Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1 Structured version   Visualization version   GIF version

Theorem aks4d1p1 39703
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p1.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p1 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p1
StepHypRef Expression
1 3nn 11795 . . . . . 6 3 ∈ ℕ
21a1i 11 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℕ)
3 aks4d1p1.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
43adantr 484 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ (ℤ‘3))
5 eluznn 12400 . . . . 5 ((3 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ)
62, 4, 5syl2anc 587 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℕ)
7 aks4d1p1.2 . . . 4 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
8 aks4d1p1.3 . . . 4 𝐵 = (⌈‘((2 logb 𝑁)↑5))
9 3p1e4 11861 . . . . 5 (3 + 1) = 4
10 simpr 488 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → 3 < 𝑁)
11 3z 12096 . . . . . . . 8 3 ∈ ℤ
1211a1i 11 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℤ)
13 eluzelz 12334 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
143, 13syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 484 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℤ)
1612, 15zltp1led 39608 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → (3 < 𝑁 ↔ (3 + 1) ≤ 𝑁))
1710, 16mpbid 235 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → (3 + 1) ≤ 𝑁)
189, 17eqbrtrrid 5066 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 4 ≤ 𝑁)
19 eqid 2738 . . . 4 (2 logb (((2 logb 𝑁)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1))
20 eqid 2738 . . . 4 ((2 logb 𝑁)↑2) = ((2 logb 𝑁)↑2)
21 eqid 2738 . . . 4 ((2 logb 𝑁)↑4) = ((2 logb 𝑁)↑4)
226, 7, 8, 18, 19, 20, 21aks4d1p1p5 39702 . . 3 ((𝜑 ∧ 3 < 𝑁) → 𝐴 < (2↑𝐵))
2322ex 416 . 2 (𝜑 → (3 < 𝑁𝐴 < (2↑𝐵)))
24 simp2 1138 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 3 = 𝑁)
2524eqcomd 2744 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 𝑁 = 3)
2625oveq1d 7185 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → (𝑁𝑘) = (3↑𝑘))
2726oveq1d 7185 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
28273expa 1119 . . . . . . . 8 (((𝜑 ∧ 3 = 𝑁) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
2928prodeq2dv 15369 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1))
3029oveq2d 7186 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)))
31 2rp 12477 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
33 1red 10720 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
34 1lt2 11887 . . . . . . . . . . . . . . . . . . 19 1 < 2
3534a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
3633, 35ltned 10854 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
3736necomd 2989 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
3811a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℤ)
3932, 37, 38relogbexpd 39601 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb (2↑3)) = 3)
4039eqcomd 2744 . . . . . . . . . . . . . 14 (𝜑 → 3 = (2 logb (2↑3)))
41 cu2 13655 . . . . . . . . . . . . . . . 16 (2↑3) = 8
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2↑3) = 8)
4342oveq2d 7186 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑3)) = (2 logb 8))
4440, 43eqtrd 2773 . . . . . . . . . . . . 13 (𝜑 → 3 = (2 logb 8))
45 2z 12095 . . . . . . . . . . . . . . 15 2 ∈ ℤ
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4746zred 12168 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
4847leidd 11284 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ 2)
49 8re 11812 . . . . . . . . . . . . . . 15 8 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 8 ∈ ℝ)
51 8pos 11828 . . . . . . . . . . . . . . 15 0 < 8
5251a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 8)
5332rpgt0d 12517 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 2)
54 3re 11796 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 3 ∈ ℝ)
561nngt0i 11755 . . . . . . . . . . . . . . . . . . 19 0 < 3
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 3)
5847, 53, 55, 57, 37relogbcld 39600 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
59 5nn0 11996 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ0
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 5 ∈ ℕ0)
6158, 60reexpcld 13619 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
62 ceilcl 13303 . . . . . . . . . . . . . . . 16 (((2 logb 3)↑5) ∈ ℝ → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6463zred 12168 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
65 0red 10722 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
66 9re 11815 . . . . . . . . . . . . . . . . 17 9 ∈ ℝ
6766a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ∈ ℝ)
6850lep1d 11649 . . . . . . . . . . . . . . . . 17 (𝜑 → 8 ≤ (8 + 1))
69 8p1e9 11866 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (8 + 1) = 9)
7168, 70breqtrd 5056 . . . . . . . . . . . . . . . 16 (𝜑 → 8 ≤ 9)
72 2re 11790 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
7372a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
74 2pos 11819 . . . . . . . . . . . . . . . . . . . 20 0 < 2
7574a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
76 3pos 11821 . . . . . . . . . . . . . . . . . . . 20 0 < 3
7776a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
7873, 75, 55, 77, 37relogbcld 39600 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 3) ∈ ℝ)
7978, 60reexpcld 13619 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
8079, 62syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
8180zred 12168 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
8255leidd 11284 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 3)
8355, 823lexlogpow5ineq4 39684 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < ((2 logb 3)↑5))
8467, 79, 83ltled 10866 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ ((2 logb 3)↑5))
85 ceilge 13305 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8679, 85syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8767, 79, 81, 84, 86letrd 10875 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ≤ (⌈‘((2 logb 3)↑5)))
8850, 67, 64, 71, 87letrd 10875 . . . . . . . . . . . . . . 15 (𝜑 → 8 ≤ (⌈‘((2 logb 3)↑5)))
8965, 50, 64, 52, 88ltletrd 10878 . . . . . . . . . . . . . 14 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
9046, 48, 50, 52, 64, 89, 88logblebd 39603 . . . . . . . . . . . . 13 (𝜑 → (2 logb 8) ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9144, 90eqbrtrd 5052 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9279, 33readdcld 10748 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ∈ ℝ)
93 1nn0 11992 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
94 6nn 11805 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
9593, 94decnncl 12199 . . . . . . . . . . . . . . . . . 18 16 ∈ ℕ
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑16 ∈ ℕ)
9796nnred 11731 . . . . . . . . . . . . . . . 16 (𝜑16 ∈ ℝ)
98 ceilm1lt 13307 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
9979, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
10081, 33, 79ltsubaddd 11314 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5) ↔ (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1)))
10199, 100mpbid 235 . . . . . . . . . . . . . . . 16 (𝜑 → (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1))
102 3lexlogpow5ineq5 39688 . . . . . . . . . . . . . . . . . . 19 ((2 logb 3)↑5) ≤ 15
103102a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 3)↑5) ≤ 15)
104 5p1e6 11863 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 1) = 6
105 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 15 = 15
10693, 59, 104, 105decsuc 12210 . . . . . . . . . . . . . . . . . . . . 21 (15 + 1) = 16
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (15 + 1) = 16)
10897recnd 10747 . . . . . . . . . . . . . . . . . . . . 21 (𝜑16 ∈ ℂ)
109 1cnd 10714 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℂ)
110 5nn 11802 . . . . . . . . . . . . . . . . . . . . . . . 24 5 ∈ ℕ
11193, 110decnncl 12199 . . . . . . . . . . . . . . . . . . . . . . 23 15 ∈ ℕ
112111a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑15 ∈ ℕ)
113112nncnd 11732 . . . . . . . . . . . . . . . . . . . . 21 (𝜑15 ∈ ℂ)
114108, 109, 113subadd2d 11094 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((16 − 1) = 15 ↔ (15 + 1) = 16))
115107, 114mpbird 260 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (16 − 1) = 15)
116115eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (𝜑15 = (16 − 1))
117103, 116breqtrd 5056 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (16 − 1))
118 leaddsub 11194 . . . . . . . . . . . . . . . . . 18 ((((2 logb 3)↑5) ∈ ℝ ∧ 1 ∈ ℝ ∧ 16 ∈ ℝ) → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
11979, 33, 97, 118syl3anc 1372 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
120117, 119mpbird 260 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ≤ 16)
12181, 92, 97, 101, 120ltletrd 10878 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) < 16)
122 eqid 2738 . . . . . . . . . . . . . . . . 17 16 = 16
123 2exp4 16521 . . . . . . . . . . . . . . . . 17 (2↑4) = 16
124122, 123eqtr4i 2764 . . . . . . . . . . . . . . . 16 16 = (2↑4)
125124a1i 11 . . . . . . . . . . . . . . 15 (𝜑16 = (2↑4))
126121, 125breqtrd 5056 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) < (2↑4))
12746uzidd 12340 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ (ℤ‘2))
12864, 89elrpd 12511 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ+)
129 4z 12097 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
130129a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 4 ∈ ℤ)
13132, 130rpexpcld 13700 . . . . . . . . . . . . . . 15 (𝜑 → (2↑4) ∈ ℝ+)
132 logblt 25522 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (⌈‘((2 logb 3)↑5)) ∈ ℝ+ ∧ (2↑4) ∈ ℝ+) → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
133127, 128, 131, 132syl3anc 1372 . . . . . . . . . . . . . 14 (𝜑 → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
134126, 133mpbid 235 . . . . . . . . . . . . 13 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4)))
13532, 37, 130relogbexpd 39601 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑4)) = 4)
1369eqcomi 2747 . . . . . . . . . . . . . . 15 4 = (3 + 1)
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 = (3 + 1))
138135, 137eqtrd 2773 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑4)) = (3 + 1))
139134, 138breqtrd 5056 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))
14091, 139jca 515 . . . . . . . . . . 11 (𝜑 → (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1)))
14173, 75, 55, 57, 37relogbcld 39600 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 3) ∈ ℝ)
142141, 60reexpcld 13619 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
143142, 62syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
144143zred 12168 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
145 9pos 11829 . . . . . . . . . . . . . . 15 0 < 9
146145a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 9)
14765, 67, 144, 146, 87ltletrd 10878 . . . . . . . . . . . . 13 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
14873, 75, 144, 147, 37relogbcld 39600 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ)
149 flbi 13277 . . . . . . . . . . . 12 (((2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ ∧ 3 ∈ ℤ) → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
150148, 38, 149syl2anc 587 . . . . . . . . . . 11 (𝜑 → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
151140, 150mpbird 260 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3)
152151oveq2d 7186 . . . . . . . . 9 (𝜑 → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (3↑3))
15378resqcld 13703 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
154 3lexlogpow2ineq2 39687 . . . . . . . . . . . . . . . . 17 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
155154a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3))
156155simpld 498 . . . . . . . . . . . . . . 15 (𝜑 → 2 < ((2 logb 3)↑2))
15773, 153, 156ltled 10866 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 3)↑2))
158155simprd 499 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) < 3)
159 df-3 11780 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
160159a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
161158, 160breqtrd 5056 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) < (2 + 1))
162157, 161jca 515 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1)))
163141resqcld 13703 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
164 flbi 13277 . . . . . . . . . . . . . 14 ((((2 logb 3)↑2) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
165163, 46, 164syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
166162, 165mpbird 260 . . . . . . . . . . . 12 (𝜑 → (⌊‘((2 logb 3)↑2)) = 2)
167166oveq2d 7186 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 3)↑2))) = (1...2))
168167prodeq1d 15367 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...2)((3↑𝑘) − 1))
169 1zzd 12094 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
170169, 46jca 515 . . . . . . . . . . . . 13 (𝜑 → (1 ∈ ℤ ∧ 2 ∈ ℤ))
171 1le2 11925 . . . . . . . . . . . . . . 15 1 ≤ 2
172171a1i 11 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 1 ≤ 2)
173 eluz 12338 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (2 ∈ (ℤ‘1) ↔ 1 ≤ 2))
174172, 173mpbird 260 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∈ (ℤ‘1))
175170, 174syl 17 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘1))
176 3cn 11797 . . . . . . . . . . . . . . 15 3 ∈ ℂ
177176a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 3 ∈ ℂ)
178 elfznn 13027 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
179178adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
180179nnnn0d 12036 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ0)
181177, 180expcld 13602 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → (3↑𝑘) ∈ ℂ)
182 1cnd 10714 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → 1 ∈ ℂ)
183181, 182subcld 11075 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...2)) → ((3↑𝑘) − 1) ∈ ℂ)
184 oveq2 7178 . . . . . . . . . . . . 13 (𝑘 = 2 → (3↑𝑘) = (3↑2))
185184oveq1d 7185 . . . . . . . . . . . 12 (𝑘 = 2 → ((3↑𝑘) − 1) = ((3↑2) − 1))
186175, 183, 185fprodm1 15413 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)))
187 2m1e1 11842 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
188187a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2 − 1) = 1)
189188oveq2d 7186 . . . . . . . . . . . . . 14 (𝜑 → (1...(2 − 1)) = (1...1))
190189prodeq1d 15367 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...1)((3↑𝑘) − 1))
19155recnd 10747 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℂ)
19293a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
193191, 192expcld 13602 . . . . . . . . . . . . . . . 16 (𝜑 → (3↑1) ∈ ℂ)
194193, 109subcld 11075 . . . . . . . . . . . . . . 15 (𝜑 → ((3↑1) − 1) ∈ ℂ)
195169, 194jca 515 . . . . . . . . . . . . . 14 (𝜑 → (1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ))
196 oveq2 7178 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (3↑𝑘) = (3↑1))
197196oveq1d 7185 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((3↑𝑘) − 1) = ((3↑1) − 1))
198197fprod1 15409 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ) → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
199195, 198syl 17 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
200190, 199eqtrd 2773 . . . . . . . . . . . 12 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ((3↑1) − 1))
201200oveq1d 7185 . . . . . . . . . . 11 (𝜑 → (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)) = (((3↑1) − 1) · ((3↑2) − 1)))
202186, 201eqtrd 2773 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
203168, 202eqtrd 2773 . . . . . . . . 9 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
204152, 203oveq12d 7188 . . . . . . . 8 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
205 3nn0 11994 . . . . . . . . . . . 12 3 ∈ ℕ0
206205a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℕ0)
20755, 206reexpcld 13619 . . . . . . . . . 10 (𝜑 → (3↑3) ∈ ℝ)
20855, 192reexpcld 13619 . . . . . . . . . . . 12 (𝜑 → (3↑1) ∈ ℝ)
209208, 33resubcld 11146 . . . . . . . . . . 11 (𝜑 → ((3↑1) − 1) ∈ ℝ)
21055resqcld 13703 . . . . . . . . . . . 12 (𝜑 → (3↑2) ∈ ℝ)
211210, 33resubcld 11146 . . . . . . . . . . 11 (𝜑 → ((3↑2) − 1) ∈ ℝ)
212209, 211remulcld 10749 . . . . . . . . . 10 (𝜑 → (((3↑1) − 1) · ((3↑2) − 1)) ∈ ℝ)
213207, 212remulcld 10749 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) ∈ ℝ)
214 9nn0 12000 . . . . . . . . . . . 12 9 ∈ ℕ0
215214a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℕ0)
21673, 215reexpcld 13619 . . . . . . . . . 10 (𝜑 → (2↑9) ∈ ℝ)
217216, 33resubcld 11146 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) ∈ ℝ)
218 elnnz 12072 . . . . . . . . . . . . 13 ((⌈‘((2 logb 3)↑5)) ∈ ℕ ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℤ ∧ 0 < (⌈‘((2 logb 3)↑5))))
219143, 147, 218sylanbrc 586 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ)
220219orcd 872 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
221 elnn0 11978 . . . . . . . . . . . 12 ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
222221a1i 11 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0)))
223220, 222mpbird 260 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ0)
22473, 223reexpcld 13619 . . . . . . . . 9 (𝜑 → (2↑(⌈‘((2 logb 3)↑5))) ∈ ℝ)
225 8cn 11813 . . . . . . . . . . . . . . 15 8 ∈ ℂ
226 2cn 11791 . . . . . . . . . . . . . . 15 2 ∈ ℂ
227 8t2e16 12294 . . . . . . . . . . . . . . 15 (8 · 2) = 16
228225, 226, 227mulcomli 10728 . . . . . . . . . . . . . 14 (2 · 8) = 16
229228a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · 8) = 16)
230229oveq2d 7186 . . . . . . . . . . . 12 (𝜑 → (27 · (2 · 8)) = (27 · 16))
231 6nn0 11997 . . . . . . . . . . . . . . 15 6 ∈ ℕ0
23293, 231deccl 12194 . . . . . . . . . . . . . 14 16 ∈ ℕ0
233 2nn0 11993 . . . . . . . . . . . . . 14 2 ∈ ℕ0
234 7nn0 11998 . . . . . . . . . . . . . 14 7 ∈ ℕ0
235 eqid 2738 . . . . . . . . . . . . . 14 27 = 27
23693, 93deccl 12194 . . . . . . . . . . . . . 14 11 ∈ ℕ0
237 0nn0 11991 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
238233dec0h 12201 . . . . . . . . . . . . . . 15 2 = 02
239 eqid 2738 . . . . . . . . . . . . . . 15 11 = 11
240232nn0cni 11988 . . . . . . . . . . . . . . . . . 18 16 ∈ ℂ
241240mul02i 10907 . . . . . . . . . . . . . . . . 17 (0 · 16) = 0
242 ax-1cn 10673 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
243176, 242, 9addcomli 10910 . . . . . . . . . . . . . . . . 17 (1 + 3) = 4
244241, 243oveq12i 7182 . . . . . . . . . . . . . . . 16 ((0 · 16) + (1 + 3)) = (0 + 4)
245 4cn 11801 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
246245addid2i 10906 . . . . . . . . . . . . . . . 16 (0 + 4) = 4
247244, 246eqtri 2761 . . . . . . . . . . . . . . 15 ((0 · 16) + (1 + 3)) = 4
24893dec0h 12201 . . . . . . . . . . . . . . . 16 1 = 01
249 2t1e2 11879 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
250 0p1e1 11838 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
251249, 250oveq12i 7182 . . . . . . . . . . . . . . . . 17 ((2 · 1) + (0 + 1)) = (2 + 1)
252 2p1e3 11858 . . . . . . . . . . . . . . . . 17 (2 + 1) = 3
253251, 252eqtri 2761 . . . . . . . . . . . . . . . 16 ((2 · 1) + (0 + 1)) = 3
254 6cn 11807 . . . . . . . . . . . . . . . . . 18 6 ∈ ℂ
255 6t2e12 12283 . . . . . . . . . . . . . . . . . 18 (6 · 2) = 12
256254, 226, 255mulcomli 10728 . . . . . . . . . . . . . . . . 17 (2 · 6) = 12
25793, 233, 252, 256decsuc 12210 . . . . . . . . . . . . . . . 16 ((2 · 6) + 1) = 13
25893, 231, 237, 93, 122, 248, 233, 205, 93, 253, 257decma2c 12232 . . . . . . . . . . . . . . 15 ((2 · 16) + 1) = 33
259237, 233, 93, 93, 238, 239, 232, 205, 205, 247, 258decmac 12231 . . . . . . . . . . . . . 14 ((2 · 16) + 11) = 43
260 4nn0 11995 . . . . . . . . . . . . . . 15 4 ∈ ℕ0
261 7cn 11810 . . . . . . . . . . . . . . . . . 18 7 ∈ ℂ
262261mulid1i 10723 . . . . . . . . . . . . . . . . 17 (7 · 1) = 7
263262oveq1i 7180 . . . . . . . . . . . . . . . 16 ((7 · 1) + 4) = (7 + 4)
264 7p4e11 12255 . . . . . . . . . . . . . . . 16 (7 + 4) = 11
265263, 264eqtri 2761 . . . . . . . . . . . . . . 15 ((7 · 1) + 4) = 11
266 7t6e42 12292 . . . . . . . . . . . . . . 15 (7 · 6) = 42
267234, 93, 231, 122, 233, 260, 265, 266decmul2c 12245 . . . . . . . . . . . . . 14 (7 · 16) = 112
268232, 233, 234, 235, 233, 236, 259, 267decmul1c 12244 . . . . . . . . . . . . 13 (27 · 16) = 432
269268a1i 11 . . . . . . . . . . . 12 (𝜑 → (27 · 16) = 432)
270230, 269eqtrd 2773 . . . . . . . . . . 11 (𝜑 → (27 · (2 · 8)) = 432)
271260, 205deccl 12194 . . . . . . . . . . . . 13 43 ∈ ℕ0
27259, 93deccl 12194 . . . . . . . . . . . . 13 51 ∈ ℕ0
273 2lt10 12317 . . . . . . . . . . . . 13 2 < 10
274 3lt10 12316 . . . . . . . . . . . . . 14 3 < 10
275 4lt5 11893 . . . . . . . . . . . . . 14 4 < 5
276260, 59, 205, 93, 274, 275decltc 12208 . . . . . . . . . . . . 13 43 < 51
277271, 272, 233, 93, 273, 276decltc 12208 . . . . . . . . . . . 12 432 < 511
278277a1i 11 . . . . . . . . . . 11 (𝜑432 < 511)
279270, 278eqbrtrd 5052 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) < 511)
280 3exp3 16528 . . . . . . . . . . . . 13 (3↑3) = 27
281280a1i 11 . . . . . . . . . . . 12 (𝜑 → (3↑3) = 27)
282281eqcomd 2744 . . . . . . . . . . 11 (𝜑27 = (3↑3))
283191exp1d 13597 . . . . . . . . . . . . . 14 (𝜑 → (3↑1) = 3)
284283oveq1d 7185 . . . . . . . . . . . . 13 (𝜑 → ((3↑1) − 1) = (3 − 1))
285 3m1e2 11844 . . . . . . . . . . . . . 14 (3 − 1) = 2
286285a1i 11 . . . . . . . . . . . . 13 (𝜑 → (3 − 1) = 2)
287284, 286eqtr2d 2774 . . . . . . . . . . . 12 (𝜑 → 2 = ((3↑1) − 1))
288 sq3 13653 . . . . . . . . . . . . . . 15 (3↑2) = 9
289288a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (3↑2) = 9)
290289oveq1d 7185 . . . . . . . . . . . . 13 (𝜑 → ((3↑2) − 1) = (9 − 1))
291 9m1e8 11850 . . . . . . . . . . . . . 14 (9 − 1) = 8
292291a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 − 1) = 8)
293290, 292eqtr2d 2774 . . . . . . . . . . . 12 (𝜑 → 8 = ((3↑2) − 1))
294287, 293oveq12d 7188 . . . . . . . . . . 11 (𝜑 → (2 · 8) = (((3↑1) − 1) · ((3↑2) − 1)))
295282, 294oveq12d 7188 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
296 df-9 11786 . . . . . . . . . . . . . . . 16 9 = (8 + 1)
297296a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 9 = (8 + 1))
298297oveq2d 7186 . . . . . . . . . . . . . 14 (𝜑 → (2↑9) = (2↑(8 + 1)))
299287, 194eqeltrd 2833 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
300 8nn0 11999 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
301300a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 8 ∈ ℕ0)
302299, 192, 301expaddd 13604 . . . . . . . . . . . . . 14 (𝜑 → (2↑(8 + 1)) = ((2↑8) · (2↑1)))
303298, 302eqtrd 2773 . . . . . . . . . . . . 13 (𝜑 → (2↑9) = ((2↑8) · (2↑1)))
304 2exp8 16525 . . . . . . . . . . . . . . . . 17 (2↑8) = 256
305304a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑8) = 256)
306305oveq1d 7185 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑8) · (2↑1)) = (256 · (2↑1)))
307299exp1d 13597 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑1) = 2)
308307oveq2d 7186 . . . . . . . . . . . . . . 15 (𝜑 → (256 · (2↑1)) = (256 · 2))
309306, 308eqtrd 2773 . . . . . . . . . . . . . 14 (𝜑 → ((2↑8) · (2↑1)) = (256 · 2))
310233, 59deccl 12194 . . . . . . . . . . . . . . . 16 25 ∈ ℕ0
311 eqid 2738 . . . . . . . . . . . . . . . 16 256 = 256
312 eqid 2738 . . . . . . . . . . . . . . . . 17 25 = 25
313 2t2e4 11880 . . . . . . . . . . . . . . . . . . 19 (2 · 2) = 4
314313, 250oveq12i 7182 . . . . . . . . . . . . . . . . . 18 ((2 · 2) + (0 + 1)) = (4 + 1)
315 4p1e5 11862 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
316314, 315eqtri 2761 . . . . . . . . . . . . . . . . 17 ((2 · 2) + (0 + 1)) = 5
317 5t2e10 12279 . . . . . . . . . . . . . . . . . 18 (5 · 2) = 10
31893, 237, 250, 317decsuc 12210 . . . . . . . . . . . . . . . . 17 ((5 · 2) + 1) = 11
319233, 59, 237, 93, 312, 248, 233, 93, 93, 316, 318decmac 12231 . . . . . . . . . . . . . . . 16 ((25 · 2) + 1) = 51
320233, 310, 231, 311, 233, 93, 319, 255decmul1c 12244 . . . . . . . . . . . . . . 15 (256 · 2) = 512
321320a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (256 · 2) = 512)
322309, 321eqtrd 2773 . . . . . . . . . . . . 13 (𝜑 → ((2↑8) · (2↑1)) = 512)
323303, 322eqtrd 2773 . . . . . . . . . . . 12 (𝜑 → (2↑9) = 512)
324323oveq1d 7185 . . . . . . . . . . 11 (𝜑 → ((2↑9) − 1) = (512 − 1))
325 1p1e2 11841 . . . . . . . . . . . . . 14 (1 + 1) = 2
326 eqid 2738 . . . . . . . . . . . . . 14 511 = 511
327272, 93, 325, 326decsuc 12210 . . . . . . . . . . . . 13 (511 + 1) = 512
328272, 233deccl 12194 . . . . . . . . . . . . . . 15 512 ∈ ℕ0
329328nn0cni 11988 . . . . . . . . . . . . . 14 512 ∈ ℂ
330272, 93deccl 12194 . . . . . . . . . . . . . . 15 511 ∈ ℕ0
331330nn0cni 11988 . . . . . . . . . . . . . 14 511 ∈ ℂ
332329, 242, 331subadd2i 11052 . . . . . . . . . . . . 13 ((512 − 1) = 511 ↔ (511 + 1) = 512)
333327, 332mpbir 234 . . . . . . . . . . . 12 (512 − 1) = 511
334333a1i 11 . . . . . . . . . . 11 (𝜑 → (512 − 1) = 511)
335324, 334eqtr2d 2774 . . . . . . . . . 10 (𝜑511 = ((2↑9) − 1))
336279, 295, 3353brtr3d 5061 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < ((2↑9) − 1))
337216ltm1d 11650 . . . . . . . . . 10 (𝜑 → ((2↑9) − 1) < (2↑9))
338215nn0zd 12166 . . . . . . . . . . . 12 (𝜑 → 9 ∈ ℤ)
33973, 338, 143, 35leexp2d 13707 . . . . . . . . . . 11 (𝜑 → (9 ≤ (⌈‘((2 logb 3)↑5)) ↔ (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5)))))
34087, 339mpbid 235 . . . . . . . . . 10 (𝜑 → (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5))))
341217, 216, 224, 337, 340ltletrd 10878 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) < (2↑(⌈‘((2 logb 3)↑5))))
342213, 217, 224, 336, 341lttrd 10879 . . . . . . . 8 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < (2↑(⌈‘((2 logb 3)↑5))))
343204, 342eqbrtrd 5052 . . . . . . 7 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
344343adantr 484 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
34530, 344eqbrtrd 5052 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
346 simpr 488 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → 3 = 𝑁)
347 oveq2 7178 . . . . . . . . . . . . 13 (3 = 𝑁 → (2 logb 3) = (2 logb 𝑁))
348347adantl 485 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
349348oveq1d 7185 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑5) = ((2 logb 𝑁)↑5))
350349fveq2d 6678 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = (⌈‘((2 logb 𝑁)↑5)))
3518a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → 𝐵 = (⌈‘((2 logb 𝑁)↑5)))
352351eqcomd 2744 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
353350, 352eqtrd 2773 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = 𝐵)
354353oveq2d 7186 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (2 logb (⌈‘((2 logb 3)↑5))) = (2 logb 𝐵))
355354fveq2d 6678 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = (⌊‘(2 logb 𝐵)))
356346, 355oveq12d 7188 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (𝑁↑(⌊‘(2 logb 𝐵))))
357346oveq2d 7186 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
358357oveq1d 7185 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑2) = ((2 logb 𝑁)↑2))
359358fveq2d 6678 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (⌊‘((2 logb 3)↑2)) = (⌊‘((2 logb 𝑁)↑2)))
360359oveq2d 7186 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (1...(⌊‘((2 logb 3)↑2))) = (1...(⌊‘((2 logb 𝑁)↑2))))
361360prodeq1d 15367 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
362356, 361oveq12d 7188 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
363350oveq2d 7186 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 3)↑5))) = (2↑(⌈‘((2 logb 𝑁)↑5))))
364345, 362, 3633brtr3d 5061 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 𝑁)↑5))))
3657a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
366365eqcomd 2744 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) = 𝐴)
3678oveq2i 7181 . . . . . 6 (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5)))
368367a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5))))
369368eqcomd 2744 . . . 4 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 𝑁)↑5))) = (2↑𝐵))
370364, 366, 3693brtr3d 5061 . . 3 ((𝜑 ∧ 3 = 𝑁) → 𝐴 < (2↑𝐵))
371370ex 416 . 2 (𝜑 → (3 = 𝑁𝐴 < (2↑𝐵)))
372 eluzle 12337 . . . 4 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3733, 372syl 17 . . 3 (𝜑 → 3 ≤ 𝑁)
37414zred 12168 . . . 4 (𝜑𝑁 ∈ ℝ)
37555, 374leloed 10861 . . 3 (𝜑 → (3 ≤ 𝑁 ↔ (3 < 𝑁 ∨ 3 = 𝑁)))
376373, 375mpbid 235 . 2 (𝜑 → (3 < 𝑁 ∨ 3 = 𝑁))
37723, 371, 376mpjaod 859 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620   < clt 10753  cle 10754  cmin 10948  cn 11716  2c2 11771  3c3 11772  4c4 11773  5c5 11774  6c6 11775  7c7 11776  8c8 11777  9c9 11778  0cn0 11976  cz 12062  cdc 12179  cuz 12324  +crp 12472  ...cfz 12981  cfl 13251  cceil 13252  cexp 13521  cprod 15351   logb clogb 25502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-ceil 13254  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-prod 15352  df-ef 15513  df-e 15514  df-sin 15515  df-cos 15516  df-pi 15518  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-cmp 22138  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619  df-log 25300  df-cxp 25301  df-logb 25503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator