| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version | ||
| Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 12525 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 2 | sumcubes 42362 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
| 4 | arisum 15876 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
| 5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
| 6 | 8nn0 12524 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12517 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 8 | sq9 42347 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
| 9 | 8p1e9 12390 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 10 | 9cn 12340 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 11 | ax-1cn 11187 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 12 | 9p1e10 12710 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 13 | 10, 11, 12 | addcomli 11427 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 14 | 6, 7, 1, 8, 9, 13 | decaddci2 12770 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
| 15 | 2nn0 12518 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 16 | 4nn0 12520 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 17 | 5nn0 12521 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 18 | eqid 2735 | . . . . . . 7 ⊢ ;45 = ;45 | |
| 19 | 0nn0 12516 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 20 | 4t2e8 12408 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
| 21 | 20 | oveq1i 7415 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
| 22 | 21, 9 | eqtri 2758 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
| 23 | 5t2e10 12808 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12773 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
| 25 | 14, 24 | eqtr4i 2761 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
| 26 | 25 | oveq1i 7415 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
| 27 | 16, 17 | deccl 12723 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
| 28 | 27 | nn0cni 12513 | . . . . 5 ⊢ ;45 ∈ ℂ |
| 29 | 2cn 12315 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 30 | 2ne0 12344 | . . . . 5 ⊢ 2 ≠ 0 | |
| 31 | 28, 29, 30 | divcan4i 11988 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
| 32 | 5, 26, 31 | 3eqtri 2762 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
| 33 | 32 | oveq1i 7415 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
| 34 | sq45 42694 | . 2 ⊢ (;45↑2) = ;;;2025 | |
| 35 | 3, 33, 34 | 3eqtri 2762 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 / cdiv 11894 2c2 12295 3c3 12296 4c4 12297 5c5 12298 8c8 12301 9c9 12302 ℕ0cn0 12501 ;cdc 12708 ...cfz 13524 ↑cexp 14079 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-fac 14292 df-bc 14321 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |