![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sum9cubes | Structured version Visualization version GIF version |
Description: The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
Ref | Expression |
---|---|
sum9cubes | ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12577 | . . 3 ⊢ 9 ∈ ℕ0 | |
2 | sumcubes 42301 | . . 3 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = (Σ𝑘 ∈ (1...9)𝑘↑2) |
4 | arisum 15908 | . . . . 5 ⊢ (9 ∈ ℕ0 → Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2)) | |
5 | 1, 4 | ax-mp 5 | . . . 4 ⊢ Σ𝑘 ∈ (1...9)𝑘 = (((9↑2) + 9) / 2) |
6 | 8nn0 12576 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 12569 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
8 | sq9 42286 | . . . . . . 7 ⊢ (9↑2) = ;81 | |
9 | 8p1e9 12443 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
10 | 9cn 12393 | . . . . . . . 8 ⊢ 9 ∈ ℂ | |
11 | ax-1cn 11242 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
12 | 9p1e10 12760 | . . . . . . . 8 ⊢ (9 + 1) = ;10 | |
13 | 10, 11, 12 | addcomli 11482 | . . . . . . 7 ⊢ (1 + 9) = ;10 |
14 | 6, 7, 1, 8, 9, 13 | decaddci2 12820 | . . . . . 6 ⊢ ((9↑2) + 9) = ;90 |
15 | 2nn0 12570 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
16 | 4nn0 12572 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
17 | 5nn0 12573 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
18 | eqid 2740 | . . . . . . 7 ⊢ ;45 = ;45 | |
19 | 0nn0 12568 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
20 | 4t2e8 12461 | . . . . . . . . 9 ⊢ (4 · 2) = 8 | |
21 | 20 | oveq1i 7458 | . . . . . . . 8 ⊢ ((4 · 2) + 1) = (8 + 1) |
22 | 21, 9 | eqtri 2768 | . . . . . . 7 ⊢ ((4 · 2) + 1) = 9 |
23 | 5t2e10 12858 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
24 | 15, 16, 17, 18, 19, 7, 22, 23 | decmul1c 12823 | . . . . . 6 ⊢ (;45 · 2) = ;90 |
25 | 14, 24 | eqtr4i 2771 | . . . . 5 ⊢ ((9↑2) + 9) = (;45 · 2) |
26 | 25 | oveq1i 7458 | . . . 4 ⊢ (((9↑2) + 9) / 2) = ((;45 · 2) / 2) |
27 | 16, 17 | deccl 12773 | . . . . . 6 ⊢ ;45 ∈ ℕ0 |
28 | 27 | nn0cni 12565 | . . . . 5 ⊢ ;45 ∈ ℂ |
29 | 2cn 12368 | . . . . 5 ⊢ 2 ∈ ℂ | |
30 | 2ne0 12397 | . . . . 5 ⊢ 2 ≠ 0 | |
31 | 28, 29, 30 | divcan4i 12041 | . . . 4 ⊢ ((;45 · 2) / 2) = ;45 |
32 | 5, 26, 31 | 3eqtri 2772 | . . 3 ⊢ Σ𝑘 ∈ (1...9)𝑘 = ;45 |
33 | 32 | oveq1i 7458 | . 2 ⊢ (Σ𝑘 ∈ (1...9)𝑘↑2) = (;45↑2) |
34 | sq45 42626 | . 2 ⊢ (;45↑2) = ;;;2025 | |
35 | 3, 33, 34 | 3eqtri 2772 | 1 ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 / cdiv 11947 2c2 12348 3c3 12349 4c4 12350 5c5 12351 8c8 12354 9c9 12355 ℕ0cn0 12553 ;cdc 12758 ...cfz 13567 ↑cexp 14112 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |