| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version | ||
| Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 12533 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 2 | sumcubes 42310 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
| 4 | arisum 15878 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
| 5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
| 6 | 8nn0 12532 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12525 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 8 | sq9 42295 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
| 9 | 8p1e9 12398 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 10 | 9cn 12348 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
| 11 | ax-1cn 11195 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 12 | 9p1e10 12718 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
| 13 | 10, 11, 12 | addcomli 11435 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
| 14 | 6, 7, 1, 8, 9, 13 | decaddci2 12778 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
| 15 | 2nn0 12526 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 16 | 4nn0 12528 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 17 | 5nn0 12529 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 18 | eqid 2734 | . . . . . . 7 ⊢ ;45 = ;45 | |
| 19 | 0nn0 12524 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 20 | 4t2e8 12416 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
| 21 | 20 | oveq1i 7423 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
| 22 | 21, 9 | eqtri 2757 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
| 23 | 5t2e10 12816 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12781 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
| 25 | 14, 24 | eqtr4i 2760 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
| 26 | 25 | oveq1i 7423 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
| 27 | 16, 17 | deccl 12731 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
| 28 | 27 | nn0cni 12521 | . . . . 5 ⊢ ;45 ∈ ℂ |
| 29 | 2cn 12323 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 30 | 2ne0 12352 | . . . . 5 ⊢ 2 ≠ 0 | |
| 31 | 28, 29, 30 | divcan4i 11996 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
| 32 | 5, 26, 31 | 3eqtri 2761 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
| 33 | 32 | oveq1i 7423 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
| 34 | sq45 42644 | . 2 ⊢ (;45↑2) = ;;;2025 | |
| 35 | 3, 33, 34 | 3eqtri 2761 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 · cmul 11142 / cdiv 11902 2c2 12303 3c3 12304 4c4 12305 5c5 12306 8c8 12309 9c9 12310 ℕ0cn0 12509 ;cdc 12716 ...cfz 13529 ↑cexp 14084 Σcsu 15704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-sum 15705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |