Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1 Structured version   Visualization version   GIF version

Theorem aks4d1p1 42094
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p1.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p1 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p1
StepHypRef Expression
1 3nn 12324 . . . . . 6 3 ∈ ℕ
21a1i 11 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℕ)
3 aks4d1p1.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
43adantr 480 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ (ℤ‘3))
5 eluznn 12939 . . . . 5 ((3 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ)
62, 4, 5syl2anc 584 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℕ)
7 aks4d1p1.2 . . . 4 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
8 aks4d1p1.3 . . . 4 𝐵 = (⌈‘((2 logb 𝑁)↑5))
9 3p1e4 12390 . . . . 5 (3 + 1) = 4
10 simpr 484 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → 3 < 𝑁)
11 3z 12630 . . . . . . . 8 3 ∈ ℤ
1211a1i 11 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℤ)
13 eluzelz 12867 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
143, 13syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℤ)
1612, 15zltp1led 41997 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → (3 < 𝑁 ↔ (3 + 1) ≤ 𝑁))
1710, 16mpbid 232 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → (3 + 1) ≤ 𝑁)
189, 17eqbrtrrid 5160 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 4 ≤ 𝑁)
19 eqid 2736 . . . 4 (2 logb (((2 logb 𝑁)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1))
20 eqid 2736 . . . 4 ((2 logb 𝑁)↑2) = ((2 logb 𝑁)↑2)
21 eqid 2736 . . . 4 ((2 logb 𝑁)↑4) = ((2 logb 𝑁)↑4)
226, 7, 8, 18, 19, 20, 21aks4d1p1p5 42093 . . 3 ((𝜑 ∧ 3 < 𝑁) → 𝐴 < (2↑𝐵))
2322ex 412 . 2 (𝜑 → (3 < 𝑁𝐴 < (2↑𝐵)))
24 simp2 1137 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 3 = 𝑁)
2524eqcomd 2742 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 𝑁 = 3)
2625oveq1d 7425 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → (𝑁𝑘) = (3↑𝑘))
2726oveq1d 7425 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
28273expa 1118 . . . . . . . 8 (((𝜑 ∧ 3 = 𝑁) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
2928prodeq2dv 15943 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1))
3029oveq2d 7426 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)))
31 2rp 13018 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
33 1red 11241 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
34 1lt2 12416 . . . . . . . . . . . . . . . . . . 19 1 < 2
3534a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
3633, 35ltned 11376 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
3736necomd 2988 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
3811a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℤ)
3932, 37, 38relogbexpd 41992 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb (2↑3)) = 3)
4039eqcomd 2742 . . . . . . . . . . . . . 14 (𝜑 → 3 = (2 logb (2↑3)))
41 cu2 14223 . . . . . . . . . . . . . . . 16 (2↑3) = 8
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2↑3) = 8)
4342oveq2d 7426 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑3)) = (2 logb 8))
4440, 43eqtrd 2771 . . . . . . . . . . . . 13 (𝜑 → 3 = (2 logb 8))
45 2z 12629 . . . . . . . . . . . . . . 15 2 ∈ ℤ
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4746zred 12702 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
4847leidd 11808 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ 2)
49 8re 12341 . . . . . . . . . . . . . . 15 8 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 8 ∈ ℝ)
51 8pos 12357 . . . . . . . . . . . . . . 15 0 < 8
5251a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 8)
5332rpgt0d 13059 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 2)
54 3re 12325 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 3 ∈ ℝ)
561nngt0i 12284 . . . . . . . . . . . . . . . . . . 19 0 < 3
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 3)
5847, 53, 55, 57, 37relogbcld 41991 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
59 5nn0 12526 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ0
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 5 ∈ ℕ0)
6158, 60reexpcld 14186 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
62 ceilcl 13864 . . . . . . . . . . . . . . . 16 (((2 logb 3)↑5) ∈ ℝ → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6463zred 12702 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
65 0red 11243 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
66 9re 12344 . . . . . . . . . . . . . . . . 17 9 ∈ ℝ
6766a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ∈ ℝ)
6850lep1d 12178 . . . . . . . . . . . . . . . . 17 (𝜑 → 8 ≤ (8 + 1))
69 8p1e9 12395 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (8 + 1) = 9)
7168, 70breqtrd 5150 . . . . . . . . . . . . . . . 16 (𝜑 → 8 ≤ 9)
72 2re 12319 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
7372a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
74 2pos 12348 . . . . . . . . . . . . . . . . . . . 20 0 < 2
7574a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
76 3pos 12350 . . . . . . . . . . . . . . . . . . . 20 0 < 3
7776a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
7873, 75, 55, 77, 37relogbcld 41991 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 3) ∈ ℝ)
7978, 60reexpcld 14186 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
8079, 62syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
8180zred 12702 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
8255leidd 11808 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 3)
8355, 823lexlogpow5ineq4 42074 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < ((2 logb 3)↑5))
8467, 79, 83ltled 11388 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ ((2 logb 3)↑5))
85 ceilge 13867 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8679, 85syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8767, 79, 81, 84, 86letrd 11397 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ≤ (⌈‘((2 logb 3)↑5)))
8850, 67, 64, 71, 87letrd 11397 . . . . . . . . . . . . . . 15 (𝜑 → 8 ≤ (⌈‘((2 logb 3)↑5)))
8965, 50, 64, 52, 88ltletrd 11400 . . . . . . . . . . . . . 14 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
9046, 48, 50, 52, 64, 89, 88logblebd 41994 . . . . . . . . . . . . 13 (𝜑 → (2 logb 8) ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9144, 90eqbrtrd 5146 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9279, 33readdcld 11269 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ∈ ℝ)
93 1nn0 12522 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
94 6nn 12334 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
9593, 94decnncl 12733 . . . . . . . . . . . . . . . . . 18 16 ∈ ℕ
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑16 ∈ ℕ)
9796nnred 12260 . . . . . . . . . . . . . . . 16 (𝜑16 ∈ ℝ)
98 ceilm1lt 13870 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
9979, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
10081, 33, 79ltsubaddd 11838 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5) ↔ (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1)))
10199, 100mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1))
102 3lexlogpow5ineq5 42078 . . . . . . . . . . . . . . . . . . 19 ((2 logb 3)↑5) ≤ 15
103102a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 3)↑5) ≤ 15)
104 5p1e6 12392 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 1) = 6
105 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 15 = 15
10693, 59, 104, 105decsuc 12744 . . . . . . . . . . . . . . . . . . . . 21 (15 + 1) = 16
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (15 + 1) = 16)
10897recnd 11268 . . . . . . . . . . . . . . . . . . . . 21 (𝜑16 ∈ ℂ)
109 1cnd 11235 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℂ)
110 5nn 12331 . . . . . . . . . . . . . . . . . . . . . . . 24 5 ∈ ℕ
11193, 110decnncl 12733 . . . . . . . . . . . . . . . . . . . . . . 23 15 ∈ ℕ
112111a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑15 ∈ ℕ)
113112nncnd 12261 . . . . . . . . . . . . . . . . . . . . 21 (𝜑15 ∈ ℂ)
114108, 109, 113subadd2d 11618 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((16 − 1) = 15 ↔ (15 + 1) = 16))
115107, 114mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (16 − 1) = 15)
116115eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (𝜑15 = (16 − 1))
117103, 116breqtrd 5150 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (16 − 1))
118 leaddsub 11718 . . . . . . . . . . . . . . . . . 18 ((((2 logb 3)↑5) ∈ ℝ ∧ 1 ∈ ℝ ∧ 16 ∈ ℝ) → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
11979, 33, 97, 118syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
120117, 119mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ≤ 16)
12181, 92, 97, 101, 120ltletrd 11400 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) < 16)
122 eqid 2736 . . . . . . . . . . . . . . . . 17 16 = 16
123 2exp4 17109 . . . . . . . . . . . . . . . . 17 (2↑4) = 16
124122, 123eqtr4i 2762 . . . . . . . . . . . . . . . 16 16 = (2↑4)
125124a1i 11 . . . . . . . . . . . . . . 15 (𝜑16 = (2↑4))
126121, 125breqtrd 5150 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) < (2↑4))
12746uzidd 12873 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ (ℤ‘2))
12864, 89elrpd 13053 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ+)
129 4z 12631 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
130129a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 4 ∈ ℤ)
13132, 130rpexpcld 14270 . . . . . . . . . . . . . . 15 (𝜑 → (2↑4) ∈ ℝ+)
132 logblt 26751 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (⌈‘((2 logb 3)↑5)) ∈ ℝ+ ∧ (2↑4) ∈ ℝ+) → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
133127, 128, 131, 132syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
134126, 133mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4)))
13532, 37, 130relogbexpd 41992 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑4)) = 4)
1369eqcomi 2745 . . . . . . . . . . . . . . 15 4 = (3 + 1)
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 = (3 + 1))
138135, 137eqtrd 2771 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑4)) = (3 + 1))
139134, 138breqtrd 5150 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))
14091, 139jca 511 . . . . . . . . . . 11 (𝜑 → (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1)))
14173, 75, 55, 57, 37relogbcld 41991 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 3) ∈ ℝ)
142141, 60reexpcld 14186 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
143142, 62syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
144143zred 12702 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
145 9pos 12358 . . . . . . . . . . . . . . 15 0 < 9
146145a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 9)
14765, 67, 144, 146, 87ltletrd 11400 . . . . . . . . . . . . 13 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
14873, 75, 144, 147, 37relogbcld 41991 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ)
149 flbi 13838 . . . . . . . . . . . 12 (((2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ ∧ 3 ∈ ℤ) → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
150148, 38, 149syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
151140, 150mpbird 257 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3)
152151oveq2d 7426 . . . . . . . . 9 (𝜑 → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (3↑3))
15378resqcld 14148 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
154 3lexlogpow2ineq2 42077 . . . . . . . . . . . . . . . . 17 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
155154a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3))
156155simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → 2 < ((2 logb 3)↑2))
15773, 153, 156ltled 11388 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 3)↑2))
158155simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) < 3)
159 df-3 12309 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
160159a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
161158, 160breqtrd 5150 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) < (2 + 1))
162157, 161jca 511 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1)))
163141resqcld 14148 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
164 flbi 13838 . . . . . . . . . . . . . 14 ((((2 logb 3)↑2) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
165163, 46, 164syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
166162, 165mpbird 257 . . . . . . . . . . . 12 (𝜑 → (⌊‘((2 logb 3)↑2)) = 2)
167166oveq2d 7426 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 3)↑2))) = (1...2))
168167prodeq1d 15941 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...2)((3↑𝑘) − 1))
169 1zzd 12628 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
170169, 46jca 511 . . . . . . . . . . . . 13 (𝜑 → (1 ∈ ℤ ∧ 2 ∈ ℤ))
171 1le2 12454 . . . . . . . . . . . . . . 15 1 ≤ 2
172171a1i 11 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 1 ≤ 2)
173 eluz 12871 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (2 ∈ (ℤ‘1) ↔ 1 ≤ 2))
174172, 173mpbird 257 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∈ (ℤ‘1))
175170, 174syl 17 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘1))
176 3cn 12326 . . . . . . . . . . . . . . 15 3 ∈ ℂ
177176a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 3 ∈ ℂ)
178 elfznn 13575 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
179178adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
180179nnnn0d 12567 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ0)
181177, 180expcld 14169 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → (3↑𝑘) ∈ ℂ)
182 1cnd 11235 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → 1 ∈ ℂ)
183181, 182subcld 11599 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...2)) → ((3↑𝑘) − 1) ∈ ℂ)
184 oveq2 7418 . . . . . . . . . . . . 13 (𝑘 = 2 → (3↑𝑘) = (3↑2))
185184oveq1d 7425 . . . . . . . . . . . 12 (𝑘 = 2 → ((3↑𝑘) − 1) = ((3↑2) − 1))
186175, 183, 185fprodm1 15988 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)))
187 2m1e1 12371 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
188187a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2 − 1) = 1)
189188oveq2d 7426 . . . . . . . . . . . . . 14 (𝜑 → (1...(2 − 1)) = (1...1))
190189prodeq1d 15941 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...1)((3↑𝑘) − 1))
19155recnd 11268 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℂ)
19293a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
193191, 192expcld 14169 . . . . . . . . . . . . . . . 16 (𝜑 → (3↑1) ∈ ℂ)
194193, 109subcld 11599 . . . . . . . . . . . . . . 15 (𝜑 → ((3↑1) − 1) ∈ ℂ)
195169, 194jca 511 . . . . . . . . . . . . . 14 (𝜑 → (1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ))
196 oveq2 7418 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (3↑𝑘) = (3↑1))
197196oveq1d 7425 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((3↑𝑘) − 1) = ((3↑1) − 1))
198197fprod1 15984 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ) → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
199195, 198syl 17 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
200190, 199eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ((3↑1) − 1))
201200oveq1d 7425 . . . . . . . . . . 11 (𝜑 → (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)) = (((3↑1) − 1) · ((3↑2) − 1)))
202186, 201eqtrd 2771 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
203168, 202eqtrd 2771 . . . . . . . . 9 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
204152, 203oveq12d 7428 . . . . . . . 8 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
205 3nn0 12524 . . . . . . . . . . . 12 3 ∈ ℕ0
206205a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℕ0)
20755, 206reexpcld 14186 . . . . . . . . . 10 (𝜑 → (3↑3) ∈ ℝ)
20855, 192reexpcld 14186 . . . . . . . . . . . 12 (𝜑 → (3↑1) ∈ ℝ)
209208, 33resubcld 11670 . . . . . . . . . . 11 (𝜑 → ((3↑1) − 1) ∈ ℝ)
21055resqcld 14148 . . . . . . . . . . . 12 (𝜑 → (3↑2) ∈ ℝ)
211210, 33resubcld 11670 . . . . . . . . . . 11 (𝜑 → ((3↑2) − 1) ∈ ℝ)
212209, 211remulcld 11270 . . . . . . . . . 10 (𝜑 → (((3↑1) − 1) · ((3↑2) − 1)) ∈ ℝ)
213207, 212remulcld 11270 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) ∈ ℝ)
214 9nn0 12530 . . . . . . . . . . . 12 9 ∈ ℕ0
215214a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℕ0)
21673, 215reexpcld 14186 . . . . . . . . . 10 (𝜑 → (2↑9) ∈ ℝ)
217216, 33resubcld 11670 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) ∈ ℝ)
218 elnnz 12603 . . . . . . . . . . . . 13 ((⌈‘((2 logb 3)↑5)) ∈ ℕ ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℤ ∧ 0 < (⌈‘((2 logb 3)↑5))))
219143, 147, 218sylanbrc 583 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ)
220219orcd 873 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
221 elnn0 12508 . . . . . . . . . . . 12 ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
222221a1i 11 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0)))
223220, 222mpbird 257 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ0)
22473, 223reexpcld 14186 . . . . . . . . 9 (𝜑 → (2↑(⌈‘((2 logb 3)↑5))) ∈ ℝ)
225 8cn 12342 . . . . . . . . . . . . . . 15 8 ∈ ℂ
226 2cn 12320 . . . . . . . . . . . . . . 15 2 ∈ ℂ
227 8t2e16 12828 . . . . . . . . . . . . . . 15 (8 · 2) = 16
228225, 226, 227mulcomli 11249 . . . . . . . . . . . . . 14 (2 · 8) = 16
229228a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · 8) = 16)
230229oveq2d 7426 . . . . . . . . . . . 12 (𝜑 → (27 · (2 · 8)) = (27 · 16))
231 6nn0 12527 . . . . . . . . . . . . . . 15 6 ∈ ℕ0
23293, 231deccl 12728 . . . . . . . . . . . . . 14 16 ∈ ℕ0
233 2nn0 12523 . . . . . . . . . . . . . 14 2 ∈ ℕ0
234 7nn0 12528 . . . . . . . . . . . . . 14 7 ∈ ℕ0
235 eqid 2736 . . . . . . . . . . . . . 14 27 = 27
23693, 93deccl 12728 . . . . . . . . . . . . . 14 11 ∈ ℕ0
237 0nn0 12521 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
238233dec0h 12735 . . . . . . . . . . . . . . 15 2 = 02
239 eqid 2736 . . . . . . . . . . . . . . 15 11 = 11
240232nn0cni 12518 . . . . . . . . . . . . . . . . . 18 16 ∈ ℂ
241240mul02i 11429 . . . . . . . . . . . . . . . . 17 (0 · 16) = 0
242 ax-1cn 11192 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
243176, 242, 9addcomli 11432 . . . . . . . . . . . . . . . . 17 (1 + 3) = 4
244241, 243oveq12i 7422 . . . . . . . . . . . . . . . 16 ((0 · 16) + (1 + 3)) = (0 + 4)
245 4cn 12330 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
246245addlidi 11428 . . . . . . . . . . . . . . . 16 (0 + 4) = 4
247244, 246eqtri 2759 . . . . . . . . . . . . . . 15 ((0 · 16) + (1 + 3)) = 4
24893dec0h 12735 . . . . . . . . . . . . . . . 16 1 = 01
249 2t1e2 12408 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
250 0p1e1 12367 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
251249, 250oveq12i 7422 . . . . . . . . . . . . . . . . 17 ((2 · 1) + (0 + 1)) = (2 + 1)
252 2p1e3 12387 . . . . . . . . . . . . . . . . 17 (2 + 1) = 3
253251, 252eqtri 2759 . . . . . . . . . . . . . . . 16 ((2 · 1) + (0 + 1)) = 3
254 6cn 12336 . . . . . . . . . . . . . . . . . 18 6 ∈ ℂ
255 6t2e12 12817 . . . . . . . . . . . . . . . . . 18 (6 · 2) = 12
256254, 226, 255mulcomli 11249 . . . . . . . . . . . . . . . . 17 (2 · 6) = 12
25793, 233, 252, 256decsuc 12744 . . . . . . . . . . . . . . . 16 ((2 · 6) + 1) = 13
25893, 231, 237, 93, 122, 248, 233, 205, 93, 253, 257decma2c 12766 . . . . . . . . . . . . . . 15 ((2 · 16) + 1) = 33
259237, 233, 93, 93, 238, 239, 232, 205, 205, 247, 258decmac 12765 . . . . . . . . . . . . . 14 ((2 · 16) + 11) = 43
260 4nn0 12525 . . . . . . . . . . . . . . 15 4 ∈ ℕ0
261 7cn 12339 . . . . . . . . . . . . . . . . . 18 7 ∈ ℂ
262261mulridi 11244 . . . . . . . . . . . . . . . . 17 (7 · 1) = 7
263262oveq1i 7420 . . . . . . . . . . . . . . . 16 ((7 · 1) + 4) = (7 + 4)
264 7p4e11 12789 . . . . . . . . . . . . . . . 16 (7 + 4) = 11
265263, 264eqtri 2759 . . . . . . . . . . . . . . 15 ((7 · 1) + 4) = 11
266 7t6e42 12826 . . . . . . . . . . . . . . 15 (7 · 6) = 42
267234, 93, 231, 122, 233, 260, 265, 266decmul2c 12779 . . . . . . . . . . . . . 14 (7 · 16) = 112
268232, 233, 234, 235, 233, 236, 259, 267decmul1c 12778 . . . . . . . . . . . . 13 (27 · 16) = 432
269268a1i 11 . . . . . . . . . . . 12 (𝜑 → (27 · 16) = 432)
270230, 269eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (27 · (2 · 8)) = 432)
271260, 205deccl 12728 . . . . . . . . . . . . 13 43 ∈ ℕ0
27259, 93deccl 12728 . . . . . . . . . . . . 13 51 ∈ ℕ0
273 2lt10 12851 . . . . . . . . . . . . 13 2 < 10
274 3lt10 12850 . . . . . . . . . . . . . 14 3 < 10
275 4lt5 12422 . . . . . . . . . . . . . 14 4 < 5
276260, 59, 205, 93, 274, 275decltc 12742 . . . . . . . . . . . . 13 43 < 51
277271, 272, 233, 93, 273, 276decltc 12742 . . . . . . . . . . . 12 432 < 511
278277a1i 11 . . . . . . . . . . 11 (𝜑432 < 511)
279270, 278eqbrtrd 5146 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) < 511)
280 3exp3 17116 . . . . . . . . . . . . 13 (3↑3) = 27
281280a1i 11 . . . . . . . . . . . 12 (𝜑 → (3↑3) = 27)
282281eqcomd 2742 . . . . . . . . . . 11 (𝜑27 = (3↑3))
283191exp1d 14164 . . . . . . . . . . . . . 14 (𝜑 → (3↑1) = 3)
284283oveq1d 7425 . . . . . . . . . . . . 13 (𝜑 → ((3↑1) − 1) = (3 − 1))
285 3m1e2 12373 . . . . . . . . . . . . . 14 (3 − 1) = 2
286285a1i 11 . . . . . . . . . . . . 13 (𝜑 → (3 − 1) = 2)
287284, 286eqtr2d 2772 . . . . . . . . . . . 12 (𝜑 → 2 = ((3↑1) − 1))
288 sq3 14221 . . . . . . . . . . . . . . 15 (3↑2) = 9
289288a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (3↑2) = 9)
290289oveq1d 7425 . . . . . . . . . . . . 13 (𝜑 → ((3↑2) − 1) = (9 − 1))
291 9m1e8 12379 . . . . . . . . . . . . . 14 (9 − 1) = 8
292291a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 − 1) = 8)
293290, 292eqtr2d 2772 . . . . . . . . . . . 12 (𝜑 → 8 = ((3↑2) − 1))
294287, 293oveq12d 7428 . . . . . . . . . . 11 (𝜑 → (2 · 8) = (((3↑1) − 1) · ((3↑2) − 1)))
295282, 294oveq12d 7428 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
296 df-9 12315 . . . . . . . . . . . . . . . 16 9 = (8 + 1)
297296a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 9 = (8 + 1))
298297oveq2d 7426 . . . . . . . . . . . . . 14 (𝜑 → (2↑9) = (2↑(8 + 1)))
299287, 194eqeltrd 2835 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
300 8nn0 12529 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
301300a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 8 ∈ ℕ0)
302299, 192, 301expaddd 14171 . . . . . . . . . . . . . 14 (𝜑 → (2↑(8 + 1)) = ((2↑8) · (2↑1)))
303298, 302eqtrd 2771 . . . . . . . . . . . . 13 (𝜑 → (2↑9) = ((2↑8) · (2↑1)))
304 2exp8 17113 . . . . . . . . . . . . . . . . 17 (2↑8) = 256
305304a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑8) = 256)
306305oveq1d 7425 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑8) · (2↑1)) = (256 · (2↑1)))
307299exp1d 14164 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑1) = 2)
308307oveq2d 7426 . . . . . . . . . . . . . . 15 (𝜑 → (256 · (2↑1)) = (256 · 2))
309306, 308eqtrd 2771 . . . . . . . . . . . . . 14 (𝜑 → ((2↑8) · (2↑1)) = (256 · 2))
310233, 59deccl 12728 . . . . . . . . . . . . . . . 16 25 ∈ ℕ0
311 eqid 2736 . . . . . . . . . . . . . . . 16 256 = 256
312 eqid 2736 . . . . . . . . . . . . . . . . 17 25 = 25
313 2t2e4 12409 . . . . . . . . . . . . . . . . . . 19 (2 · 2) = 4
314313, 250oveq12i 7422 . . . . . . . . . . . . . . . . . 18 ((2 · 2) + (0 + 1)) = (4 + 1)
315 4p1e5 12391 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
316314, 315eqtri 2759 . . . . . . . . . . . . . . . . 17 ((2 · 2) + (0 + 1)) = 5
317 5t2e10 12813 . . . . . . . . . . . . . . . . . 18 (5 · 2) = 10
31893, 237, 250, 317decsuc 12744 . . . . . . . . . . . . . . . . 17 ((5 · 2) + 1) = 11
319233, 59, 237, 93, 312, 248, 233, 93, 93, 316, 318decmac 12765 . . . . . . . . . . . . . . . 16 ((25 · 2) + 1) = 51
320233, 310, 231, 311, 233, 93, 319, 255decmul1c 12778 . . . . . . . . . . . . . . 15 (256 · 2) = 512
321320a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (256 · 2) = 512)
322309, 321eqtrd 2771 . . . . . . . . . . . . 13 (𝜑 → ((2↑8) · (2↑1)) = 512)
323303, 322eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → (2↑9) = 512)
324323oveq1d 7425 . . . . . . . . . . 11 (𝜑 → ((2↑9) − 1) = (512 − 1))
325 1p1e2 12370 . . . . . . . . . . . . . 14 (1 + 1) = 2
326 eqid 2736 . . . . . . . . . . . . . 14 511 = 511
327272, 93, 325, 326decsuc 12744 . . . . . . . . . . . . 13 (511 + 1) = 512
328272, 233deccl 12728 . . . . . . . . . . . . . . 15 512 ∈ ℕ0
329328nn0cni 12518 . . . . . . . . . . . . . 14 512 ∈ ℂ
330272, 93deccl 12728 . . . . . . . . . . . . . . 15 511 ∈ ℕ0
331330nn0cni 12518 . . . . . . . . . . . . . 14 511 ∈ ℂ
332329, 242, 331subadd2i 11576 . . . . . . . . . . . . 13 ((512 − 1) = 511 ↔ (511 + 1) = 512)
333327, 332mpbir 231 . . . . . . . . . . . 12 (512 − 1) = 511
334333a1i 11 . . . . . . . . . . 11 (𝜑 → (512 − 1) = 511)
335324, 334eqtr2d 2772 . . . . . . . . . 10 (𝜑511 = ((2↑9) − 1))
336279, 295, 3353brtr3d 5155 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < ((2↑9) − 1))
337216ltm1d 12179 . . . . . . . . . 10 (𝜑 → ((2↑9) − 1) < (2↑9))
338215nn0zd 12619 . . . . . . . . . . . 12 (𝜑 → 9 ∈ ℤ)
33973, 338, 143, 35leexp2d 14275 . . . . . . . . . . 11 (𝜑 → (9 ≤ (⌈‘((2 logb 3)↑5)) ↔ (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5)))))
34087, 339mpbid 232 . . . . . . . . . 10 (𝜑 → (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5))))
341217, 216, 224, 337, 340ltletrd 11400 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) < (2↑(⌈‘((2 logb 3)↑5))))
342213, 217, 224, 336, 341lttrd 11401 . . . . . . . 8 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < (2↑(⌈‘((2 logb 3)↑5))))
343204, 342eqbrtrd 5146 . . . . . . 7 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
344343adantr 480 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
34530, 344eqbrtrd 5146 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
346 simpr 484 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → 3 = 𝑁)
347 oveq2 7418 . . . . . . . . . . . . 13 (3 = 𝑁 → (2 logb 3) = (2 logb 𝑁))
348347adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
349348oveq1d 7425 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑5) = ((2 logb 𝑁)↑5))
350349fveq2d 6885 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = (⌈‘((2 logb 𝑁)↑5)))
3518a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → 𝐵 = (⌈‘((2 logb 𝑁)↑5)))
352351eqcomd 2742 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
353350, 352eqtrd 2771 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = 𝐵)
354353oveq2d 7426 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (2 logb (⌈‘((2 logb 3)↑5))) = (2 logb 𝐵))
355354fveq2d 6885 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = (⌊‘(2 logb 𝐵)))
356346, 355oveq12d 7428 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (𝑁↑(⌊‘(2 logb 𝐵))))
357346oveq2d 7426 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
358357oveq1d 7425 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑2) = ((2 logb 𝑁)↑2))
359358fveq2d 6885 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (⌊‘((2 logb 3)↑2)) = (⌊‘((2 logb 𝑁)↑2)))
360359oveq2d 7426 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (1...(⌊‘((2 logb 3)↑2))) = (1...(⌊‘((2 logb 𝑁)↑2))))
361360prodeq1d 15941 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
362356, 361oveq12d 7428 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
363350oveq2d 7426 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 3)↑5))) = (2↑(⌈‘((2 logb 𝑁)↑5))))
364345, 362, 3633brtr3d 5155 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 𝑁)↑5))))
3657a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
366365eqcomd 2742 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) = 𝐴)
3678oveq2i 7421 . . . . . 6 (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5)))
368367a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5))))
369368eqcomd 2742 . . . 4 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 𝑁)↑5))) = (2↑𝐵))
370364, 366, 3693brtr3d 5155 . . 3 ((𝜑 ∧ 3 = 𝑁) → 𝐴 < (2↑𝐵))
371370ex 412 . 2 (𝜑 → (3 = 𝑁𝐴 < (2↑𝐵)))
372 eluzle 12870 . . . 4 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3733, 372syl 17 . . 3 (𝜑 → 3 ≤ 𝑁)
37414zred 12702 . . . 4 (𝜑𝑁 ∈ ℝ)
37555, 374leloed 11383 . . 3 (𝜑 → (3 ≤ 𝑁 ↔ (3 < 𝑁 ∨ 3 = 𝑁)))
376373, 375mpbid 232 . 2 (𝜑 → (3 < 𝑁 ∨ 3 = 𝑁))
37723, 371, 376mpjaod 860 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  cn 12245  2c2 12300  3c3 12301  4c4 12302  5c5 12303  6c6 12304  7c7 12305  8c8 12306  9c9 12307  0cn0 12506  cz 12593  cdc 12713  cuz 12857  +crp 13013  ...cfz 13529  cfl 13812  cceil 13813  cexp 14084  cprod 15924   logb clogb 26731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-ceil 13815  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-prod 15925  df-ef 16088  df-e 16089  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-logb 26732
This theorem is referenced by:  aks4d1p3  42096
  Copyright terms: Public domain W3C validator