MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem4 Structured version   Visualization version   GIF version

Theorem 1259lem4 17045
Description: Lemma for 1259prm 17047. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
1259prm.1 𝑁 = 1259
Assertion
Ref Expression
1259lem4 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)

Proof of Theorem 1259lem4
StepHypRef Expression
1 2nn 12201 . 2 2 ∈ ℕ
2 6nn0 12405 . . . 4 6 ∈ ℕ0
3 2nn0 12401 . . . 4 2 ∈ ℕ0
42, 3deccl 12606 . . 3 62 ∈ ℕ0
5 9nn0 12408 . . 3 9 ∈ ℕ0
64, 5deccl 12606 . 2 629 ∈ ℕ0
7 0z 12482 . 2 0 ∈ ℤ
8 1nn 12139 . 2 1 ∈ ℕ
9 1nn0 12400 . 2 1 ∈ ℕ0
109, 3deccl 12606 . . . . . . 7 12 ∈ ℕ0
11 5nn0 12404 . . . . . . 7 5 ∈ ℕ0
1210, 11deccl 12606 . . . . . 6 125 ∈ ℕ0
13 8nn0 12407 . . . . . 6 8 ∈ ℕ0
1412, 13deccl 12606 . . . . 5 1258 ∈ ℕ0
1514nn0cni 12396 . . . 4 1258 ∈ ℂ
16 ax-1cn 11067 . . . 4 1 ∈ ℂ
17 1259prm.1 . . . . 5 𝑁 = 1259
18 8p1e9 12273 . . . . . 6 (8 + 1) = 9
19 eqid 2729 . . . . . 6 1258 = 1258
2012, 13, 18, 19decsuc 12622 . . . . 5 (1258 + 1) = 1259
2117, 20eqtr4i 2755 . . . 4 𝑁 = (1258 + 1)
2215, 16, 21mvrraddi 11380 . . 3 (𝑁 − 1) = 1258
2322, 14eqeltri 2824 . 2 (𝑁 − 1) ∈ ℕ0
24 9nn 12226 . . . . 5 9 ∈ ℕ
2512, 24decnncl 12611 . . . 4 1259 ∈ ℕ
2617, 25eqeltri 2824 . . 3 𝑁 ∈ ℕ
272, 9deccl 12606 . . . 4 61 ∈ ℕ0
2827, 3deccl 12606 . . 3 612 ∈ ℕ0
29 3nn0 12402 . . . . 5 3 ∈ ℕ0
30 4nn0 12403 . . . . 5 4 ∈ ℕ0
3129, 30deccl 12606 . . . 4 34 ∈ ℕ0
3231nn0zi 12500 . . 3 34 ∈ ℤ
3329, 3deccl 12606 . . . 4 32 ∈ ℕ0
3433, 30deccl 12606 . . 3 324 ∈ ℕ0
35 7nn0 12406 . . . 4 7 ∈ ℕ0
369, 35deccl 12606 . . 3 17 ∈ ℕ0
379, 29deccl 12606 . . . 4 13 ∈ ℕ0
3837, 2deccl 12606 . . 3 136 ∈ ℕ0
39 0nn0 12399 . . . . . 6 0 ∈ ℕ0
4029, 39deccl 12606 . . . . 5 30 ∈ ℕ0
4140, 2deccl 12606 . . . 4 306 ∈ ℕ0
42 8nn 12223 . . . . 5 8 ∈ ℕ
439, 42decnncl 12611 . . . 4 18 ∈ ℕ
4410, 30deccl 12606 . . . . 5 124 ∈ ℕ0
4544, 9deccl 12606 . . . 4 1241 ∈ ℕ0
469, 11deccl 12606 . . . . . 6 15 ∈ ℕ0
4746, 29deccl 12606 . . . . 5 153 ∈ ℕ0
48 1z 12505 . . . . 5 1 ∈ ℤ
4911, 39deccl 12606 . . . . 5 50 ∈ ℕ0
5046, 3deccl 12606 . . . . . 6 152 ∈ ℕ0
513, 11deccl 12606 . . . . . 6 25 ∈ ℕ0
5235, 2deccl 12606 . . . . . . 7 76 ∈ ℕ0
53171259lem3 17044 . . . . . . 7 ((2↑76) mod 𝑁) = (5 mod 𝑁)
54 eqid 2729 . . . . . . . 8 76 = 76
55 4p1e5 12269 . . . . . . . . 9 (4 + 1) = 5
56 7cn 12222 . . . . . . . . . 10 7 ∈ ℂ
57 2cn 12203 . . . . . . . . . 10 2 ∈ ℂ
58 7t2e14 12700 . . . . . . . . . 10 (7 · 2) = 14
5956, 57, 58mulcomli 11124 . . . . . . . . 9 (2 · 7) = 14
609, 30, 55, 59decsuc 12622 . . . . . . . 8 ((2 · 7) + 1) = 15
61 6cn 12219 . . . . . . . . 9 6 ∈ ℂ
62 6t2e12 12695 . . . . . . . . 9 (6 · 2) = 12
6361, 57, 62mulcomli 11124 . . . . . . . 8 (2 · 6) = 12
643, 35, 2, 54, 3, 9, 60, 63decmul2c 12657 . . . . . . 7 (2 · 76) = 152
6551nn0cni 12396 . . . . . . . . 9 25 ∈ ℂ
6665addlidi 11304 . . . . . . . 8 (0 + 25) = 25
6726nncni 12138 . . . . . . . . . 10 𝑁 ∈ ℂ
6867mul02i 11305 . . . . . . . . 9 (0 · 𝑁) = 0
6968oveq1i 7359 . . . . . . . 8 ((0 · 𝑁) + 25) = (0 + 25)
70 5t5e25 12694 . . . . . . . 8 (5 · 5) = 25
7166, 69, 703eqtr4i 2762 . . . . . . 7 ((0 · 𝑁) + 25) = (5 · 5)
7226, 1, 52, 7, 11, 51, 53, 64, 71mod2xi 16981 . . . . . 6 ((2↑152) mod 𝑁) = (25 mod 𝑁)
73 2p1e3 12265 . . . . . . 7 (2 + 1) = 3
74 eqid 2729 . . . . . . 7 152 = 152
7546, 3, 73, 74decsuc 12622 . . . . . 6 (152 + 1) = 153
7649nn0cni 12396 . . . . . . . 8 50 ∈ ℂ
7776addlidi 11304 . . . . . . 7 (0 + 50) = 50
7868oveq1i 7359 . . . . . . 7 ((0 · 𝑁) + 50) = (0 + 50)
79 eqid 2729 . . . . . . . 8 25 = 25
80 2t2e4 12287 . . . . . . . . . 10 (2 · 2) = 4
8180oveq1i 7359 . . . . . . . . 9 ((2 · 2) + 1) = (4 + 1)
8281, 55eqtri 2752 . . . . . . . 8 ((2 · 2) + 1) = 5
83 5t2e10 12691 . . . . . . . 8 (5 · 2) = 10
843, 3, 11, 79, 39, 9, 82, 83decmul1c 12656 . . . . . . 7 (25 · 2) = 50
8577, 78, 843eqtr4i 2762 . . . . . 6 ((0 · 𝑁) + 50) = (25 · 2)
8626, 1, 50, 7, 51, 49, 72, 75, 85modxp1i 16982 . . . . 5 ((2↑153) mod 𝑁) = (50 mod 𝑁)
87 eqid 2729 . . . . . 6 153 = 153
88 eqid 2729 . . . . . . . . 9 15 = 15
8957mulridi 11119 . . . . . . . . . . 11 (2 · 1) = 2
9089oveq1i 7359 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
9190, 73eqtri 2752 . . . . . . . . 9 ((2 · 1) + 1) = 3
92 5cn 12216 . . . . . . . . . 10 5 ∈ ℂ
9392, 57, 83mulcomli 11124 . . . . . . . . 9 (2 · 5) = 10
943, 9, 11, 88, 39, 9, 91, 93decmul2c 12657 . . . . . . . 8 (2 · 15) = 30
9594oveq1i 7359 . . . . . . 7 ((2 · 15) + 0) = (30 + 0)
9640nn0cni 12396 . . . . . . . 8 30 ∈ ℂ
9796addridi 11303 . . . . . . 7 (30 + 0) = 30
9895, 97eqtri 2752 . . . . . 6 ((2 · 15) + 0) = 30
99 3cn 12209 . . . . . . . 8 3 ∈ ℂ
100 3t2e6 12289 . . . . . . . 8 (3 · 2) = 6
10199, 57, 100mulcomli 11124 . . . . . . 7 (2 · 3) = 6
1022dec0h 12613 . . . . . . 7 6 = 06
103101, 102eqtri 2752 . . . . . 6 (2 · 3) = 06
1043, 46, 29, 87, 2, 39, 98, 103decmul2c 12657 . . . . 5 (2 · 153) = 306
10567mullidi 11120 . . . . . . . 8 (1 · 𝑁) = 𝑁
106105, 17eqtri 2752 . . . . . . 7 (1 · 𝑁) = 1259
107 eqid 2729 . . . . . . 7 1241 = 1241
1083, 30deccl 12606 . . . . . . . 8 24 ∈ ℕ0
109 eqid 2729 . . . . . . . . 9 24 = 24
1103, 30, 55, 109decsuc 12622 . . . . . . . 8 (24 + 1) = 25
111 eqid 2729 . . . . . . . . 9 125 = 125
112 eqid 2729 . . . . . . . . 9 124 = 124
113 eqid 2729 . . . . . . . . . 10 12 = 12
114 1p1e2 12248 . . . . . . . . . 10 (1 + 1) = 2
115 2p2e4 12258 . . . . . . . . . 10 (2 + 2) = 4
1169, 3, 9, 3, 113, 113, 114, 115decadd 12645 . . . . . . . . 9 (12 + 12) = 24
117 5p4e9 12281 . . . . . . . . 9 (5 + 4) = 9
11810, 11, 10, 30, 111, 112, 116, 117decadd 12645 . . . . . . . 8 (125 + 124) = 249
119108, 110, 118decsucc 12632 . . . . . . 7 ((125 + 124) + 1) = 250
120 9p1e10 12593 . . . . . . 7 (9 + 1) = 10
12112, 5, 44, 9, 106, 107, 119, 120decaddc2 12647 . . . . . 6 ((1 · 𝑁) + 1241) = 2500
122 eqid 2729 . . . . . . 7 50 = 50
12392mul02i 11305 . . . . . . . . . 10 (0 · 5) = 0
12411, 11, 39, 122, 70, 123decmul1 12655 . . . . . . . . 9 (50 · 5) = 250
125124oveq1i 7359 . . . . . . . 8 ((50 · 5) + 0) = (250 + 0)
12651, 39deccl 12606 . . . . . . . . . 10 250 ∈ ℕ0
127126nn0cni 12396 . . . . . . . . 9 250 ∈ ℂ
128127addridi 11303 . . . . . . . 8 (250 + 0) = 250
129125, 128eqtri 2752 . . . . . . 7 ((50 · 5) + 0) = 250
13076mul01i 11306 . . . . . . . 8 (50 · 0) = 0
13139dec0h 12613 . . . . . . . 8 0 = 00
132130, 131eqtri 2752 . . . . . . 7 (50 · 0) = 00
13349, 11, 39, 122, 39, 39, 129, 132decmul2c 12657 . . . . . 6 (50 · 50) = 2500
134121, 133eqtr4i 2755 . . . . 5 ((1 · 𝑁) + 1241) = (50 · 50)
13526, 1, 47, 48, 49, 45, 86, 104, 134mod2xi 16981 . . . 4 ((2↑306) mod 𝑁) = (1241 mod 𝑁)
136 eqid 2729 . . . . 5 306 = 306
137 eqid 2729 . . . . . 6 30 = 30
1389dec0h 12613 . . . . . 6 1 = 01
139 00id 11291 . . . . . . . 8 (0 + 0) = 0
140101, 139oveq12i 7361 . . . . . . 7 ((2 · 3) + (0 + 0)) = (6 + 0)
14161addridi 11303 . . . . . . 7 (6 + 0) = 6
142140, 141eqtri 2752 . . . . . 6 ((2 · 3) + (0 + 0)) = 6
14357mul01i 11306 . . . . . . . 8 (2 · 0) = 0
144143oveq1i 7359 . . . . . . 7 ((2 · 0) + 1) = (0 + 1)
145 0p1e1 12245 . . . . . . 7 (0 + 1) = 1
146144, 145, 1383eqtri 2756 . . . . . 6 ((2 · 0) + 1) = 01
14729, 39, 39, 9, 137, 138, 3, 9, 39, 142, 146decma2c 12644 . . . . 5 ((2 · 30) + 1) = 61
1483, 40, 2, 136, 3, 9, 147, 63decmul2c 12657 . . . 4 (2 · 306) = 612
149 eqid 2729 . . . . . 6 18 = 18
15010, 30, 55, 112decsuc 12622 . . . . . 6 (124 + 1) = 125
151 8cn 12225 . . . . . . 7 8 ∈ ℂ
152151, 16, 18addcomli 11308 . . . . . 6 (1 + 8) = 9
15344, 9, 9, 13, 107, 149, 150, 152decadd 12645 . . . . 5 (1241 + 18) = 1259
154153, 17eqtr4i 2755 . . . 4 (1241 + 18) = 𝑁
15534nn0cni 12396 . . . . . 6 324 ∈ ℂ
156155addlidi 11304 . . . . 5 (0 + 324) = 324
15768oveq1i 7359 . . . . 5 ((0 · 𝑁) + 324) = (0 + 324)
1589, 13deccl 12606 . . . . . 6 18 ∈ ℕ0
1599, 30deccl 12606 . . . . . 6 14 ∈ ℕ0
160 eqid 2729 . . . . . . 7 14 = 14
16116mulridi 11119 . . . . . . . . 9 (1 · 1) = 1
162161, 114oveq12i 7361 . . . . . . . 8 ((1 · 1) + (1 + 1)) = (1 + 2)
163 1p2e3 12266 . . . . . . . 8 (1 + 2) = 3
164162, 163eqtri 2752 . . . . . . 7 ((1 · 1) + (1 + 1)) = 3
165151mulridi 11119 . . . . . . . . 9 (8 · 1) = 8
166165oveq1i 7359 . . . . . . . 8 ((8 · 1) + 4) = (8 + 4)
167 8p4e12 12673 . . . . . . . 8 (8 + 4) = 12
168166, 167eqtri 2752 . . . . . . 7 ((8 · 1) + 4) = 12
1699, 13, 9, 30, 149, 160, 9, 3, 9, 164, 168decmac 12643 . . . . . 6 ((18 · 1) + 14) = 32
170151mullidi 11120 . . . . . . . . 9 (1 · 8) = 8
171170oveq1i 7359 . . . . . . . 8 ((1 · 8) + 6) = (8 + 6)
172 8p6e14 12675 . . . . . . . 8 (8 + 6) = 14
173171, 172eqtri 2752 . . . . . . 7 ((1 · 8) + 6) = 14
174 8t8e64 12712 . . . . . . 7 (8 · 8) = 64
17513, 9, 13, 149, 30, 2, 173, 174decmul1c 12656 . . . . . 6 (18 · 8) = 144
176158, 9, 13, 149, 30, 159, 169, 175decmul2c 12657 . . . . 5 (18 · 18) = 324
177156, 157, 1763eqtr4i 2762 . . . 4 ((0 · 𝑁) + 324) = (18 · 18)
1781, 41, 7, 43, 34, 45, 135, 148, 154, 177mod2xnegi 16983 . . 3 ((2↑612) mod 𝑁) = (324 mod 𝑁)
179171259lem1 17042 . . 3 ((2↑17) mod 𝑁) = (136 mod 𝑁)
180 eqid 2729 . . . 4 612 = 612
181 eqid 2729 . . . 4 17 = 17
182 eqid 2729 . . . . 5 61 = 61
1832, 9, 114, 182decsuc 12622 . . . 4 (61 + 1) = 62
184 7p2e9 12284 . . . . 5 (7 + 2) = 9
18556, 57, 184addcomli 11308 . . . 4 (2 + 7) = 9
18627, 3, 9, 35, 180, 181, 183, 185decadd 12645 . . 3 (612 + 17) = 629
18729, 9deccl 12606 . . . . 5 31 ∈ ℕ0
188 eqid 2729 . . . . . . 7 31 = 31
189 3p2e5 12274 . . . . . . . . 9 (3 + 2) = 5
19099, 57, 189addcomli 11308 . . . . . . . 8 (2 + 3) = 5
1919, 3, 29, 113, 190decaddi 12651 . . . . . . 7 (12 + 3) = 15
192 5p1e6 12270 . . . . . . 7 (5 + 1) = 6
19310, 11, 29, 9, 111, 188, 191, 192decadd 12645 . . . . . 6 (125 + 31) = 156
194114oveq1i 7359 . . . . . . . . 9 ((1 + 1) + 1) = (2 + 1)
195194, 73eqtri 2752 . . . . . . . 8 ((1 + 1) + 1) = 3
196 7p5e12 12668 . . . . . . . . 9 (7 + 5) = 12
19756, 92, 196addcomli 11308 . . . . . . . 8 (5 + 7) = 12
1989, 11, 9, 35, 88, 181, 195, 3, 197decaddc 12646 . . . . . . 7 (15 + 17) = 32
199 eqid 2729 . . . . . . . 8 34 = 34
200 7p3e10 12666 . . . . . . . . 9 (7 + 3) = 10
20156, 99, 200addcomli 11308 . . . . . . . 8 (3 + 7) = 10
20299mulridi 11119 . . . . . . . . . 10 (3 · 1) = 3
20316addridi 11303 . . . . . . . . . 10 (1 + 0) = 1
204202, 203oveq12i 7361 . . . . . . . . 9 ((3 · 1) + (1 + 0)) = (3 + 1)
205 3p1e4 12268 . . . . . . . . 9 (3 + 1) = 4
206204, 205eqtri 2752 . . . . . . . 8 ((3 · 1) + (1 + 0)) = 4
207 4cn 12213 . . . . . . . . . . 11 4 ∈ ℂ
208207mulridi 11119 . . . . . . . . . 10 (4 · 1) = 4
209208oveq1i 7359 . . . . . . . . 9 ((4 · 1) + 0) = (4 + 0)
210207addridi 11303 . . . . . . . . 9 (4 + 0) = 4
21130dec0h 12613 . . . . . . . . 9 4 = 04
212209, 210, 2113eqtri 2756 . . . . . . . 8 ((4 · 1) + 0) = 04
21329, 30, 9, 39, 199, 201, 9, 30, 39, 206, 212decmac 12643 . . . . . . 7 ((34 · 1) + (3 + 7)) = 44
2143dec0h 12613 . . . . . . . 8 2 = 02
215100, 145oveq12i 7361 . . . . . . . . 9 ((3 · 2) + (0 + 1)) = (6 + 1)
216 6p1e7 12271 . . . . . . . . 9 (6 + 1) = 7
217215, 216eqtri 2752 . . . . . . . 8 ((3 · 2) + (0 + 1)) = 7
218 4t2e8 12291 . . . . . . . . . 10 (4 · 2) = 8
219218oveq1i 7359 . . . . . . . . 9 ((4 · 2) + 2) = (8 + 2)
220 8p2e10 12671 . . . . . . . . 9 (8 + 2) = 10
221219, 220eqtri 2752 . . . . . . . 8 ((4 · 2) + 2) = 10
22229, 30, 39, 3, 199, 214, 3, 39, 9, 217, 221decmac 12643 . . . . . . 7 ((34 · 2) + 2) = 70
2239, 3, 29, 3, 113, 198, 31, 39, 35, 213, 222decma2c 12644 . . . . . 6 ((34 · 12) + (15 + 17)) = 440
224 5t3e15 12692 . . . . . . . . 9 (5 · 3) = 15
22592, 99, 224mulcomli 11124 . . . . . . . 8 (3 · 5) = 15
226 5p2e7 12279 . . . . . . . 8 (5 + 2) = 7
2279, 11, 3, 225, 226decaddi 12651 . . . . . . 7 ((3 · 5) + 2) = 17
228 5t4e20 12693 . . . . . . . . 9 (5 · 4) = 20
22992, 207, 228mulcomli 11124 . . . . . . . 8 (4 · 5) = 20
23061addlidi 11304 . . . . . . . 8 (0 + 6) = 6
2313, 39, 2, 229, 230decaddi 12651 . . . . . . 7 ((4 · 5) + 6) = 26
23229, 30, 2, 199, 11, 2, 3, 227, 231decrmac 12649 . . . . . 6 ((34 · 5) + 6) = 176
23310, 11, 46, 2, 111, 193, 31, 2, 36, 223, 232decma2c 12644 . . . . 5 ((34 · 125) + (125 + 31)) = 4406
234 9cn 12228 . . . . . . . 8 9 ∈ ℂ
235 9t3e27 12714 . . . . . . . 8 (9 · 3) = 27
236234, 99, 235mulcomli 11124 . . . . . . 7 (3 · 9) = 27
237 7p4e11 12667 . . . . . . 7 (7 + 4) = 11
2383, 35, 30, 236, 73, 9, 237decaddci 12652 . . . . . 6 ((3 · 9) + 4) = 31
239 9t4e36 12715 . . . . . . . 8 (9 · 4) = 36
240234, 207, 239mulcomli 11124 . . . . . . 7 (4 · 9) = 36
241151, 61, 172addcomli 11308 . . . . . . 7 (6 + 8) = 14
24229, 2, 13, 240, 205, 30, 241decaddci 12652 . . . . . 6 ((4 · 9) + 8) = 44
24329, 30, 13, 199, 5, 30, 30, 238, 242decrmac 12649 . . . . 5 ((34 · 9) + 8) = 314
24412, 5, 12, 13, 17, 22, 31, 30, 187, 233, 243decma2c 12644 . . . 4 ((34 · 𝑁) + (𝑁 − 1)) = 44064
245 eqid 2729 . . . . 5 136 = 136
2469, 5deccl 12606 . . . . . 6 19 ∈ ℕ0
247246, 30deccl 12606 . . . . 5 194 ∈ ℕ0
248 eqid 2729 . . . . . 6 13 = 13
249 eqid 2729 . . . . . 6 194 = 194
2505, 35deccl 12606 . . . . . 6 97 ∈ ℕ0
2519, 9deccl 12606 . . . . . . 7 11 ∈ ℕ0
252 eqid 2729 . . . . . . 7 324 = 324
253 eqid 2729 . . . . . . . 8 19 = 19
254 eqid 2729 . . . . . . . 8 97 = 97
255234, 16, 120addcomli 11308 . . . . . . . . 9 (1 + 9) = 10
2569, 39, 145, 255decsuc 12622 . . . . . . . 8 ((1 + 9) + 1) = 11
257 9p7e16 12683 . . . . . . . 8 (9 + 7) = 16
2589, 5, 5, 35, 253, 254, 256, 2, 257decaddc 12646 . . . . . . 7 (19 + 97) = 116
259 eqid 2729 . . . . . . . 8 32 = 32
260 eqid 2729 . . . . . . . . 9 11 = 11
2619, 9, 114, 260decsuc 12622 . . . . . . . 8 (11 + 1) = 12
26289oveq1i 7359 . . . . . . . . 9 ((2 · 1) + 2) = (2 + 2)
263262, 115, 2113eqtri 2756 . . . . . . . 8 ((2 · 1) + 2) = 04
26429, 3, 9, 3, 259, 261, 9, 30, 39, 206, 263decmac 12643 . . . . . . 7 ((32 · 1) + (11 + 1)) = 44
265208oveq1i 7359 . . . . . . . 8 ((4 · 1) + 6) = (4 + 6)
266 6p4e10 12663 . . . . . . . . 9 (6 + 4) = 10
26761, 207, 266addcomli 11308 . . . . . . . 8 (4 + 6) = 10
268265, 267eqtri 2752 . . . . . . 7 ((4 · 1) + 6) = 10
26933, 30, 251, 2, 252, 258, 9, 39, 9, 264, 268decmac 12643 . . . . . 6 ((324 · 1) + (19 + 97)) = 440
270145, 138eqtri 2752 . . . . . . . 8 (0 + 1) = 01
271 3t3e9 12290 . . . . . . . . . 10 (3 · 3) = 9
272271, 139oveq12i 7361 . . . . . . . . 9 ((3 · 3) + (0 + 0)) = (9 + 0)
273234addridi 11303 . . . . . . . . 9 (9 + 0) = 9
274272, 273eqtri 2752 . . . . . . . 8 ((3 · 3) + (0 + 0)) = 9
275101oveq1i 7359 . . . . . . . . 9 ((2 · 3) + 1) = (6 + 1)
27635dec0h 12613 . . . . . . . . 9 7 = 07
277275, 216, 2763eqtri 2756 . . . . . . . 8 ((2 · 3) + 1) = 07
27829, 3, 39, 9, 259, 270, 29, 35, 39, 274, 277decmac 12643 . . . . . . 7 ((32 · 3) + (0 + 1)) = 97
279 4t3e12 12689 . . . . . . . 8 (4 · 3) = 12
280 4p2e6 12276 . . . . . . . . 9 (4 + 2) = 6
281207, 57, 280addcomli 11308 . . . . . . . 8 (2 + 4) = 6
2829, 3, 30, 279, 281decaddi 12651 . . . . . . 7 ((4 · 3) + 4) = 16
28333, 30, 39, 30, 252, 211, 29, 2, 9, 278, 282decmac 12643 . . . . . 6 ((324 · 3) + 4) = 976
2849, 29, 246, 30, 248, 249, 34, 2, 250, 269, 283decma2c 12644 . . . . 5 ((324 · 13) + 194) = 4406
285 6t3e18 12696 . . . . . . . . 9 (6 · 3) = 18
28661, 99, 285mulcomli 11124 . . . . . . . 8 (3 · 6) = 18
2879, 13, 18, 286decsuc 12622 . . . . . . 7 ((3 · 6) + 1) = 19
2889, 3, 3, 63, 115decaddi 12651 . . . . . . 7 ((2 · 6) + 2) = 14
28929, 3, 3, 259, 2, 30, 9, 287, 288decrmac 12649 . . . . . 6 ((32 · 6) + 2) = 194
290 6t4e24 12697 . . . . . . 7 (6 · 4) = 24
29161, 207, 290mulcomli 11124 . . . . . 6 (4 · 6) = 24
2922, 33, 30, 252, 30, 3, 289, 291decmul1c 12656 . . . . 5 (324 · 6) = 1944
29334, 37, 2, 245, 30, 247, 284, 292decmul2c 12657 . . . 4 (324 · 136) = 44064
294244, 293eqtr4i 2755 . . 3 ((34 · 𝑁) + (𝑁 − 1)) = (324 · 136)
29526, 1, 28, 32, 34, 23, 36, 38, 178, 179, 186, 294modxai 16980 . 2 ((2↑629) mod 𝑁) = ((𝑁 − 1) mod 𝑁)
296 eqid 2729 . . . 4 629 = 629
297 eqid 2729 . . . . 5 62 = 62
298139oveq2i 7360 . . . . . 6 ((2 · 6) + (0 + 0)) = ((2 · 6) + 0)
29963oveq1i 7359 . . . . . 6 ((2 · 6) + 0) = (12 + 0)
30010nn0cni 12396 . . . . . . 7 12 ∈ ℂ
301300addridi 11303 . . . . . 6 (12 + 0) = 12
302298, 299, 3013eqtri 2756 . . . . 5 ((2 · 6) + (0 + 0)) = 12
30311dec0h 12613 . . . . . 6 5 = 05
30481, 55, 3033eqtri 2756 . . . . 5 ((2 · 2) + 1) = 05
3052, 3, 39, 9, 297, 138, 3, 11, 39, 302, 304decma2c 12644 . . . 4 ((2 · 62) + 1) = 125
306 9t2e18 12713 . . . . 5 (9 · 2) = 18
307234, 57, 306mulcomli 11124 . . . 4 (2 · 9) = 18
3083, 4, 5, 296, 13, 9, 305, 307decmul2c 12657 . . 3 (2 · 629) = 1258
309308, 22eqtr4i 2755 . 2 (2 · 629) = (𝑁 − 1)
310 npcan 11372 . . 3 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
31167, 16, 310mp2an 692 . 2 ((𝑁 − 1) + 1) = 𝑁
31268oveq1i 7359 . . 3 ((0 · 𝑁) + 1) = (0 + 1)
313145, 312, 1613eqtr4i 2762 . 2 ((0 · 𝑁) + 1) = (1 · 1)
3141, 6, 7, 8, 9, 23, 295, 309, 311, 313mod2xnegi 16983 1 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  cn 12128  2c2 12183  3c3 12184  4c4 12185  5c5 12186  6c6 12187  7c7 12188  8c8 12189  9c9 12190  0cn0 12384  cdc 12591   mod cmo 13773  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969
This theorem is referenced by:  1259prm  17047
  Copyright terms: Public domain W3C validator