MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19prm Structured version   Visualization version   GIF version

Theorem 19prm 16997
Description: 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
19prm 19 ∈ ℙ

Proof of Theorem 19prm
StepHypRef Expression
1 1nn0 12436 . . 3 1 ∈ ℕ0
2 9nn 12258 . . 3 9 ∈ ℕ
31, 2decnncl 12645 . 2 19 ∈ ℕ
4 1nn 12171 . . 3 1 ∈ ℕ
5 9nn0 12444 . . 3 9 ∈ ℕ0
6 1lt10 12764 . . 3 1 < 10
74, 5, 1, 6declti 12663 . 2 1 < 19
8 4nn0 12439 . . 3 4 ∈ ℕ0
9 4t2e8 12328 . . 3 (4 · 2) = 8
10 df-9 12230 . . 3 9 = (8 + 1)
111, 8, 9, 10dec2dvds 16942 . 2 ¬ 2 ∥ 19
12 3nn 12239 . . 3 3 ∈ ℕ
13 6nn0 12441 . . 3 6 ∈ ℕ0
14 8nn0 12443 . . . 4 8 ∈ ℕ0
15 8p1e9 12310 . . . 4 (8 + 1) = 9
16 6cn 12251 . . . . 5 6 ∈ ℂ
17 3cn 12241 . . . . 5 3 ∈ ℂ
18 6t3e18 12730 . . . . 5 (6 · 3) = 18
1916, 17, 18mulcomli 11171 . . . 4 (3 · 6) = 18
201, 14, 15, 19decsuc 12656 . . 3 ((3 · 6) + 1) = 19
21 1lt3 12333 . . 3 1 < 3
2212, 13, 4, 20, 21ndvdsi 16301 . 2 ¬ 3 ∥ 19
23 2nn0 12437 . . 3 2 ∈ ℕ0
24 5nn0 12440 . . 3 5 ∈ ℕ0
25 9lt10 12756 . . 3 9 < 10
26 1lt2 12331 . . 3 1 < 2
271, 23, 5, 24, 25, 26decltc 12654 . 2 19 < 25
283, 7, 11, 22, 27prmlem1 16987 1 19 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7362  1c1 11059   · cmul 11063  2c2 12215  3c3 12216  4c4 12217  5c5 12218  6c6 12219  8c8 12221  9c9 12222  cdc 12625  cprime 16554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-rp 12923  df-fz 13432  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-dvds 16144  df-prm 16555
This theorem is referenced by:  2503lem3  17018
  Copyright terms: Public domain W3C validator