Proof of Theorem 1259lem2
Step | Hyp | Ref
| Expression |
1 | | 1259prm.1 |
. . 3
⊢ 𝑁 = ;;;1259 |
2 | | 1nn0 12179 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
3 | | 2nn0 12180 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
4 | 2, 3 | deccl 12381 |
. . . . 5
⊢ ;12 ∈
ℕ0 |
5 | | 5nn0 12183 |
. . . . 5
⊢ 5 ∈
ℕ0 |
6 | 4, 5 | deccl 12381 |
. . . 4
⊢ ;;125 ∈ ℕ0 |
7 | | 9nn 12001 |
. . . 4
⊢ 9 ∈
ℕ |
8 | 6, 7 | decnncl 12386 |
. . 3
⊢ ;;;1259
∈ ℕ |
9 | 1, 8 | eqeltri 2835 |
. 2
⊢ 𝑁 ∈ ℕ |
10 | | 2nn 11976 |
. 2
⊢ 2 ∈
ℕ |
11 | | 7nn0 12185 |
. . 3
⊢ 7 ∈
ℕ0 |
12 | 2, 11 | deccl 12381 |
. 2
⊢ ;17 ∈
ℕ0 |
13 | | 4nn0 12182 |
. . . 4
⊢ 4 ∈
ℕ0 |
14 | 2, 13 | deccl 12381 |
. . 3
⊢ ;14 ∈
ℕ0 |
15 | 14 | nn0zi 12275 |
. 2
⊢ ;14 ∈ ℤ |
16 | | 3nn0 12181 |
. . . 4
⊢ 3 ∈
ℕ0 |
17 | 2, 16 | deccl 12381 |
. . 3
⊢ ;13 ∈
ℕ0 |
18 | | 6nn0 12184 |
. . 3
⊢ 6 ∈
ℕ0 |
19 | 17, 18 | deccl 12381 |
. 2
⊢ ;;136 ∈ ℕ0 |
20 | | 8nn0 12186 |
. . . 4
⊢ 8 ∈
ℕ0 |
21 | 20, 11 | deccl 12381 |
. . 3
⊢ ;87 ∈
ℕ0 |
22 | | 0nn0 12178 |
. . 3
⊢ 0 ∈
ℕ0 |
23 | 21, 22 | deccl 12381 |
. 2
⊢ ;;870 ∈ ℕ0 |
24 | 1 | 1259lem1 16760 |
. 2
⊢
((2↑;17) mod 𝑁) = (;;136
mod 𝑁) |
25 | | eqid 2738 |
. . 3
⊢ ;17 = ;17 |
26 | | 2cn 11978 |
. . . . . 6
⊢ 2 ∈
ℂ |
27 | 26 | mulid1i 10910 |
. . . . 5
⊢ (2
· 1) = 2 |
28 | 27 | oveq1i 7265 |
. . . 4
⊢ ((2
· 1) + 1) = (2 + 1) |
29 | | 2p1e3 12045 |
. . . 4
⊢ (2 + 1) =
3 |
30 | 28, 29 | eqtri 2766 |
. . 3
⊢ ((2
· 1) + 1) = 3 |
31 | | 7cn 11997 |
. . . 4
⊢ 7 ∈
ℂ |
32 | | 7t2e14 12475 |
. . . 4
⊢ (7
· 2) = ;14 |
33 | 31, 26, 32 | mulcomli 10915 |
. . 3
⊢ (2
· 7) = ;14 |
34 | 3, 2, 11, 25, 13, 2, 30, 33 | decmul2c 12432 |
. 2
⊢ (2
· ;17) = ;34 |
35 | | 9nn0 12187 |
. . . 4
⊢ 9 ∈
ℕ0 |
36 | | eqid 2738 |
. . . 4
⊢ ;;870 = ;;870 |
37 | | eqid 2738 |
. . . . 5
⊢ ;;125 = ;;125 |
38 | | eqid 2738 |
. . . . . 6
⊢ ;87 = ;87 |
39 | | eqid 2738 |
. . . . . 6
⊢ ;12 = ;12 |
40 | | 8p1e9 12053 |
. . . . . 6
⊢ (8 + 1) =
9 |
41 | | 7p2e9 12064 |
. . . . . 6
⊢ (7 + 2) =
9 |
42 | 20, 11, 2, 3, 38, 39, 40, 41 | decadd 12420 |
. . . . 5
⊢ (;87 + ;12) = ;99 |
43 | | 9p7e16 12458 |
. . . . . 6
⊢ (9 + 7) =
;16 |
44 | | eqid 2738 |
. . . . . . 7
⊢ ;14 = ;14 |
45 | | 3cn 11984 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
46 | | ax-1cn 10860 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
47 | | 3p1e4 12048 |
. . . . . . . . 9
⊢ (3 + 1) =
4 |
48 | 45, 46, 47 | addcomli 11097 |
. . . . . . . 8
⊢ (1 + 3) =
4 |
49 | 13 | dec0h 12388 |
. . . . . . . 8
⊢ 4 = ;04 |
50 | 48, 49 | eqtri 2766 |
. . . . . . 7
⊢ (1 + 3) =
;04 |
51 | 46 | mulid1i 10910 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
52 | | 00id 11080 |
. . . . . . . . 9
⊢ (0 + 0) =
0 |
53 | 51, 52 | oveq12i 7267 |
. . . . . . . 8
⊢ ((1
· 1) + (0 + 0)) = (1 + 0) |
54 | 46 | addid1i 11092 |
. . . . . . . 8
⊢ (1 + 0) =
1 |
55 | 53, 54 | eqtri 2766 |
. . . . . . 7
⊢ ((1
· 1) + (0 + 0)) = 1 |
56 | | 4cn 11988 |
. . . . . . . . . 10
⊢ 4 ∈
ℂ |
57 | 56 | mulid1i 10910 |
. . . . . . . . 9
⊢ (4
· 1) = 4 |
58 | 57 | oveq1i 7265 |
. . . . . . . 8
⊢ ((4
· 1) + 4) = (4 + 4) |
59 | | 4p4e8 12058 |
. . . . . . . 8
⊢ (4 + 4) =
8 |
60 | 20 | dec0h 12388 |
. . . . . . . 8
⊢ 8 = ;08 |
61 | 58, 59, 60 | 3eqtri 2770 |
. . . . . . 7
⊢ ((4
· 1) + 4) = ;08 |
62 | 2, 13, 22, 13, 44, 50, 2, 20, 22, 55, 61 | decmac 12418 |
. . . . . 6
⊢ ((;14 · 1) + (1 + 3)) = ;18 |
63 | 18 | dec0h 12388 |
. . . . . . 7
⊢ 6 = ;06 |
64 | 26 | mulid2i 10911 |
. . . . . . . . 9
⊢ (1
· 2) = 2 |
65 | 46 | addid2i 11093 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
66 | 64, 65 | oveq12i 7267 |
. . . . . . . 8
⊢ ((1
· 2) + (0 + 1)) = (2 + 1) |
67 | 66, 29 | eqtri 2766 |
. . . . . . 7
⊢ ((1
· 2) + (0 + 1)) = 3 |
68 | | 4t2e8 12071 |
. . . . . . . . 9
⊢ (4
· 2) = 8 |
69 | 68 | oveq1i 7265 |
. . . . . . . 8
⊢ ((4
· 2) + 6) = (8 + 6) |
70 | | 8p6e14 12450 |
. . . . . . . 8
⊢ (8 + 6) =
;14 |
71 | 69, 70 | eqtri 2766 |
. . . . . . 7
⊢ ((4
· 2) + 6) = ;14 |
72 | 2, 13, 22, 18, 44, 63, 3, 13, 2, 67, 71 | decmac 12418 |
. . . . . 6
⊢ ((;14 · 2) + 6) = ;34 |
73 | 2, 3, 2, 18, 39, 43, 14, 13, 16, 62, 72 | decma2c 12419 |
. . . . 5
⊢ ((;14 · ;12) + (9 + 7)) = ;;184 |
74 | 35 | dec0h 12388 |
. . . . . 6
⊢ 9 = ;09 |
75 | | 5cn 11991 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
76 | 75 | mulid2i 10911 |
. . . . . . . 8
⊢ (1
· 5) = 5 |
77 | 26 | addid2i 11093 |
. . . . . . . 8
⊢ (0 + 2) =
2 |
78 | 76, 77 | oveq12i 7267 |
. . . . . . 7
⊢ ((1
· 5) + (0 + 2)) = (5 + 2) |
79 | | 5p2e7 12059 |
. . . . . . 7
⊢ (5 + 2) =
7 |
80 | 78, 79 | eqtri 2766 |
. . . . . 6
⊢ ((1
· 5) + (0 + 2)) = 7 |
81 | | 5t4e20 12468 |
. . . . . . . 8
⊢ (5
· 4) = ;20 |
82 | 75, 56, 81 | mulcomli 10915 |
. . . . . . 7
⊢ (4
· 5) = ;20 |
83 | | 9cn 12003 |
. . . . . . . 8
⊢ 9 ∈
ℂ |
84 | 83 | addid2i 11093 |
. . . . . . 7
⊢ (0 + 9) =
9 |
85 | 3, 22, 35, 82, 84 | decaddi 12426 |
. . . . . 6
⊢ ((4
· 5) + 9) = ;29 |
86 | 2, 13, 22, 35, 44, 74, 5, 35, 3, 80, 85 | decmac 12418 |
. . . . 5
⊢ ((;14 · 5) + 9) = ;79 |
87 | 4, 5, 35, 35, 37, 42, 14, 35, 11, 73, 86 | decma2c 12419 |
. . . 4
⊢ ((;14 · ;;125) +
(;87 + ;12)) = ;;;1849 |
88 | 83 | mulid2i 10911 |
. . . . . . . . 9
⊢ (1
· 9) = 9 |
89 | 88 | oveq1i 7265 |
. . . . . . . 8
⊢ ((1
· 9) + 3) = (9 + 3) |
90 | | 9p3e12 12454 |
. . . . . . . 8
⊢ (9 + 3) =
;12 |
91 | 89, 90 | eqtri 2766 |
. . . . . . 7
⊢ ((1
· 9) + 3) = ;12 |
92 | | 9t4e36 12490 |
. . . . . . . 8
⊢ (9
· 4) = ;36 |
93 | 83, 56, 92 | mulcomli 10915 |
. . . . . . 7
⊢ (4
· 9) = ;36 |
94 | 35, 2, 13, 44, 18, 16, 91, 93 | decmul1c 12431 |
. . . . . 6
⊢ (;14 · 9) = ;;126 |
95 | 94 | oveq1i 7265 |
. . . . 5
⊢ ((;14 · 9) + 0) = (;;126 + 0) |
96 | 4, 18 | deccl 12381 |
. . . . . . 7
⊢ ;;126 ∈ ℕ0 |
97 | 96 | nn0cni 12175 |
. . . . . 6
⊢ ;;126 ∈ ℂ |
98 | 97 | addid1i 11092 |
. . . . 5
⊢ (;;126 + 0) = ;;126 |
99 | 95, 98 | eqtri 2766 |
. . . 4
⊢ ((;14 · 9) + 0) = ;;126 |
100 | 6, 35, 21, 22, 1, 36, 14, 18, 4, 87, 99 | decma2c 12419 |
. . 3
⊢ ((;14 · 𝑁) + ;;870) =
;;;;18496 |
101 | | eqid 2738 |
. . . 4
⊢ ;;136 = ;;136 |
102 | 20, 2 | deccl 12381 |
. . . 4
⊢ ;81 ∈
ℕ0 |
103 | | eqid 2738 |
. . . . 5
⊢ ;13 = ;13 |
104 | | eqid 2738 |
. . . . 5
⊢ ;81 = ;81 |
105 | 13, 22 | deccl 12381 |
. . . . 5
⊢ ;40 ∈
ℕ0 |
106 | | eqid 2738 |
. . . . . . 7
⊢ ;40 = ;40 |
107 | 56 | addid2i 11093 |
. . . . . . 7
⊢ (0 + 4) =
4 |
108 | | 8cn 12000 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
109 | 108 | addid1i 11092 |
. . . . . . 7
⊢ (8 + 0) =
8 |
110 | 22, 20, 13, 22, 60, 106, 107, 109 | decadd 12420 |
. . . . . 6
⊢ (8 +
;40) = ;48 |
111 | | 4p1e5 12049 |
. . . . . . . 8
⊢ (4 + 1) =
5 |
112 | 5 | dec0h 12388 |
. . . . . . . 8
⊢ 5 = ;05 |
113 | 111, 112 | eqtri 2766 |
. . . . . . 7
⊢ (4 + 1) =
;05 |
114 | 45 | mulid1i 10910 |
. . . . . . . . 9
⊢ (3
· 1) = 3 |
115 | 114 | oveq1i 7265 |
. . . . . . . 8
⊢ ((3
· 1) + 5) = (3 + 5) |
116 | | 5p3e8 12060 |
. . . . . . . . 9
⊢ (5 + 3) =
8 |
117 | 75, 45, 116 | addcomli 11097 |
. . . . . . . 8
⊢ (3 + 5) =
8 |
118 | 115, 117,
60 | 3eqtri 2770 |
. . . . . . 7
⊢ ((3
· 1) + 5) = ;08 |
119 | 2, 16, 22, 5, 103, 113, 2, 20, 22, 55, 118 | decmac 12418 |
. . . . . 6
⊢ ((;13 · 1) + (4 + 1)) = ;18 |
120 | | 6cn 11994 |
. . . . . . . . 9
⊢ 6 ∈
ℂ |
121 | 120 | mulid1i 10910 |
. . . . . . . 8
⊢ (6
· 1) = 6 |
122 | 121 | oveq1i 7265 |
. . . . . . 7
⊢ ((6
· 1) + 8) = (6 + 8) |
123 | 108, 120,
70 | addcomli 11097 |
. . . . . . 7
⊢ (6 + 8) =
;14 |
124 | 122, 123 | eqtri 2766 |
. . . . . 6
⊢ ((6
· 1) + 8) = ;14 |
125 | 17, 18, 13, 20, 101, 110, 2, 13, 2, 119, 124 | decmac 12418 |
. . . . 5
⊢ ((;;136 · 1) + (8 + ;40)) = ;;184 |
126 | 2 | dec0h 12388 |
. . . . . 6
⊢ 1 = ;01 |
127 | 65, 126 | eqtri 2766 |
. . . . . . 7
⊢ (0 + 1) =
;01 |
128 | 45 | mulid2i 10911 |
. . . . . . . . 9
⊢ (1
· 3) = 3 |
129 | 128, 65 | oveq12i 7267 |
. . . . . . . 8
⊢ ((1
· 3) + (0 + 1)) = (3 + 1) |
130 | 129, 47 | eqtri 2766 |
. . . . . . 7
⊢ ((1
· 3) + (0 + 1)) = 4 |
131 | | 3t3e9 12070 |
. . . . . . . . 9
⊢ (3
· 3) = 9 |
132 | 131 | oveq1i 7265 |
. . . . . . . 8
⊢ ((3
· 3) + 1) = (9 + 1) |
133 | | 9p1e10 12368 |
. . . . . . . 8
⊢ (9 + 1) =
;10 |
134 | 132, 133 | eqtri 2766 |
. . . . . . 7
⊢ ((3
· 3) + 1) = ;10 |
135 | 2, 16, 22, 2, 103, 127, 16, 22, 2, 130, 134 | decmac 12418 |
. . . . . 6
⊢ ((;13 · 3) + (0 + 1)) = ;40 |
136 | | 6t3e18 12471 |
. . . . . . 7
⊢ (6
· 3) = ;18 |
137 | 2, 20, 2, 136, 40 | decaddi 12426 |
. . . . . 6
⊢ ((6
· 3) + 1) = ;19 |
138 | 17, 18, 22, 2, 101, 126, 16, 35, 2, 135, 137 | decmac 12418 |
. . . . 5
⊢ ((;;136 · 3) + 1) = ;;409 |
139 | 2, 16, 20, 2, 103, 104, 19, 35, 105, 125, 138 | decma2c 12419 |
. . . 4
⊢ ((;;136 · ;13) + ;81) = ;;;1849 |
140 | 16 | dec0h 12388 |
. . . . . 6
⊢ 3 = ;03 |
141 | 120 | mulid2i 10911 |
. . . . . . . 8
⊢ (1
· 6) = 6 |
142 | 141, 77 | oveq12i 7267 |
. . . . . . 7
⊢ ((1
· 6) + (0 + 2)) = (6 + 2) |
143 | | 6p2e8 12062 |
. . . . . . 7
⊢ (6 + 2) =
8 |
144 | 142, 143 | eqtri 2766 |
. . . . . 6
⊢ ((1
· 6) + (0 + 2)) = 8 |
145 | 120, 45, 136 | mulcomli 10915 |
. . . . . . 7
⊢ (3
· 6) = ;18 |
146 | | 1p1e2 12028 |
. . . . . . 7
⊢ (1 + 1) =
2 |
147 | | 8p3e11 12447 |
. . . . . . 7
⊢ (8 + 3) =
;11 |
148 | 2, 20, 16, 145, 146, 2, 147 | decaddci 12427 |
. . . . . 6
⊢ ((3
· 6) + 3) = ;21 |
149 | 2, 16, 22, 16, 103, 140, 18, 2, 3, 144, 148 | decmac 12418 |
. . . . 5
⊢ ((;13 · 6) + 3) = ;81 |
150 | | 6t6e36 12474 |
. . . . 5
⊢ (6
· 6) = ;36 |
151 | 18, 17, 18, 101, 18, 16, 149, 150 | decmul1c 12431 |
. . . 4
⊢ (;;136 · 6) = ;;816 |
152 | 19, 17, 18, 101, 18, 102, 139, 151 | decmul2c 12432 |
. . 3
⊢ (;;136 · ;;136) =
;;;;18496 |
153 | 100, 152 | eqtr4i 2769 |
. 2
⊢ ((;14 · 𝑁) + ;;870) =
(;;136 · ;;136) |
154 | 9, 10, 12, 15, 19, 23, 24, 34, 153 | mod2xi 16698 |
1
⊢
((2↑;34) mod 𝑁) = (;;870
mod 𝑁) |