| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version | ||
| Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 12402 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 2 | sumcubes 42345 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
| 4 | arisum 15764 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
| 5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
| 6 | 8nn0 12401 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12394 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 8 | sq9 42330 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
| 9 | 8p1e9 12267 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 10 | 9cn 12222 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 11 | ax-1cn 11061 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 12 | 9p1e10 12587 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 13 | 10, 11, 12 | addcomli 11302 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 14 | 6, 7, 1, 8, 9, 13 | decaddci2 12647 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
| 15 | 2nn0 12395 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 16 | 4nn0 12397 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 17 | 5nn0 12398 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 18 | eqid 2731 | . . . . . . 7 ⊢ ;45 = ;45 | |
| 19 | 0nn0 12393 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 20 | 4t2e8 12285 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
| 21 | 20 | oveq1i 7356 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
| 22 | 21, 9 | eqtri 2754 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
| 23 | 5t2e10 12685 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12650 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
| 25 | 14, 24 | eqtr4i 2757 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
| 26 | 25 | oveq1i 7356 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
| 27 | 16, 17 | deccl 12600 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
| 28 | 27 | nn0cni 12390 | . . . . 5 ⊢ ;45 ∈ ℂ |
| 29 | 2cn 12197 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 30 | 2ne0 12226 | . . . . 5 ⊢ 2 ≠ 0 | |
| 31 | 28, 29, 30 | divcan4i 11865 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
| 32 | 5, 26, 31 | 3eqtri 2758 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
| 33 | 32 | oveq1i 7356 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
| 34 | sq45 42703 | . 2 ⊢ (;45↑2) = ;;;2025 | |
| 35 | 3, 33, 34 | 3eqtri 2758 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 / cdiv 11771 2c2 12177 3c3 12178 4c4 12179 5c5 12180 8c8 12183 9c9 12184 ℕ0cn0 12378 ;cdc 12585 ...cfz 13404 ↑cexp 13965 Σcsu 15590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |