![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version |
Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
Ref | Expression |
---|---|
sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12503 | . . 3 ⊢ 9 ∈ ℕ0 | |
2 | sumcubes 41526 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
4 | arisum 15813 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
6 | 8nn0 12502 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 12495 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
8 | sq9 41519 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
9 | 8p1e9 12369 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
10 | 9cn 12319 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
11 | ax-1cn 11174 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
12 | 9p1e10 12686 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
13 | 10, 11, 12 | addcomli 11413 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
14 | 6, 7, 1, 8, 9, 13 | decaddci2 12746 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
15 | 2nn0 12496 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
16 | 4nn0 12498 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
17 | 5nn0 12499 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
18 | eqid 2731 | . . . . . . 7 ⊢ ;45 = ;45 | |
19 | 0nn0 12494 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
20 | 4t2e8 12387 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
21 | 20 | oveq1i 7422 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
22 | 21, 9 | eqtri 2759 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
23 | 5t2e10 12784 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12749 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
25 | 14, 24 | eqtr4i 2762 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
26 | 25 | oveq1i 7422 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
27 | 16, 17 | deccl 12699 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
28 | 27 | nn0cni 12491 | . . . . 5 ⊢ ;45 ∈ ℂ |
29 | 2cn 12294 | . . . . 5 ⊢ 2 ∈ ℂ | |
30 | 2ne0 12323 | . . . . 5 ⊢ 2 ≠ 0 | |
31 | 28, 29, 30 | divcan4i 11968 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
32 | 5, 26, 31 | 3eqtri 2763 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
33 | 32 | oveq1i 7422 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
34 | sq45 41728 | . 2 ⊢ (;45↑2) = ;;;2025 | |
35 | 3, 33, 34 | 3eqtri 2763 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7412 0cc0 11116 1c1 11117 + caddc 11119 · cmul 11121 / cdiv 11878 2c2 12274 3c3 12275 4c4 12276 5c5 12277 8c8 12280 9c9 12281 ℕ0cn0 12479 ;cdc 12684 ...cfz 13491 ↑cexp 14034 Σcsu 15639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |