁) = (614 mod 𝑁)
36411nn0cni 12480 . . 3 100 ∈ ℂ
365 eqid 2724 . . . 4 100 = 100
36620, 10, 3, 365, 173, 241decmul1 12737 . . 3 (100 · 2) = 200
367364, 51, 366mulcomli 11219 . 2 (2 · 100) = 200
368 eqid 2724 . . . 4 902 = 902
369 eqid 2724 . . . . . 6 90 = 90
37012, 3, 12, 369, 75decaddi 12733 . . . . 5 (90 + 9) = 99
371 eqid 2724 . . . . . . 7 94 = 94
372 6p1e7 12356 . . . . . . . 8 (6 + 1) = 7
373 9t4e36 12797 . . . . . . . 8 (9 · 4) = 36
37441, 15, 372, 373decsuc 12704 . . . . . . 7 ((9 · 4) + 1) = 37
375103, 61oveq12i 7413 . . . . . . . 8 ((4 · 4) + (0 + 0)) = (16 + 0)
37616, 15deccl 12688 . . . . . . . . . 10 16 ∈ ℕ0
377376nn0cni 12480 . . . . . . . . 9 16 ∈ ℂ
378377addridi 11397 . . . . . . . 8 (16 + 0) = 16
379375, 378eqtri 2752 . . . . . . 7 ((4 · 4) + (0 + 0)) = 16
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 12731 . . . . . 6 ((94 · 4) + (0 + 0)) = 376
381238mul01i 11400 . . . . . . . 8 (94 · 0) = 0
382381oveq1i 7411 . . . . . . 7 ((94 · 0) + 9) = (0 + 9)
383382, 75, 583eqtri 2756 . . . . . 6 ((94 · 0) + 9) = 09
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 12726 . . . . 5 ((94 · 40) + (9 + 0)) = 3769
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 12726 . . . 4 ((94 · 400) + (90 + 9)) = 37699
38656mulridi 11214 . . . . 5 (9 · 1) = 9
38764mulridi 11214 . . . . . . 7 (4 · 1) = 4
388387oveq1i 7411 . . . . . 6 ((4 · 1) + 2) = (4 + 2)
389388, 203eqtri 2752 . . . . 5 ((4 · 1) + 2) = 6
39012, 2, 20, 371, 16, 386, 389decrmanc 12730 . . . 4 ((94 · 1) + 2) = 96
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 12726 . . 3 ((94 · 𝑁) + 902) = 376996
39238, 22deccl 12688 . . . 4 245 ∈ ℕ0
393 eqid 2724 . . . . 5 245 = 245
39450, 51, 199addcomli 11402 . . . . . . 7 (2 + 6) = 8
39520, 2, 15, 16, 165, 287, 394, 101decadd 12727 . . . . . 6 (24 + 61) = 85
396 8p2e10 12753 . . . . . . 7 (8 + 2) = 10
39741, 15, 372, 90decsuc 12704 . . . . . . 7 ((6 · 6) + 1) = 37
39850mullidi 11215 . . . . . . . . 9 (1 · 6) = 6
399398oveq1i 7411 . . . . . . . 8 ((1 · 6) + 0) = (6 + 0)
40050addridi 11397 . . . . . . . 8 (6 + 0) = 6
401399, 400eqtri 2752 . . . . . . 7 ((1 · 6) + 0) = 6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 12724 . . . . . 6 ((61 · 6) + (8 + 2)) = 376
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 12725 . . . . 5 ((614 · 6) + (24 + 61)) = 3769
40416, 15, 16, 287, 317, 78decmul1 12737 . . . . . 6 (61 · 1) = 61
405387oveq1i 7411 . . . . . . 7 ((4 · 1) + 5) = (4 + 5)
406405, 98eqtri 2752 . . . . . 6 ((4 · 1) + 5) = 9
40717, 2, 22, 285, 16, 404, 406decrmanc 12730 . . . . 5 ((614 · 1) + 5) = 619
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 12726 . . . 4 ((614 · 61) + 245) = 37699
40965oveq1i 7411 . . . . . . 7 ((1 · 4) + 1) = (4 + 1)
410409, 101eqtri 2752 . . . . . 6 ((1 · 4) + 1) = 5
41115, 16, 16, 287, 2, 95, 410decrmanc 12730 . . . . 5 ((61 · 4) + 1) = 245
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 12738 . . . 4 (614 · 4) = 2456
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 12739 . . 3 (614 · 614) = 376996
414391, 413eqtr4i 2755 . 2 ((94 · 𝑁) + 902) = (614 · 614)
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 16998 1 ((2↑200) mod 𝑁) = (902 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7401  0cc0 11105  1c1 11106   + caddc 11108   · cmul 11110  cn 12208  2c2 12263  3c3 12264  4c4 12265  5c5 12266  6c6 12267  7c7 12268  8c8 12269  9c9 12270  0cn0 12468  cdc 12673   mod cmo 13830  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024
This theorem is referenced by:  4001lem2  17071  4001lem3  17072
  Copyright terms: Public domain W3C validator