Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1 Structured version   Visualization version   GIF version

Theorem aks4d1p1 42069
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p1.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p1 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p1
StepHypRef Expression
1 3nn 12207 . . . . . 6 3 ∈ ℕ
21a1i 11 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℕ)
3 aks4d1p1.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
43adantr 480 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ (ℤ‘3))
5 eluznn 12819 . . . . 5 ((3 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ)
62, 4, 5syl2anc 584 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℕ)
7 aks4d1p1.2 . . . 4 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
8 aks4d1p1.3 . . . 4 𝐵 = (⌈‘((2 logb 𝑁)↑5))
9 3p1e4 12268 . . . . 5 (3 + 1) = 4
10 simpr 484 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → 3 < 𝑁)
11 3z 12508 . . . . . . . 8 3 ∈ ℤ
1211a1i 11 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℤ)
13 eluzelz 12745 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
143, 13syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℤ)
1612, 15zltp1led 41972 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → (3 < 𝑁 ↔ (3 + 1) ≤ 𝑁))
1710, 16mpbid 232 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → (3 + 1) ≤ 𝑁)
189, 17eqbrtrrid 5128 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 4 ≤ 𝑁)
19 eqid 2729 . . . 4 (2 logb (((2 logb 𝑁)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1))
20 eqid 2729 . . . 4 ((2 logb 𝑁)↑2) = ((2 logb 𝑁)↑2)
21 eqid 2729 . . . 4 ((2 logb 𝑁)↑4) = ((2 logb 𝑁)↑4)
226, 7, 8, 18, 19, 20, 21aks4d1p1p5 42068 . . 3 ((𝜑 ∧ 3 < 𝑁) → 𝐴 < (2↑𝐵))
2322ex 412 . 2 (𝜑 → (3 < 𝑁𝐴 < (2↑𝐵)))
24 simp2 1137 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 3 = 𝑁)
2524eqcomd 2735 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 𝑁 = 3)
2625oveq1d 7364 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → (𝑁𝑘) = (3↑𝑘))
2726oveq1d 7364 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
28273expa 1118 . . . . . . . 8 (((𝜑 ∧ 3 = 𝑁) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
2928prodeq2dv 15829 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1))
3029oveq2d 7365 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)))
31 2rp 12898 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
33 1red 11116 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
34 1lt2 12294 . . . . . . . . . . . . . . . . . . 19 1 < 2
3534a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
3633, 35ltned 11252 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
3736necomd 2980 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
3811a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℤ)
3932, 37, 38relogbexpd 41967 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb (2↑3)) = 3)
4039eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → 3 = (2 logb (2↑3)))
41 cu2 14107 . . . . . . . . . . . . . . . 16 (2↑3) = 8
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2↑3) = 8)
4342oveq2d 7365 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑3)) = (2 logb 8))
4440, 43eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → 3 = (2 logb 8))
45 2z 12507 . . . . . . . . . . . . . . 15 2 ∈ ℤ
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4746zred 12580 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
4847leidd 11686 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ 2)
49 8re 12224 . . . . . . . . . . . . . . 15 8 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 8 ∈ ℝ)
51 8pos 12240 . . . . . . . . . . . . . . 15 0 < 8
5251a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 8)
5332rpgt0d 12940 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 2)
54 3re 12208 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 3 ∈ ℝ)
561nngt0i 12167 . . . . . . . . . . . . . . . . . . 19 0 < 3
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 3)
5847, 53, 55, 57, 37relogbcld 41966 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
59 5nn0 12404 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ0
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 5 ∈ ℕ0)
6158, 60reexpcld 14070 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
62 ceilcl 13746 . . . . . . . . . . . . . . . 16 (((2 logb 3)↑5) ∈ ℝ → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6463zred 12580 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
65 0red 11118 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
66 9re 12227 . . . . . . . . . . . . . . . . 17 9 ∈ ℝ
6766a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ∈ ℝ)
6850lep1d 12056 . . . . . . . . . . . . . . . . 17 (𝜑 → 8 ≤ (8 + 1))
69 8p1e9 12273 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (8 + 1) = 9)
7168, 70breqtrd 5118 . . . . . . . . . . . . . . . 16 (𝜑 → 8 ≤ 9)
72 2re 12202 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
7372a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
74 2pos 12231 . . . . . . . . . . . . . . . . . . . 20 0 < 2
7574a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
76 3pos 12233 . . . . . . . . . . . . . . . . . . . 20 0 < 3
7776a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
7873, 75, 55, 77, 37relogbcld 41966 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 3) ∈ ℝ)
7978, 60reexpcld 14070 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
8079, 62syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
8180zred 12580 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
8255leidd 11686 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 3)
8355, 823lexlogpow5ineq4 42049 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < ((2 logb 3)↑5))
8467, 79, 83ltled 11264 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ ((2 logb 3)↑5))
85 ceilge 13749 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8679, 85syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8767, 79, 81, 84, 86letrd 11273 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ≤ (⌈‘((2 logb 3)↑5)))
8850, 67, 64, 71, 87letrd 11273 . . . . . . . . . . . . . . 15 (𝜑 → 8 ≤ (⌈‘((2 logb 3)↑5)))
8965, 50, 64, 52, 88ltletrd 11276 . . . . . . . . . . . . . 14 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
9046, 48, 50, 52, 64, 89, 88logblebd 41969 . . . . . . . . . . . . 13 (𝜑 → (2 logb 8) ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9144, 90eqbrtrd 5114 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9279, 33readdcld 11144 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ∈ ℝ)
93 1nn0 12400 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
94 6nn 12217 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
9593, 94decnncl 12611 . . . . . . . . . . . . . . . . . 18 16 ∈ ℕ
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑16 ∈ ℕ)
9796nnred 12143 . . . . . . . . . . . . . . . 16 (𝜑16 ∈ ℝ)
98 ceilm1lt 13752 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
9979, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
10081, 33, 79ltsubaddd 11716 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5) ↔ (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1)))
10199, 100mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1))
102 3lexlogpow5ineq5 42053 . . . . . . . . . . . . . . . . . . 19 ((2 logb 3)↑5) ≤ 15
103102a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 3)↑5) ≤ 15)
104 5p1e6 12270 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 1) = 6
105 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 15 = 15
10693, 59, 104, 105decsuc 12622 . . . . . . . . . . . . . . . . . . . . 21 (15 + 1) = 16
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (15 + 1) = 16)
10897recnd 11143 . . . . . . . . . . . . . . . . . . . . 21 (𝜑16 ∈ ℂ)
109 1cnd 11110 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℂ)
110 5nn 12214 . . . . . . . . . . . . . . . . . . . . . . . 24 5 ∈ ℕ
11193, 110decnncl 12611 . . . . . . . . . . . . . . . . . . . . . . 23 15 ∈ ℕ
112111a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑15 ∈ ℕ)
113112nncnd 12144 . . . . . . . . . . . . . . . . . . . . 21 (𝜑15 ∈ ℂ)
114108, 109, 113subadd2d 11494 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((16 − 1) = 15 ↔ (15 + 1) = 16))
115107, 114mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (16 − 1) = 15)
116115eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (𝜑15 = (16 − 1))
117103, 116breqtrd 5118 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (16 − 1))
118 leaddsub 11596 . . . . . . . . . . . . . . . . . 18 ((((2 logb 3)↑5) ∈ ℝ ∧ 1 ∈ ℝ ∧ 16 ∈ ℝ) → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
11979, 33, 97, 118syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
120117, 119mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ≤ 16)
12181, 92, 97, 101, 120ltletrd 11276 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) < 16)
122 eqid 2729 . . . . . . . . . . . . . . . . 17 16 = 16
123 2exp4 16996 . . . . . . . . . . . . . . . . 17 (2↑4) = 16
124122, 123eqtr4i 2755 . . . . . . . . . . . . . . . 16 16 = (2↑4)
125124a1i 11 . . . . . . . . . . . . . . 15 (𝜑16 = (2↑4))
126121, 125breqtrd 5118 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) < (2↑4))
12746uzidd 12751 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ (ℤ‘2))
12864, 89elrpd 12934 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ+)
129 4z 12509 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
130129a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 4 ∈ ℤ)
13132, 130rpexpcld 14154 . . . . . . . . . . . . . . 15 (𝜑 → (2↑4) ∈ ℝ+)
132 logblt 26692 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (⌈‘((2 logb 3)↑5)) ∈ ℝ+ ∧ (2↑4) ∈ ℝ+) → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
133127, 128, 131, 132syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
134126, 133mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4)))
13532, 37, 130relogbexpd 41967 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑4)) = 4)
1369eqcomi 2738 . . . . . . . . . . . . . . 15 4 = (3 + 1)
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 = (3 + 1))
138135, 137eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑4)) = (3 + 1))
139134, 138breqtrd 5118 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))
14091, 139jca 511 . . . . . . . . . . 11 (𝜑 → (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1)))
14173, 75, 55, 57, 37relogbcld 41966 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 3) ∈ ℝ)
142141, 60reexpcld 14070 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
143142, 62syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
144143zred 12580 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
145 9pos 12241 . . . . . . . . . . . . . . 15 0 < 9
146145a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 9)
14765, 67, 144, 146, 87ltletrd 11276 . . . . . . . . . . . . 13 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
14873, 75, 144, 147, 37relogbcld 41966 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ)
149 flbi 13720 . . . . . . . . . . . 12 (((2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ ∧ 3 ∈ ℤ) → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
150148, 38, 149syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
151140, 150mpbird 257 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3)
152151oveq2d 7365 . . . . . . . . 9 (𝜑 → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (3↑3))
15378resqcld 14032 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
154 3lexlogpow2ineq2 42052 . . . . . . . . . . . . . . . . 17 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
155154a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3))
156155simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → 2 < ((2 logb 3)↑2))
15773, 153, 156ltled 11264 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 3)↑2))
158155simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) < 3)
159 df-3 12192 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
160159a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
161158, 160breqtrd 5118 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) < (2 + 1))
162157, 161jca 511 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1)))
163141resqcld 14032 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
164 flbi 13720 . . . . . . . . . . . . . 14 ((((2 logb 3)↑2) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
165163, 46, 164syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
166162, 165mpbird 257 . . . . . . . . . . . 12 (𝜑 → (⌊‘((2 logb 3)↑2)) = 2)
167166oveq2d 7365 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 3)↑2))) = (1...2))
168167prodeq1d 15827 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...2)((3↑𝑘) − 1))
169 1zzd 12506 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
170169, 46jca 511 . . . . . . . . . . . . 13 (𝜑 → (1 ∈ ℤ ∧ 2 ∈ ℤ))
171 1le2 12332 . . . . . . . . . . . . . . 15 1 ≤ 2
172171a1i 11 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 1 ≤ 2)
173 eluz 12749 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (2 ∈ (ℤ‘1) ↔ 1 ≤ 2))
174172, 173mpbird 257 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∈ (ℤ‘1))
175170, 174syl 17 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘1))
176 3cn 12209 . . . . . . . . . . . . . . 15 3 ∈ ℂ
177176a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 3 ∈ ℂ)
178 elfznn 13456 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
179178adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
180179nnnn0d 12445 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ0)
181177, 180expcld 14053 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → (3↑𝑘) ∈ ℂ)
182 1cnd 11110 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → 1 ∈ ℂ)
183181, 182subcld 11475 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...2)) → ((3↑𝑘) − 1) ∈ ℂ)
184 oveq2 7357 . . . . . . . . . . . . 13 (𝑘 = 2 → (3↑𝑘) = (3↑2))
185184oveq1d 7364 . . . . . . . . . . . 12 (𝑘 = 2 → ((3↑𝑘) − 1) = ((3↑2) − 1))
186175, 183, 185fprodm1 15874 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)))
187 2m1e1 12249 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
188187a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2 − 1) = 1)
189188oveq2d 7365 . . . . . . . . . . . . . 14 (𝜑 → (1...(2 − 1)) = (1...1))
190189prodeq1d 15827 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...1)((3↑𝑘) − 1))
19155recnd 11143 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℂ)
19293a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
193191, 192expcld 14053 . . . . . . . . . . . . . . . 16 (𝜑 → (3↑1) ∈ ℂ)
194193, 109subcld 11475 . . . . . . . . . . . . . . 15 (𝜑 → ((3↑1) − 1) ∈ ℂ)
195169, 194jca 511 . . . . . . . . . . . . . 14 (𝜑 → (1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ))
196 oveq2 7357 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (3↑𝑘) = (3↑1))
197196oveq1d 7364 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((3↑𝑘) − 1) = ((3↑1) − 1))
198197fprod1 15870 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ) → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
199195, 198syl 17 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
200190, 199eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ((3↑1) − 1))
201200oveq1d 7364 . . . . . . . . . . 11 (𝜑 → (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)) = (((3↑1) − 1) · ((3↑2) − 1)))
202186, 201eqtrd 2764 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
203168, 202eqtrd 2764 . . . . . . . . 9 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
204152, 203oveq12d 7367 . . . . . . . 8 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
205 3nn0 12402 . . . . . . . . . . . 12 3 ∈ ℕ0
206205a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℕ0)
20755, 206reexpcld 14070 . . . . . . . . . 10 (𝜑 → (3↑3) ∈ ℝ)
20855, 192reexpcld 14070 . . . . . . . . . . . 12 (𝜑 → (3↑1) ∈ ℝ)
209208, 33resubcld 11548 . . . . . . . . . . 11 (𝜑 → ((3↑1) − 1) ∈ ℝ)
21055resqcld 14032 . . . . . . . . . . . 12 (𝜑 → (3↑2) ∈ ℝ)
211210, 33resubcld 11548 . . . . . . . . . . 11 (𝜑 → ((3↑2) − 1) ∈ ℝ)
212209, 211remulcld 11145 . . . . . . . . . 10 (𝜑 → (((3↑1) − 1) · ((3↑2) − 1)) ∈ ℝ)
213207, 212remulcld 11145 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) ∈ ℝ)
214 9nn0 12408 . . . . . . . . . . . 12 9 ∈ ℕ0
215214a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℕ0)
21673, 215reexpcld 14070 . . . . . . . . . 10 (𝜑 → (2↑9) ∈ ℝ)
217216, 33resubcld 11548 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) ∈ ℝ)
218 elnnz 12481 . . . . . . . . . . . . 13 ((⌈‘((2 logb 3)↑5)) ∈ ℕ ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℤ ∧ 0 < (⌈‘((2 logb 3)↑5))))
219143, 147, 218sylanbrc 583 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ)
220219orcd 873 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
221 elnn0 12386 . . . . . . . . . . . 12 ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
222221a1i 11 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0)))
223220, 222mpbird 257 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ0)
22473, 223reexpcld 14070 . . . . . . . . 9 (𝜑 → (2↑(⌈‘((2 logb 3)↑5))) ∈ ℝ)
225 8cn 12225 . . . . . . . . . . . . . . 15 8 ∈ ℂ
226 2cn 12203 . . . . . . . . . . . . . . 15 2 ∈ ℂ
227 8t2e16 12706 . . . . . . . . . . . . . . 15 (8 · 2) = 16
228225, 226, 227mulcomli 11124 . . . . . . . . . . . . . 14 (2 · 8) = 16
229228a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · 8) = 16)
230229oveq2d 7365 . . . . . . . . . . . 12 (𝜑 → (27 · (2 · 8)) = (27 · 16))
231 6nn0 12405 . . . . . . . . . . . . . . 15 6 ∈ ℕ0
23293, 231deccl 12606 . . . . . . . . . . . . . 14 16 ∈ ℕ0
233 2nn0 12401 . . . . . . . . . . . . . 14 2 ∈ ℕ0
234 7nn0 12406 . . . . . . . . . . . . . 14 7 ∈ ℕ0
235 eqid 2729 . . . . . . . . . . . . . 14 27 = 27
23693, 93deccl 12606 . . . . . . . . . . . . . 14 11 ∈ ℕ0
237 0nn0 12399 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
238233dec0h 12613 . . . . . . . . . . . . . . 15 2 = 02
239 eqid 2729 . . . . . . . . . . . . . . 15 11 = 11
240232nn0cni 12396 . . . . . . . . . . . . . . . . . 18 16 ∈ ℂ
241240mul02i 11305 . . . . . . . . . . . . . . . . 17 (0 · 16) = 0
242 ax-1cn 11067 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
243176, 242, 9addcomli 11308 . . . . . . . . . . . . . . . . 17 (1 + 3) = 4
244241, 243oveq12i 7361 . . . . . . . . . . . . . . . 16 ((0 · 16) + (1 + 3)) = (0 + 4)
245 4cn 12213 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
246245addlidi 11304 . . . . . . . . . . . . . . . 16 (0 + 4) = 4
247244, 246eqtri 2752 . . . . . . . . . . . . . . 15 ((0 · 16) + (1 + 3)) = 4
24893dec0h 12613 . . . . . . . . . . . . . . . 16 1 = 01
249 2t1e2 12286 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
250 0p1e1 12245 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
251249, 250oveq12i 7361 . . . . . . . . . . . . . . . . 17 ((2 · 1) + (0 + 1)) = (2 + 1)
252 2p1e3 12265 . . . . . . . . . . . . . . . . 17 (2 + 1) = 3
253251, 252eqtri 2752 . . . . . . . . . . . . . . . 16 ((2 · 1) + (0 + 1)) = 3
254 6cn 12219 . . . . . . . . . . . . . . . . . 18 6 ∈ ℂ
255 6t2e12 12695 . . . . . . . . . . . . . . . . . 18 (6 · 2) = 12
256254, 226, 255mulcomli 11124 . . . . . . . . . . . . . . . . 17 (2 · 6) = 12
25793, 233, 252, 256decsuc 12622 . . . . . . . . . . . . . . . 16 ((2 · 6) + 1) = 13
25893, 231, 237, 93, 122, 248, 233, 205, 93, 253, 257decma2c 12644 . . . . . . . . . . . . . . 15 ((2 · 16) + 1) = 33
259237, 233, 93, 93, 238, 239, 232, 205, 205, 247, 258decmac 12643 . . . . . . . . . . . . . 14 ((2 · 16) + 11) = 43
260 4nn0 12403 . . . . . . . . . . . . . . 15 4 ∈ ℕ0
261 7cn 12222 . . . . . . . . . . . . . . . . . 18 7 ∈ ℂ
262261mulridi 11119 . . . . . . . . . . . . . . . . 17 (7 · 1) = 7
263262oveq1i 7359 . . . . . . . . . . . . . . . 16 ((7 · 1) + 4) = (7 + 4)
264 7p4e11 12667 . . . . . . . . . . . . . . . 16 (7 + 4) = 11
265263, 264eqtri 2752 . . . . . . . . . . . . . . 15 ((7 · 1) + 4) = 11
266 7t6e42 12704 . . . . . . . . . . . . . . 15 (7 · 6) = 42
267234, 93, 231, 122, 233, 260, 265, 266decmul2c 12657 . . . . . . . . . . . . . 14 (7 · 16) = 112
268232, 233, 234, 235, 233, 236, 259, 267decmul1c 12656 . . . . . . . . . . . . 13 (27 · 16) = 432
269268a1i 11 . . . . . . . . . . . 12 (𝜑 → (27 · 16) = 432)
270230, 269eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (27 · (2 · 8)) = 432)
271260, 205deccl 12606 . . . . . . . . . . . . 13 43 ∈ ℕ0
27259, 93deccl 12606 . . . . . . . . . . . . 13 51 ∈ ℕ0
273 2lt10 12729 . . . . . . . . . . . . 13 2 < 10
274 3lt10 12728 . . . . . . . . . . . . . 14 3 < 10
275 4lt5 12300 . . . . . . . . . . . . . 14 4 < 5
276260, 59, 205, 93, 274, 275decltc 12620 . . . . . . . . . . . . 13 43 < 51
277271, 272, 233, 93, 273, 276decltc 12620 . . . . . . . . . . . 12 432 < 511
278277a1i 11 . . . . . . . . . . 11 (𝜑432 < 511)
279270, 278eqbrtrd 5114 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) < 511)
280 3exp3 17003 . . . . . . . . . . . . 13 (3↑3) = 27
281280a1i 11 . . . . . . . . . . . 12 (𝜑 → (3↑3) = 27)
282281eqcomd 2735 . . . . . . . . . . 11 (𝜑27 = (3↑3))
283191exp1d 14048 . . . . . . . . . . . . . 14 (𝜑 → (3↑1) = 3)
284283oveq1d 7364 . . . . . . . . . . . . 13 (𝜑 → ((3↑1) − 1) = (3 − 1))
285 3m1e2 12251 . . . . . . . . . . . . . 14 (3 − 1) = 2
286285a1i 11 . . . . . . . . . . . . 13 (𝜑 → (3 − 1) = 2)
287284, 286eqtr2d 2765 . . . . . . . . . . . 12 (𝜑 → 2 = ((3↑1) − 1))
288 sq3 14105 . . . . . . . . . . . . . . 15 (3↑2) = 9
289288a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (3↑2) = 9)
290289oveq1d 7364 . . . . . . . . . . . . 13 (𝜑 → ((3↑2) − 1) = (9 − 1))
291 9m1e8 12257 . . . . . . . . . . . . . 14 (9 − 1) = 8
292291a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 − 1) = 8)
293290, 292eqtr2d 2765 . . . . . . . . . . . 12 (𝜑 → 8 = ((3↑2) − 1))
294287, 293oveq12d 7367 . . . . . . . . . . 11 (𝜑 → (2 · 8) = (((3↑1) − 1) · ((3↑2) − 1)))
295282, 294oveq12d 7367 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
296 df-9 12198 . . . . . . . . . . . . . . . 16 9 = (8 + 1)
297296a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 9 = (8 + 1))
298297oveq2d 7365 . . . . . . . . . . . . . 14 (𝜑 → (2↑9) = (2↑(8 + 1)))
299287, 194eqeltrd 2828 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
300 8nn0 12407 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
301300a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 8 ∈ ℕ0)
302299, 192, 301expaddd 14055 . . . . . . . . . . . . . 14 (𝜑 → (2↑(8 + 1)) = ((2↑8) · (2↑1)))
303298, 302eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (2↑9) = ((2↑8) · (2↑1)))
304 2exp8 17000 . . . . . . . . . . . . . . . . 17 (2↑8) = 256
305304a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑8) = 256)
306305oveq1d 7364 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑8) · (2↑1)) = (256 · (2↑1)))
307299exp1d 14048 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑1) = 2)
308307oveq2d 7365 . . . . . . . . . . . . . . 15 (𝜑 → (256 · (2↑1)) = (256 · 2))
309306, 308eqtrd 2764 . . . . . . . . . . . . . 14 (𝜑 → ((2↑8) · (2↑1)) = (256 · 2))
310233, 59deccl 12606 . . . . . . . . . . . . . . . 16 25 ∈ ℕ0
311 eqid 2729 . . . . . . . . . . . . . . . 16 256 = 256
312 eqid 2729 . . . . . . . . . . . . . . . . 17 25 = 25
313 2t2e4 12287 . . . . . . . . . . . . . . . . . . 19 (2 · 2) = 4
314313, 250oveq12i 7361 . . . . . . . . . . . . . . . . . 18 ((2 · 2) + (0 + 1)) = (4 + 1)
315 4p1e5 12269 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
316314, 315eqtri 2752 . . . . . . . . . . . . . . . . 17 ((2 · 2) + (0 + 1)) = 5
317 5t2e10 12691 . . . . . . . . . . . . . . . . . 18 (5 · 2) = 10
31893, 237, 250, 317decsuc 12622 . . . . . . . . . . . . . . . . 17 ((5 · 2) + 1) = 11
319233, 59, 237, 93, 312, 248, 233, 93, 93, 316, 318decmac 12643 . . . . . . . . . . . . . . . 16 ((25 · 2) + 1) = 51
320233, 310, 231, 311, 233, 93, 319, 255decmul1c 12656 . . . . . . . . . . . . . . 15 (256 · 2) = 512
321320a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (256 · 2) = 512)
322309, 321eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → ((2↑8) · (2↑1)) = 512)
323303, 322eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (2↑9) = 512)
324323oveq1d 7364 . . . . . . . . . . 11 (𝜑 → ((2↑9) − 1) = (512 − 1))
325 1p1e2 12248 . . . . . . . . . . . . . 14 (1 + 1) = 2
326 eqid 2729 . . . . . . . . . . . . . 14 511 = 511
327272, 93, 325, 326decsuc 12622 . . . . . . . . . . . . 13 (511 + 1) = 512
328272, 233deccl 12606 . . . . . . . . . . . . . . 15 512 ∈ ℕ0
329328nn0cni 12396 . . . . . . . . . . . . . 14 512 ∈ ℂ
330272, 93deccl 12606 . . . . . . . . . . . . . . 15 511 ∈ ℕ0
331330nn0cni 12396 . . . . . . . . . . . . . 14 511 ∈ ℂ
332329, 242, 331subadd2i 11452 . . . . . . . . . . . . 13 ((512 − 1) = 511 ↔ (511 + 1) = 512)
333327, 332mpbir 231 . . . . . . . . . . . 12 (512 − 1) = 511
334333a1i 11 . . . . . . . . . . 11 (𝜑 → (512 − 1) = 511)
335324, 334eqtr2d 2765 . . . . . . . . . 10 (𝜑511 = ((2↑9) − 1))
336279, 295, 3353brtr3d 5123 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < ((2↑9) − 1))
337216ltm1d 12057 . . . . . . . . . 10 (𝜑 → ((2↑9) − 1) < (2↑9))
338215nn0zd 12497 . . . . . . . . . . . 12 (𝜑 → 9 ∈ ℤ)
33973, 338, 143, 35leexp2d 14159 . . . . . . . . . . 11 (𝜑 → (9 ≤ (⌈‘((2 logb 3)↑5)) ↔ (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5)))))
34087, 339mpbid 232 . . . . . . . . . 10 (𝜑 → (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5))))
341217, 216, 224, 337, 340ltletrd 11276 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) < (2↑(⌈‘((2 logb 3)↑5))))
342213, 217, 224, 336, 341lttrd 11277 . . . . . . . 8 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < (2↑(⌈‘((2 logb 3)↑5))))
343204, 342eqbrtrd 5114 . . . . . . 7 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
344343adantr 480 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
34530, 344eqbrtrd 5114 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
346 simpr 484 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → 3 = 𝑁)
347 oveq2 7357 . . . . . . . . . . . . 13 (3 = 𝑁 → (2 logb 3) = (2 logb 𝑁))
348347adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
349348oveq1d 7364 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑5) = ((2 logb 𝑁)↑5))
350349fveq2d 6826 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = (⌈‘((2 logb 𝑁)↑5)))
3518a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → 𝐵 = (⌈‘((2 logb 𝑁)↑5)))
352351eqcomd 2735 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
353350, 352eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = 𝐵)
354353oveq2d 7365 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (2 logb (⌈‘((2 logb 3)↑5))) = (2 logb 𝐵))
355354fveq2d 6826 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = (⌊‘(2 logb 𝐵)))
356346, 355oveq12d 7367 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (𝑁↑(⌊‘(2 logb 𝐵))))
357346oveq2d 7365 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
358357oveq1d 7364 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑2) = ((2 logb 𝑁)↑2))
359358fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (⌊‘((2 logb 3)↑2)) = (⌊‘((2 logb 𝑁)↑2)))
360359oveq2d 7365 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (1...(⌊‘((2 logb 3)↑2))) = (1...(⌊‘((2 logb 𝑁)↑2))))
361360prodeq1d 15827 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
362356, 361oveq12d 7367 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
363350oveq2d 7365 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 3)↑5))) = (2↑(⌈‘((2 logb 𝑁)↑5))))
364345, 362, 3633brtr3d 5123 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 𝑁)↑5))))
3657a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
366365eqcomd 2735 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) = 𝐴)
3678oveq2i 7360 . . . . . 6 (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5)))
368367a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5))))
369368eqcomd 2735 . . . 4 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 𝑁)↑5))) = (2↑𝐵))
370364, 366, 3693brtr3d 5123 . . 3 ((𝜑 ∧ 3 = 𝑁) → 𝐴 < (2↑𝐵))
371370ex 412 . 2 (𝜑 → (3 = 𝑁𝐴 < (2↑𝐵)))
372 eluzle 12748 . . . 4 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3733, 372syl 17 . . 3 (𝜑 → 3 ≤ 𝑁)
37414zred 12580 . . . 4 (𝜑𝑁 ∈ ℝ)
37555, 374leloed 11259 . . 3 (𝜑 → (3 ≤ 𝑁 ↔ (3 < 𝑁 ∨ 3 = 𝑁)))
376373, 375mpbid 232 . 2 (𝜑 → (3 < 𝑁 ∨ 3 = 𝑁))
37723, 371, 376mpjaod 860 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  6c6 12187  7c7 12188  8c8 12189  9c9 12190  0cn0 12384  cz 12471  cdc 12591  cuz 12735  +crp 12893  ...cfz 13410  cfl 13694  cceil 13695  cexp 13968  cprod 15810   logb clogb 26672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-ceil 13697  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464  df-logb 26673
This theorem is referenced by:  aks4d1p3  42071
  Copyright terms: Public domain W3C validator