![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version |
Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
Ref | Expression |
---|---|
sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12548 | . . 3 ⊢ 9 ∈ ℕ0 | |
2 | sumcubes 42326 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
4 | arisum 15893 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
6 | 8nn0 12547 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
8 | sq9 42311 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
9 | 8p1e9 12414 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
10 | 9cn 12364 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
11 | ax-1cn 11211 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
12 | 9p1e10 12733 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
13 | 10, 11, 12 | addcomli 11451 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
14 | 6, 7, 1, 8, 9, 13 | decaddci2 12793 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
15 | 2nn0 12541 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
16 | 4nn0 12543 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
17 | 5nn0 12544 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
18 | eqid 2735 | . . . . . . 7 ⊢ ;45 = ;45 | |
19 | 0nn0 12539 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
20 | 4t2e8 12432 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
21 | 20 | oveq1i 7441 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
22 | 21, 9 | eqtri 2763 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
23 | 5t2e10 12831 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12796 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
25 | 14, 24 | eqtr4i 2766 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
26 | 25 | oveq1i 7441 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
27 | 16, 17 | deccl 12746 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
28 | 27 | nn0cni 12536 | . . . . 5 ⊢ ;45 ∈ ℂ |
29 | 2cn 12339 | . . . . 5 ⊢ 2 ∈ ℂ | |
30 | 2ne0 12368 | . . . . 5 ⊢ 2 ≠ 0 | |
31 | 28, 29, 30 | divcan4i 12012 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
32 | 5, 26, 31 | 3eqtri 2767 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
33 | 32 | oveq1i 7441 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
34 | sq45 42658 | . 2 ⊢ (;45↑2) = ;;;2025 | |
35 | 3, 33, 34 | 3eqtri 2767 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 / cdiv 11918 2c2 12319 3c3 12320 4c4 12321 5c5 12322 8c8 12325 9c9 12326 ℕ0cn0 12524 ;cdc 12731 ...cfz 13544 ↑cexp 14099 Σcsu 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |