| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version | ||
| Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 12426 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 2 | sumcubes 42286 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
| 4 | arisum 15785 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
| 5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
| 6 | 8nn0 12425 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12418 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 8 | sq9 42271 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
| 9 | 8p1e9 12291 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 10 | 9cn 12246 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 11 | ax-1cn 11086 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 12 | 9p1e10 12611 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 13 | 10, 11, 12 | addcomli 11326 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 14 | 6, 7, 1, 8, 9, 13 | decaddci2 12671 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
| 15 | 2nn0 12419 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 16 | 4nn0 12421 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 17 | 5nn0 12422 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ ;45 = ;45 | |
| 19 | 0nn0 12417 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 20 | 4t2e8 12309 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
| 21 | 20 | oveq1i 7363 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
| 22 | 21, 9 | eqtri 2752 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
| 23 | 5t2e10 12709 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12674 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
| 25 | 14, 24 | eqtr4i 2755 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
| 26 | 25 | oveq1i 7363 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
| 27 | 16, 17 | deccl 12624 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
| 28 | 27 | nn0cni 12414 | . . . . 5 ⊢ ;45 ∈ ℂ |
| 29 | 2cn 12221 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 30 | 2ne0 12250 | . . . . 5 ⊢ 2 ≠ 0 | |
| 31 | 28, 29, 30 | divcan4i 11889 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
| 32 | 5, 26, 31 | 3eqtri 2756 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
| 33 | 32 | oveq1i 7363 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
| 34 | sq45 42644 | . 2 ⊢ (;45↑2) = ;;;2025 | |
| 35 | 3, 33, 34 | 3eqtri 2756 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 / cdiv 11795 2c2 12201 3c3 12202 4c4 12203 5c5 12204 8c8 12207 9c9 12208 ℕ0cn0 12402 ;cdc 12609 ...cfz 13428 ↑cexp 13986 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |