Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p1 Structured version   Visualization version   GIF version

Theorem aks4d1p1 42168
Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024.)
Hypotheses
Ref Expression
aks4d1p1.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p1.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p1.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
Assertion
Ref Expression
aks4d1p1 (𝜑𝐴 < (2↑𝐵))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p1
StepHypRef Expression
1 3nn 12204 . . . . . 6 3 ∈ ℕ
21a1i 11 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℕ)
3 aks4d1p1.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
43adantr 480 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ (ℤ‘3))
5 eluznn 12816 . . . . 5 ((3 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℕ)
62, 4, 5syl2anc 584 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℕ)
7 aks4d1p1.2 . . . 4 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
8 aks4d1p1.3 . . . 4 𝐵 = (⌈‘((2 logb 𝑁)↑5))
9 3p1e4 12265 . . . . 5 (3 + 1) = 4
10 simpr 484 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → 3 < 𝑁)
11 3z 12505 . . . . . . . 8 3 ∈ ℤ
1211a1i 11 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 3 ∈ ℤ)
13 eluzelz 12742 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
143, 13syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ 3 < 𝑁) → 𝑁 ∈ ℤ)
1612, 15zltp1led 42071 . . . . . 6 ((𝜑 ∧ 3 < 𝑁) → (3 < 𝑁 ↔ (3 + 1) ≤ 𝑁))
1710, 16mpbid 232 . . . . 5 ((𝜑 ∧ 3 < 𝑁) → (3 + 1) ≤ 𝑁)
189, 17eqbrtrrid 5125 . . . 4 ((𝜑 ∧ 3 < 𝑁) → 4 ≤ 𝑁)
19 eqid 2731 . . . 4 (2 logb (((2 logb 𝑁)↑5) + 1)) = (2 logb (((2 logb 𝑁)↑5) + 1))
20 eqid 2731 . . . 4 ((2 logb 𝑁)↑2) = ((2 logb 𝑁)↑2)
21 eqid 2731 . . . 4 ((2 logb 𝑁)↑4) = ((2 logb 𝑁)↑4)
226, 7, 8, 18, 19, 20, 21aks4d1p1p5 42167 . . 3 ((𝜑 ∧ 3 < 𝑁) → 𝐴 < (2↑𝐵))
2322ex 412 . 2 (𝜑 → (3 < 𝑁𝐴 < (2↑𝐵)))
24 simp2 1137 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 3 = 𝑁)
2524eqcomd 2737 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → 𝑁 = 3)
2625oveq1d 7361 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → (𝑁𝑘) = (3↑𝑘))
2726oveq1d 7361 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
28273expa 1118 . . . . . . . 8 (((𝜑 ∧ 3 = 𝑁) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))) → ((𝑁𝑘) − 1) = ((3↑𝑘) − 1))
2928prodeq2dv 15829 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1))
3029oveq2d 7362 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)))
31 2rp 12895 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ+)
33 1red 11113 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℝ)
34 1lt2 12291 . . . . . . . . . . . . . . . . . . 19 1 < 2
3534a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 < 2)
3633, 35ltned 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≠ 2)
3736necomd 2983 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ≠ 1)
3811a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℤ)
3932, 37, 38relogbexpd 42066 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb (2↑3)) = 3)
4039eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑 → 3 = (2 logb (2↑3)))
41 cu2 14107 . . . . . . . . . . . . . . . 16 (2↑3) = 8
4241a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2↑3) = 8)
4342oveq2d 7362 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑3)) = (2 logb 8))
4440, 43eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → 3 = (2 logb 8))
45 2z 12504 . . . . . . . . . . . . . . 15 2 ∈ ℤ
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
4746zred 12577 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
4847leidd 11683 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ 2)
49 8re 12221 . . . . . . . . . . . . . . 15 8 ∈ ℝ
5049a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 8 ∈ ℝ)
51 8pos 12237 . . . . . . . . . . . . . . 15 0 < 8
5251a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 8)
5332rpgt0d 12937 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 2)
54 3re 12205 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 3 ∈ ℝ)
561nngt0i 12164 . . . . . . . . . . . . . . . . . . 19 0 < 3
5756a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 < 3)
5847, 53, 55, 57, 37relogbcld 42065 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 3) ∈ ℝ)
59 5nn0 12401 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ0
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 5 ∈ ℕ0)
6158, 60reexpcld 14070 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
62 ceilcl 13746 . . . . . . . . . . . . . . . 16 (((2 logb 3)↑5) ∈ ℝ → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6361, 62syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
6463zred 12577 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
65 0red 11115 . . . . . . . . . . . . . . 15 (𝜑 → 0 ∈ ℝ)
66 9re 12224 . . . . . . . . . . . . . . . . 17 9 ∈ ℝ
6766a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ∈ ℝ)
6850lep1d 12053 . . . . . . . . . . . . . . . . 17 (𝜑 → 8 ≤ (8 + 1))
69 8p1e9 12270 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (8 + 1) = 9)
7168, 70breqtrd 5115 . . . . . . . . . . . . . . . 16 (𝜑 → 8 ≤ 9)
72 2re 12199 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
7372a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 2 ∈ ℝ)
74 2pos 12228 . . . . . . . . . . . . . . . . . . . 20 0 < 2
7574a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 2)
76 3pos 12230 . . . . . . . . . . . . . . . . . . . 20 0 < 3
7776a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 3)
7873, 75, 55, 77, 37relogbcld 42065 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 logb 3) ∈ ℝ)
7978, 60reexpcld 14070 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
8079, 62syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
8180zred 12577 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
8255leidd 11683 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 3 ≤ 3)
8355, 823lexlogpow5ineq4 42148 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < ((2 logb 3)↑5))
8467, 79, 83ltled 11261 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ≤ ((2 logb 3)↑5))
85 ceilge 13749 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8679, 85syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (⌈‘((2 logb 3)↑5)))
8767, 79, 81, 84, 86letrd 11270 . . . . . . . . . . . . . . . 16 (𝜑 → 9 ≤ (⌈‘((2 logb 3)↑5)))
8850, 67, 64, 71, 87letrd 11270 . . . . . . . . . . . . . . 15 (𝜑 → 8 ≤ (⌈‘((2 logb 3)↑5)))
8965, 50, 64, 52, 88ltletrd 11273 . . . . . . . . . . . . . 14 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
9046, 48, 50, 52, 64, 89, 88logblebd 42068 . . . . . . . . . . . . 13 (𝜑 → (2 logb 8) ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9144, 90eqbrtrd 5111 . . . . . . . . . . . 12 (𝜑 → 3 ≤ (2 logb (⌈‘((2 logb 3)↑5))))
9279, 33readdcld 11141 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ∈ ℝ)
93 1nn0 12397 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
94 6nn 12214 . . . . . . . . . . . . . . . . . . 19 6 ∈ ℕ
9593, 94decnncl 12608 . . . . . . . . . . . . . . . . . 18 16 ∈ ℕ
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑16 ∈ ℕ)
9796nnred 12140 . . . . . . . . . . . . . . . 16 (𝜑16 ∈ ℝ)
98 ceilm1lt 13752 . . . . . . . . . . . . . . . . . 18 (((2 logb 3)↑5) ∈ ℝ → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
9979, 98syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5))
10081, 33, 79ltsubaddd 11713 . . . . . . . . . . . . . . . . 17 (𝜑 → (((⌈‘((2 logb 3)↑5)) − 1) < ((2 logb 3)↑5) ↔ (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1)))
10199, 100mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (⌈‘((2 logb 3)↑5)) < (((2 logb 3)↑5) + 1))
102 3lexlogpow5ineq5 42152 . . . . . . . . . . . . . . . . . . 19 ((2 logb 3)↑5) ≤ 15
103102a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((2 logb 3)↑5) ≤ 15)
104 5p1e6 12267 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 1) = 6
105 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 15 = 15
10693, 59, 104, 105decsuc 12619 . . . . . . . . . . . . . . . . . . . . 21 (15 + 1) = 16
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (15 + 1) = 16)
10897recnd 11140 . . . . . . . . . . . . . . . . . . . . 21 (𝜑16 ∈ ℂ)
109 1cnd 11107 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℂ)
110 5nn 12211 . . . . . . . . . . . . . . . . . . . . . . . 24 5 ∈ ℕ
11193, 110decnncl 12608 . . . . . . . . . . . . . . . . . . . . . . 23 15 ∈ ℕ
112111a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑15 ∈ ℕ)
113112nncnd 12141 . . . . . . . . . . . . . . . . . . . . 21 (𝜑15 ∈ ℂ)
114108, 109, 113subadd2d 11491 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((16 − 1) = 15 ↔ (15 + 1) = 16))
115107, 114mpbird 257 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (16 − 1) = 15)
116115eqcomd 2737 . . . . . . . . . . . . . . . . . 18 (𝜑15 = (16 − 1))
117103, 116breqtrd 5115 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 logb 3)↑5) ≤ (16 − 1))
118 leaddsub 11593 . . . . . . . . . . . . . . . . . 18 ((((2 logb 3)↑5) ∈ ℝ ∧ 1 ∈ ℝ ∧ 16 ∈ ℝ) → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
11979, 33, 97, 118syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((2 logb 3)↑5) + 1) ≤ 16 ↔ ((2 logb 3)↑5) ≤ (16 − 1)))
120117, 119mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (((2 logb 3)↑5) + 1) ≤ 16)
12181, 92, 97, 101, 120ltletrd 11273 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) < 16)
122 eqid 2731 . . . . . . . . . . . . . . . . 17 16 = 16
123 2exp4 16996 . . . . . . . . . . . . . . . . 17 (2↑4) = 16
124122, 123eqtr4i 2757 . . . . . . . . . . . . . . . 16 16 = (2↑4)
125124a1i 11 . . . . . . . . . . . . . . 15 (𝜑16 = (2↑4))
126121, 125breqtrd 5115 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) < (2↑4))
12746uzidd 12748 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ (ℤ‘2))
12864, 89elrpd 12931 . . . . . . . . . . . . . . 15 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ+)
129 4z 12506 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
130129a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 4 ∈ ℤ)
13132, 130rpexpcld 14154 . . . . . . . . . . . . . . 15 (𝜑 → (2↑4) ∈ ℝ+)
132 logblt 26721 . . . . . . . . . . . . . . 15 ((2 ∈ (ℤ‘2) ∧ (⌈‘((2 logb 3)↑5)) ∈ ℝ+ ∧ (2↑4) ∈ ℝ+) → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
133127, 128, 131, 132syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → ((⌈‘((2 logb 3)↑5)) < (2↑4) ↔ (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4))))
134126, 133mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (2 logb (2↑4)))
13532, 37, 130relogbexpd 42066 . . . . . . . . . . . . . 14 (𝜑 → (2 logb (2↑4)) = 4)
1369eqcomi 2740 . . . . . . . . . . . . . . 15 4 = (3 + 1)
137136a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 4 = (3 + 1))
138135, 137eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → (2 logb (2↑4)) = (3 + 1))
139134, 138breqtrd 5115 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))
14091, 139jca 511 . . . . . . . . . . 11 (𝜑 → (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1)))
14173, 75, 55, 57, 37relogbcld 42065 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 3) ∈ ℝ)
142141, 60reexpcld 14070 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑5) ∈ ℝ)
143142, 62syl 17 . . . . . . . . . . . . . 14 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℤ)
144143zred 12577 . . . . . . . . . . . . 13 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℝ)
145 9pos 12238 . . . . . . . . . . . . . . 15 0 < 9
146145a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 9)
14765, 67, 144, 146, 87ltletrd 11273 . . . . . . . . . . . . 13 (𝜑 → 0 < (⌈‘((2 logb 3)↑5)))
14873, 75, 144, 147, 37relogbcld 42065 . . . . . . . . . . . 12 (𝜑 → (2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ)
149 flbi 13720 . . . . . . . . . . . 12 (((2 logb (⌈‘((2 logb 3)↑5))) ∈ ℝ ∧ 3 ∈ ℤ) → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
150148, 38, 149syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3 ↔ (3 ≤ (2 logb (⌈‘((2 logb 3)↑5))) ∧ (2 logb (⌈‘((2 logb 3)↑5))) < (3 + 1))))
151140, 150mpbird 257 . . . . . . . . . 10 (𝜑 → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = 3)
152151oveq2d 7362 . . . . . . . . 9 (𝜑 → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (3↑3))
15378resqcld 14032 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
154 3lexlogpow2ineq2 42151 . . . . . . . . . . . . . . . . 17 (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3)
155154a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2 < ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < 3))
156155simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → 2 < ((2 logb 3)↑2))
15773, 153, 156ltled 11261 . . . . . . . . . . . . . 14 (𝜑 → 2 ≤ ((2 logb 3)↑2))
158155simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → ((2 logb 3)↑2) < 3)
159 df-3 12189 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
160159a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 = (2 + 1))
161158, 160breqtrd 5115 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) < (2 + 1))
162157, 161jca 511 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1)))
163141resqcld 14032 . . . . . . . . . . . . . 14 (𝜑 → ((2 logb 3)↑2) ∈ ℝ)
164 flbi 13720 . . . . . . . . . . . . . 14 ((((2 logb 3)↑2) ∈ ℝ ∧ 2 ∈ ℤ) → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
165163, 46, 164syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((2 logb 3)↑2)) = 2 ↔ (2 ≤ ((2 logb 3)↑2) ∧ ((2 logb 3)↑2) < (2 + 1))))
166162, 165mpbird 257 . . . . . . . . . . . 12 (𝜑 → (⌊‘((2 logb 3)↑2)) = 2)
167166oveq2d 7362 . . . . . . . . . . 11 (𝜑 → (1...(⌊‘((2 logb 3)↑2))) = (1...2))
168167prodeq1d 15827 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...2)((3↑𝑘) − 1))
169 1zzd 12503 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
170169, 46jca 511 . . . . . . . . . . . . 13 (𝜑 → (1 ∈ ℤ ∧ 2 ∈ ℤ))
171 1le2 12329 . . . . . . . . . . . . . . 15 1 ≤ 2
172171a1i 11 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 1 ≤ 2)
173 eluz 12746 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (2 ∈ (ℤ‘1) ↔ 1 ≤ 2))
174172, 173mpbird 257 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∈ (ℤ‘1))
175170, 174syl 17 . . . . . . . . . . . 12 (𝜑 → 2 ∈ (ℤ‘1))
176 3cn 12206 . . . . . . . . . . . . . . 15 3 ∈ ℂ
177176a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 3 ∈ ℂ)
178 elfznn 13453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...2) → 𝑘 ∈ ℕ)
179178adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ)
180179nnnn0d 12442 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...2)) → 𝑘 ∈ ℕ0)
181177, 180expcld 14053 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → (3↑𝑘) ∈ ℂ)
182 1cnd 11107 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...2)) → 1 ∈ ℂ)
183181, 182subcld 11472 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...2)) → ((3↑𝑘) − 1) ∈ ℂ)
184 oveq2 7354 . . . . . . . . . . . . 13 (𝑘 = 2 → (3↑𝑘) = (3↑2))
185184oveq1d 7361 . . . . . . . . . . . 12 (𝑘 = 2 → ((3↑𝑘) − 1) = ((3↑2) − 1))
186175, 183, 185fprodm1 15874 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)))
187 2m1e1 12246 . . . . . . . . . . . . . . . 16 (2 − 1) = 1
188187a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (2 − 1) = 1)
189188oveq2d 7362 . . . . . . . . . . . . . 14 (𝜑 → (1...(2 − 1)) = (1...1))
190189prodeq1d 15827 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ∏𝑘 ∈ (1...1)((3↑𝑘) − 1))
19155recnd 11140 . . . . . . . . . . . . . . . . 17 (𝜑 → 3 ∈ ℂ)
19293a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℕ0)
193191, 192expcld 14053 . . . . . . . . . . . . . . . 16 (𝜑 → (3↑1) ∈ ℂ)
194193, 109subcld 11472 . . . . . . . . . . . . . . 15 (𝜑 → ((3↑1) − 1) ∈ ℂ)
195169, 194jca 511 . . . . . . . . . . . . . 14 (𝜑 → (1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ))
196 oveq2 7354 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (3↑𝑘) = (3↑1))
197196oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((3↑𝑘) − 1) = ((3↑1) − 1))
198197fprod1 15870 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((3↑1) − 1) ∈ ℂ) → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
199195, 198syl 17 . . . . . . . . . . . . 13 (𝜑 → ∏𝑘 ∈ (1...1)((3↑𝑘) − 1) = ((3↑1) − 1))
200190, 199eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → ∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) = ((3↑1) − 1))
201200oveq1d 7361 . . . . . . . . . . 11 (𝜑 → (∏𝑘 ∈ (1...(2 − 1))((3↑𝑘) − 1) · ((3↑2) − 1)) = (((3↑1) − 1) · ((3↑2) − 1)))
202186, 201eqtrd 2766 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...2)((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
203168, 202eqtrd 2766 . . . . . . . . 9 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1) = (((3↑1) − 1) · ((3↑2) − 1)))
204152, 203oveq12d 7364 . . . . . . . 8 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
205 3nn0 12399 . . . . . . . . . . . 12 3 ∈ ℕ0
206205a1i 11 . . . . . . . . . . 11 (𝜑 → 3 ∈ ℕ0)
20755, 206reexpcld 14070 . . . . . . . . . 10 (𝜑 → (3↑3) ∈ ℝ)
20855, 192reexpcld 14070 . . . . . . . . . . . 12 (𝜑 → (3↑1) ∈ ℝ)
209208, 33resubcld 11545 . . . . . . . . . . 11 (𝜑 → ((3↑1) − 1) ∈ ℝ)
21055resqcld 14032 . . . . . . . . . . . 12 (𝜑 → (3↑2) ∈ ℝ)
211210, 33resubcld 11545 . . . . . . . . . . 11 (𝜑 → ((3↑2) − 1) ∈ ℝ)
212209, 211remulcld 11142 . . . . . . . . . 10 (𝜑 → (((3↑1) − 1) · ((3↑2) − 1)) ∈ ℝ)
213207, 212remulcld 11142 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) ∈ ℝ)
214 9nn0 12405 . . . . . . . . . . . 12 9 ∈ ℕ0
215214a1i 11 . . . . . . . . . . 11 (𝜑 → 9 ∈ ℕ0)
21673, 215reexpcld 14070 . . . . . . . . . 10 (𝜑 → (2↑9) ∈ ℝ)
217216, 33resubcld 11545 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) ∈ ℝ)
218 elnnz 12478 . . . . . . . . . . . . 13 ((⌈‘((2 logb 3)↑5)) ∈ ℕ ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℤ ∧ 0 < (⌈‘((2 logb 3)↑5))))
219143, 147, 218sylanbrc 583 . . . . . . . . . . . 12 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ)
220219orcd 873 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
221 elnn0 12383 . . . . . . . . . . . 12 ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0))
222221a1i 11 . . . . . . . . . . 11 (𝜑 → ((⌈‘((2 logb 3)↑5)) ∈ ℕ0 ↔ ((⌈‘((2 logb 3)↑5)) ∈ ℕ ∨ (⌈‘((2 logb 3)↑5)) = 0)))
223220, 222mpbird 257 . . . . . . . . . 10 (𝜑 → (⌈‘((2 logb 3)↑5)) ∈ ℕ0)
22473, 223reexpcld 14070 . . . . . . . . 9 (𝜑 → (2↑(⌈‘((2 logb 3)↑5))) ∈ ℝ)
225 8cn 12222 . . . . . . . . . . . . . . 15 8 ∈ ℂ
226 2cn 12200 . . . . . . . . . . . . . . 15 2 ∈ ℂ
227 8t2e16 12703 . . . . . . . . . . . . . . 15 (8 · 2) = 16
228225, 226, 227mulcomli 11121 . . . . . . . . . . . . . 14 (2 · 8) = 16
229228a1i 11 . . . . . . . . . . . . 13 (𝜑 → (2 · 8) = 16)
230229oveq2d 7362 . . . . . . . . . . . 12 (𝜑 → (27 · (2 · 8)) = (27 · 16))
231 6nn0 12402 . . . . . . . . . . . . . . 15 6 ∈ ℕ0
23293, 231deccl 12603 . . . . . . . . . . . . . 14 16 ∈ ℕ0
233 2nn0 12398 . . . . . . . . . . . . . 14 2 ∈ ℕ0
234 7nn0 12403 . . . . . . . . . . . . . 14 7 ∈ ℕ0
235 eqid 2731 . . . . . . . . . . . . . 14 27 = 27
23693, 93deccl 12603 . . . . . . . . . . . . . 14 11 ∈ ℕ0
237 0nn0 12396 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
238233dec0h 12610 . . . . . . . . . . . . . . 15 2 = 02
239 eqid 2731 . . . . . . . . . . . . . . 15 11 = 11
240232nn0cni 12393 . . . . . . . . . . . . . . . . . 18 16 ∈ ℂ
241240mul02i 11302 . . . . . . . . . . . . . . . . 17 (0 · 16) = 0
242 ax-1cn 11064 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
243176, 242, 9addcomli 11305 . . . . . . . . . . . . . . . . 17 (1 + 3) = 4
244241, 243oveq12i 7358 . . . . . . . . . . . . . . . 16 ((0 · 16) + (1 + 3)) = (0 + 4)
245 4cn 12210 . . . . . . . . . . . . . . . . 17 4 ∈ ℂ
246245addlidi 11301 . . . . . . . . . . . . . . . 16 (0 + 4) = 4
247244, 246eqtri 2754 . . . . . . . . . . . . . . 15 ((0 · 16) + (1 + 3)) = 4
24893dec0h 12610 . . . . . . . . . . . . . . . 16 1 = 01
249 2t1e2 12283 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
250 0p1e1 12242 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
251249, 250oveq12i 7358 . . . . . . . . . . . . . . . . 17 ((2 · 1) + (0 + 1)) = (2 + 1)
252 2p1e3 12262 . . . . . . . . . . . . . . . . 17 (2 + 1) = 3
253251, 252eqtri 2754 . . . . . . . . . . . . . . . 16 ((2 · 1) + (0 + 1)) = 3
254 6cn 12216 . . . . . . . . . . . . . . . . . 18 6 ∈ ℂ
255 6t2e12 12692 . . . . . . . . . . . . . . . . . 18 (6 · 2) = 12
256254, 226, 255mulcomli 11121 . . . . . . . . . . . . . . . . 17 (2 · 6) = 12
25793, 233, 252, 256decsuc 12619 . . . . . . . . . . . . . . . 16 ((2 · 6) + 1) = 13
25893, 231, 237, 93, 122, 248, 233, 205, 93, 253, 257decma2c 12641 . . . . . . . . . . . . . . 15 ((2 · 16) + 1) = 33
259237, 233, 93, 93, 238, 239, 232, 205, 205, 247, 258decmac 12640 . . . . . . . . . . . . . 14 ((2 · 16) + 11) = 43
260 4nn0 12400 . . . . . . . . . . . . . . 15 4 ∈ ℕ0
261 7cn 12219 . . . . . . . . . . . . . . . . . 18 7 ∈ ℂ
262261mulridi 11116 . . . . . . . . . . . . . . . . 17 (7 · 1) = 7
263262oveq1i 7356 . . . . . . . . . . . . . . . 16 ((7 · 1) + 4) = (7 + 4)
264 7p4e11 12664 . . . . . . . . . . . . . . . 16 (7 + 4) = 11
265263, 264eqtri 2754 . . . . . . . . . . . . . . 15 ((7 · 1) + 4) = 11
266 7t6e42 12701 . . . . . . . . . . . . . . 15 (7 · 6) = 42
267234, 93, 231, 122, 233, 260, 265, 266decmul2c 12654 . . . . . . . . . . . . . 14 (7 · 16) = 112
268232, 233, 234, 235, 233, 236, 259, 267decmul1c 12653 . . . . . . . . . . . . 13 (27 · 16) = 432
269268a1i 11 . . . . . . . . . . . 12 (𝜑 → (27 · 16) = 432)
270230, 269eqtrd 2766 . . . . . . . . . . 11 (𝜑 → (27 · (2 · 8)) = 432)
271260, 205deccl 12603 . . . . . . . . . . . . 13 43 ∈ ℕ0
27259, 93deccl 12603 . . . . . . . . . . . . 13 51 ∈ ℕ0
273 2lt10 12726 . . . . . . . . . . . . 13 2 < 10
274 3lt10 12725 . . . . . . . . . . . . . 14 3 < 10
275 4lt5 12297 . . . . . . . . . . . . . 14 4 < 5
276260, 59, 205, 93, 274, 275decltc 12617 . . . . . . . . . . . . 13 43 < 51
277271, 272, 233, 93, 273, 276decltc 12617 . . . . . . . . . . . 12 432 < 511
278277a1i 11 . . . . . . . . . . 11 (𝜑432 < 511)
279270, 278eqbrtrd 5111 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) < 511)
280 3exp3 17003 . . . . . . . . . . . . 13 (3↑3) = 27
281280a1i 11 . . . . . . . . . . . 12 (𝜑 → (3↑3) = 27)
282281eqcomd 2737 . . . . . . . . . . 11 (𝜑27 = (3↑3))
283191exp1d 14048 . . . . . . . . . . . . . 14 (𝜑 → (3↑1) = 3)
284283oveq1d 7361 . . . . . . . . . . . . 13 (𝜑 → ((3↑1) − 1) = (3 − 1))
285 3m1e2 12248 . . . . . . . . . . . . . 14 (3 − 1) = 2
286285a1i 11 . . . . . . . . . . . . 13 (𝜑 → (3 − 1) = 2)
287284, 286eqtr2d 2767 . . . . . . . . . . . 12 (𝜑 → 2 = ((3↑1) − 1))
288 sq3 14105 . . . . . . . . . . . . . . 15 (3↑2) = 9
289288a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (3↑2) = 9)
290289oveq1d 7361 . . . . . . . . . . . . 13 (𝜑 → ((3↑2) − 1) = (9 − 1))
291 9m1e8 12254 . . . . . . . . . . . . . 14 (9 − 1) = 8
292291a1i 11 . . . . . . . . . . . . 13 (𝜑 → (9 − 1) = 8)
293290, 292eqtr2d 2767 . . . . . . . . . . . 12 (𝜑 → 8 = ((3↑2) − 1))
294287, 293oveq12d 7364 . . . . . . . . . . 11 (𝜑 → (2 · 8) = (((3↑1) − 1) · ((3↑2) − 1)))
295282, 294oveq12d 7364 . . . . . . . . . 10 (𝜑 → (27 · (2 · 8)) = ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))))
296 df-9 12195 . . . . . . . . . . . . . . . 16 9 = (8 + 1)
297296a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 9 = (8 + 1))
298297oveq2d 7362 . . . . . . . . . . . . . 14 (𝜑 → (2↑9) = (2↑(8 + 1)))
299287, 194eqeltrd 2831 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
300 8nn0 12404 . . . . . . . . . . . . . . . 16 8 ∈ ℕ0
301300a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 8 ∈ ℕ0)
302299, 192, 301expaddd 14055 . . . . . . . . . . . . . 14 (𝜑 → (2↑(8 + 1)) = ((2↑8) · (2↑1)))
303298, 302eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → (2↑9) = ((2↑8) · (2↑1)))
304 2exp8 17000 . . . . . . . . . . . . . . . . 17 (2↑8) = 256
305304a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑8) = 256)
306305oveq1d 7361 . . . . . . . . . . . . . . 15 (𝜑 → ((2↑8) · (2↑1)) = (256 · (2↑1)))
307299exp1d 14048 . . . . . . . . . . . . . . . 16 (𝜑 → (2↑1) = 2)
308307oveq2d 7362 . . . . . . . . . . . . . . 15 (𝜑 → (256 · (2↑1)) = (256 · 2))
309306, 308eqtrd 2766 . . . . . . . . . . . . . 14 (𝜑 → ((2↑8) · (2↑1)) = (256 · 2))
310233, 59deccl 12603 . . . . . . . . . . . . . . . 16 25 ∈ ℕ0
311 eqid 2731 . . . . . . . . . . . . . . . 16 256 = 256
312 eqid 2731 . . . . . . . . . . . . . . . . 17 25 = 25
313 2t2e4 12284 . . . . . . . . . . . . . . . . . . 19 (2 · 2) = 4
314313, 250oveq12i 7358 . . . . . . . . . . . . . . . . . 18 ((2 · 2) + (0 + 1)) = (4 + 1)
315 4p1e5 12266 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
316314, 315eqtri 2754 . . . . . . . . . . . . . . . . 17 ((2 · 2) + (0 + 1)) = 5
317 5t2e10 12688 . . . . . . . . . . . . . . . . . 18 (5 · 2) = 10
31893, 237, 250, 317decsuc 12619 . . . . . . . . . . . . . . . . 17 ((5 · 2) + 1) = 11
319233, 59, 237, 93, 312, 248, 233, 93, 93, 316, 318decmac 12640 . . . . . . . . . . . . . . . 16 ((25 · 2) + 1) = 51
320233, 310, 231, 311, 233, 93, 319, 255decmul1c 12653 . . . . . . . . . . . . . . 15 (256 · 2) = 512
321320a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (256 · 2) = 512)
322309, 321eqtrd 2766 . . . . . . . . . . . . 13 (𝜑 → ((2↑8) · (2↑1)) = 512)
323303, 322eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → (2↑9) = 512)
324323oveq1d 7361 . . . . . . . . . . 11 (𝜑 → ((2↑9) − 1) = (512 − 1))
325 1p1e2 12245 . . . . . . . . . . . . . 14 (1 + 1) = 2
326 eqid 2731 . . . . . . . . . . . . . 14 511 = 511
327272, 93, 325, 326decsuc 12619 . . . . . . . . . . . . 13 (511 + 1) = 512
328272, 233deccl 12603 . . . . . . . . . . . . . . 15 512 ∈ ℕ0
329328nn0cni 12393 . . . . . . . . . . . . . 14 512 ∈ ℂ
330272, 93deccl 12603 . . . . . . . . . . . . . . 15 511 ∈ ℕ0
331330nn0cni 12393 . . . . . . . . . . . . . 14 511 ∈ ℂ
332329, 242, 331subadd2i 11449 . . . . . . . . . . . . 13 ((512 − 1) = 511 ↔ (511 + 1) = 512)
333327, 332mpbir 231 . . . . . . . . . . . 12 (512 − 1) = 511
334333a1i 11 . . . . . . . . . . 11 (𝜑 → (512 − 1) = 511)
335324, 334eqtr2d 2767 . . . . . . . . . 10 (𝜑511 = ((2↑9) − 1))
336279, 295, 3353brtr3d 5120 . . . . . . . . 9 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < ((2↑9) − 1))
337216ltm1d 12054 . . . . . . . . . 10 (𝜑 → ((2↑9) − 1) < (2↑9))
338215nn0zd 12494 . . . . . . . . . . . 12 (𝜑 → 9 ∈ ℤ)
33973, 338, 143, 35leexp2d 14159 . . . . . . . . . . 11 (𝜑 → (9 ≤ (⌈‘((2 logb 3)↑5)) ↔ (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5)))))
34087, 339mpbid 232 . . . . . . . . . 10 (𝜑 → (2↑9) ≤ (2↑(⌈‘((2 logb 3)↑5))))
341217, 216, 224, 337, 340ltletrd 11273 . . . . . . . . 9 (𝜑 → ((2↑9) − 1) < (2↑(⌈‘((2 logb 3)↑5))))
342213, 217, 224, 336, 341lttrd 11274 . . . . . . . 8 (𝜑 → ((3↑3) · (((3↑1) − 1) · ((3↑2) − 1))) < (2↑(⌈‘((2 logb 3)↑5))))
343204, 342eqbrtrd 5111 . . . . . . 7 (𝜑 → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
344343adantr 480 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((3↑𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
34530, 344eqbrtrd 5111 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 3)↑5))))
346 simpr 484 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → 3 = 𝑁)
347 oveq2 7354 . . . . . . . . . . . . 13 (3 = 𝑁 → (2 logb 3) = (2 logb 𝑁))
348347adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
349348oveq1d 7361 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑5) = ((2 logb 𝑁)↑5))
350349fveq2d 6826 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = (⌈‘((2 logb 𝑁)↑5)))
3518a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ 3 = 𝑁) → 𝐵 = (⌈‘((2 logb 𝑁)↑5)))
352351eqcomd 2737 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 𝑁)↑5)) = 𝐵)
353350, 352eqtrd 2766 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → (⌈‘((2 logb 3)↑5)) = 𝐵)
354353oveq2d 7362 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (2 logb (⌈‘((2 logb 3)↑5))) = (2 logb 𝐵))
355354fveq2d 6826 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (⌊‘(2 logb (⌈‘((2 logb 3)↑5)))) = (⌊‘(2 logb 𝐵)))
356346, 355oveq12d 7364 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → (3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) = (𝑁↑(⌊‘(2 logb 𝐵))))
357346oveq2d 7362 . . . . . . . . . 10 ((𝜑 ∧ 3 = 𝑁) → (2 logb 3) = (2 logb 𝑁))
358357oveq1d 7361 . . . . . . . . 9 ((𝜑 ∧ 3 = 𝑁) → ((2 logb 3)↑2) = ((2 logb 𝑁)↑2))
359358fveq2d 6826 . . . . . . . 8 ((𝜑 ∧ 3 = 𝑁) → (⌊‘((2 logb 3)↑2)) = (⌊‘((2 logb 𝑁)↑2)))
360359oveq2d 7362 . . . . . . 7 ((𝜑 ∧ 3 = 𝑁) → (1...(⌊‘((2 logb 3)↑2))) = (1...(⌊‘((2 logb 𝑁)↑2))))
361360prodeq1d 15827 . . . . . 6 ((𝜑 ∧ 3 = 𝑁) → ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
362356, 361oveq12d 7364 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → ((3↑(⌊‘(2 logb (⌈‘((2 logb 3)↑5))))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 3)↑2)))((𝑁𝑘) − 1)) = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
363350oveq2d 7362 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 3)↑5))) = (2↑(⌈‘((2 logb 𝑁)↑5))))
364345, 362, 3633brtr3d 5120 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) < (2↑(⌈‘((2 logb 𝑁)↑5))))
3657a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
366365eqcomd 2737 . . . 4 ((𝜑 ∧ 3 = 𝑁) → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) = 𝐴)
3678oveq2i 7357 . . . . . 6 (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5)))
368367a1i 11 . . . . 5 ((𝜑 ∧ 3 = 𝑁) → (2↑𝐵) = (2↑(⌈‘((2 logb 𝑁)↑5))))
369368eqcomd 2737 . . . 4 ((𝜑 ∧ 3 = 𝑁) → (2↑(⌈‘((2 logb 𝑁)↑5))) = (2↑𝐵))
370364, 366, 3693brtr3d 5120 . . 3 ((𝜑 ∧ 3 = 𝑁) → 𝐴 < (2↑𝐵))
371370ex 412 . 2 (𝜑 → (3 = 𝑁𝐴 < (2↑𝐵)))
372 eluzle 12745 . . . 4 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
3733, 372syl 17 . . 3 (𝜑 → 3 ≤ 𝑁)
37414zred 12577 . . . 4 (𝜑𝑁 ∈ ℝ)
37555, 374leloed 11256 . . 3 (𝜑 → (3 ≤ 𝑁 ↔ (3 < 𝑁 ∨ 3 = 𝑁)))
376373, 375mpbid 232 . 2 (𝜑 → (3 < 𝑁 ∨ 3 = 𝑁))
37723, 371, 376mpjaod 860 1 (𝜑𝐴 < (2↑𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  3c3 12181  4c4 12182  5c5 12183  6c6 12184  7c7 12185  8c8 12186  9c9 12187  0cn0 12381  cz 12468  cdc 12588  cuz 12732  +crp 12890  ...cfz 13407  cfl 13694  cceil 13695  cexp 13968  cprod 15810   logb clogb 26701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-ceil 13697  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-logb 26702
This theorem is referenced by:  aks4d1p3  42170
  Copyright terms: Public domain W3C validator