MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem4 Structured version   Visualization version   GIF version

Theorem 1259lem4 17104
Description: Lemma for 1259prm 17106. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
1259prm.1 𝑁 = 1259
Assertion
Ref Expression
1259lem4 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)

Proof of Theorem 1259lem4
StepHypRef Expression
1 2nn 12259 . 2 2 ∈ ℕ
2 6nn0 12463 . . . 4 6 ∈ ℕ0
3 2nn0 12459 . . . 4 2 ∈ ℕ0
42, 3deccl 12664 . . 3 62 ∈ ℕ0
5 9nn0 12466 . . 3 9 ∈ ℕ0
64, 5deccl 12664 . 2 629 ∈ ℕ0
7 0z 12540 . 2 0 ∈ ℤ
8 1nn 12197 . 2 1 ∈ ℕ
9 1nn0 12458 . 2 1 ∈ ℕ0
109, 3deccl 12664 . . . . . . 7 12 ∈ ℕ0
11 5nn0 12462 . . . . . . 7 5 ∈ ℕ0
1210, 11deccl 12664 . . . . . 6 125 ∈ ℕ0
13 8nn0 12465 . . . . . 6 8 ∈ ℕ0
1412, 13deccl 12664 . . . . 5 1258 ∈ ℕ0
1514nn0cni 12454 . . . 4 1258 ∈ ℂ
16 ax-1cn 11126 . . . 4 1 ∈ ℂ
17 1259prm.1 . . . . 5 𝑁 = 1259
18 8p1e9 12331 . . . . . 6 (8 + 1) = 9
19 eqid 2729 . . . . . 6 1258 = 1258
2012, 13, 18, 19decsuc 12680 . . . . 5 (1258 + 1) = 1259
2117, 20eqtr4i 2755 . . . 4 𝑁 = (1258 + 1)
2215, 16, 21mvrraddi 11438 . . 3 (𝑁 − 1) = 1258
2322, 14eqeltri 2824 . 2 (𝑁 − 1) ∈ ℕ0
24 9nn 12284 . . . . 5 9 ∈ ℕ
2512, 24decnncl 12669 . . . 4 1259 ∈ ℕ
2617, 25eqeltri 2824 . . 3 𝑁 ∈ ℕ
272, 9deccl 12664 . . . 4 61 ∈ ℕ0
2827, 3deccl 12664 . . 3 612 ∈ ℕ0
29 3nn0 12460 . . . . 5 3 ∈ ℕ0
30 4nn0 12461 . . . . 5 4 ∈ ℕ0
3129, 30deccl 12664 . . . 4 34 ∈ ℕ0
3231nn0zi 12558 . . 3 34 ∈ ℤ
3329, 3deccl 12664 . . . 4 32 ∈ ℕ0
3433, 30deccl 12664 . . 3 324 ∈ ℕ0
35 7nn0 12464 . . . 4 7 ∈ ℕ0
369, 35deccl 12664 . . 3 17 ∈ ℕ0
379, 29deccl 12664 . . . 4 13 ∈ ℕ0
3837, 2deccl 12664 . . 3 136 ∈ ℕ0
39 0nn0 12457 . . . . . 6 0 ∈ ℕ0
4029, 39deccl 12664 . . . . 5 30 ∈ ℕ0
4140, 2deccl 12664 . . . 4 306 ∈ ℕ0
42 8nn 12281 . . . . 5 8 ∈ ℕ
439, 42decnncl 12669 . . . 4 18 ∈ ℕ
4410, 30deccl 12664 . . . . 5 124 ∈ ℕ0
4544, 9deccl 12664 . . . 4 1241 ∈ ℕ0
469, 11deccl 12664 . . . . . 6 15 ∈ ℕ0
4746, 29deccl 12664 . . . . 5 153 ∈ ℕ0
48 1z 12563 . . . . 5 1 ∈ ℤ
4911, 39deccl 12664 . . . . 5 50 ∈ ℕ0
5046, 3deccl 12664 . . . . . 6 152 ∈ ℕ0
513, 11deccl 12664 . . . . . 6 25 ∈ ℕ0
5235, 2deccl 12664 . . . . . . 7 76 ∈ ℕ0
53171259lem3 17103 . . . . . . 7 ((2↑76) mod 𝑁) = (5 mod 𝑁)
54 eqid 2729 . . . . . . . 8 76 = 76
55 4p1e5 12327 . . . . . . . . 9 (4 + 1) = 5
56 7cn 12280 . . . . . . . . . 10 7 ∈ ℂ
57 2cn 12261 . . . . . . . . . 10 2 ∈ ℂ
58 7t2e14 12758 . . . . . . . . . 10 (7 · 2) = 14
5956, 57, 58mulcomli 11183 . . . . . . . . 9 (2 · 7) = 14
609, 30, 55, 59decsuc 12680 . . . . . . . 8 ((2 · 7) + 1) = 15
61 6cn 12277 . . . . . . . . 9 6 ∈ ℂ
62 6t2e12 12753 . . . . . . . . 9 (6 · 2) = 12
6361, 57, 62mulcomli 11183 . . . . . . . 8 (2 · 6) = 12
643, 35, 2, 54, 3, 9, 60, 63decmul2c 12715 . . . . . . 7 (2 · 76) = 152
6551nn0cni 12454 . . . . . . . . 9 25 ∈ ℂ
6665addlidi 11362 . . . . . . . 8 (0 + 25) = 25
6726nncni 12196 . . . . . . . . . 10 𝑁 ∈ ℂ
6867mul02i 11363 . . . . . . . . 9 (0 · 𝑁) = 0
6968oveq1i 7397 . . . . . . . 8 ((0 · 𝑁) + 25) = (0 + 25)
70 5t5e25 12752 . . . . . . . 8 (5 · 5) = 25
7166, 69, 703eqtr4i 2762 . . . . . . 7 ((0 · 𝑁) + 25) = (5 · 5)
7226, 1, 52, 7, 11, 51, 53, 64, 71mod2xi 17040 . . . . . 6 ((2↑152) mod 𝑁) = (25 mod 𝑁)
73 2p1e3 12323 . . . . . . 7 (2 + 1) = 3
74 eqid 2729 . . . . . . 7 152 = 152
7546, 3, 73, 74decsuc 12680 . . . . . 6 (152 + 1) = 153
7649nn0cni 12454 . . . . . . . 8 50 ∈ ℂ
7776addlidi 11362 . . . . . . 7 (0 + 50) = 50
7868oveq1i 7397 . . . . . . 7 ((0 · 𝑁) + 50) = (0 + 50)
79 eqid 2729 . . . . . . . 8 25 = 25
80 2t2e4 12345 . . . . . . . . . 10 (2 · 2) = 4
8180oveq1i 7397 . . . . . . . . 9 ((2 · 2) + 1) = (4 + 1)
8281, 55eqtri 2752 . . . . . . . 8 ((2 · 2) + 1) = 5
83 5t2e10 12749 . . . . . . . 8 (5 · 2) = 10
843, 3, 11, 79, 39, 9, 82, 83decmul1c 12714 . . . . . . 7 (25 · 2) = 50
8577, 78, 843eqtr4i 2762 . . . . . 6 ((0 · 𝑁) + 50) = (25 · 2)
8626, 1, 50, 7, 51, 49, 72, 75, 85modxp1i 17041 . . . . 5 ((2↑153) mod 𝑁) = (50 mod 𝑁)
87 eqid 2729 . . . . . 6 153 = 153
88 eqid 2729 . . . . . . . . 9 15 = 15
8957mulridi 11178 . . . . . . . . . . 11 (2 · 1) = 2
9089oveq1i 7397 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
9190, 73eqtri 2752 . . . . . . . . 9 ((2 · 1) + 1) = 3
92 5cn 12274 . . . . . . . . . 10 5 ∈ ℂ
9392, 57, 83mulcomli 11183 . . . . . . . . 9 (2 · 5) = 10
943, 9, 11, 88, 39, 9, 91, 93decmul2c 12715 . . . . . . . 8 (2 · 15) = 30
9594oveq1i 7397 . . . . . . 7 ((2 · 15) + 0) = (30 + 0)
9640nn0cni 12454 . . . . . . . 8 30 ∈ ℂ
9796addridi 11361 . . . . . . 7 (30 + 0) = 30
9895, 97eqtri 2752 . . . . . 6 ((2 · 15) + 0) = 30
99 3cn 12267 . . . . . . . 8 3 ∈ ℂ
100 3t2e6 12347 . . . . . . . 8 (3 · 2) = 6
10199, 57, 100mulcomli 11183 . . . . . . 7 (2 · 3) = 6
1022dec0h 12671 . . . . . . 7 6 = 06
103101, 102eqtri 2752 . . . . . 6 (2 · 3) = 06
1043, 46, 29, 87, 2, 39, 98, 103decmul2c 12715 . . . . 5 (2 · 153) = 306
10567mullidi 11179 . . . . . . . 8 (1 · 𝑁) = 𝑁
106105, 17eqtri 2752 . . . . . . 7 (1 · 𝑁) = 1259
107 eqid 2729 . . . . . . 7 1241 = 1241
1083, 30deccl 12664 . . . . . . . 8 24 ∈ ℕ0
109 eqid 2729 . . . . . . . . 9 24 = 24
1103, 30, 55, 109decsuc 12680 . . . . . . . 8 (24 + 1) = 25
111 eqid 2729 . . . . . . . . 9 125 = 125
112 eqid 2729 . . . . . . . . 9 124 = 124
113 eqid 2729 . . . . . . . . . 10 12 = 12
114 1p1e2 12306 . . . . . . . . . 10 (1 + 1) = 2
115 2p2e4 12316 . . . . . . . . . 10 (2 + 2) = 4
1169, 3, 9, 3, 113, 113, 114, 115decadd 12703 . . . . . . . . 9 (12 + 12) = 24
117 5p4e9 12339 . . . . . . . . 9 (5 + 4) = 9
11810, 11, 10, 30, 111, 112, 116, 117decadd 12703 . . . . . . . 8 (125 + 124) = 249
119108, 110, 118decsucc 12690 . . . . . . 7 ((125 + 124) + 1) = 250
120 9p1e10 12651 . . . . . . 7 (9 + 1) = 10
12112, 5, 44, 9, 106, 107, 119, 120decaddc2 12705 . . . . . 6 ((1 · 𝑁) + 1241) = 2500
122 eqid 2729 . . . . . . 7 50 = 50
12392mul02i 11363 . . . . . . . . . 10 (0 · 5) = 0
12411, 11, 39, 122, 70, 123decmul1 12713 . . . . . . . . 9 (50 · 5) = 250
125124oveq1i 7397 . . . . . . . 8 ((50 · 5) + 0) = (250 + 0)
12651, 39deccl 12664 . . . . . . . . . 10 250 ∈ ℕ0
127126nn0cni 12454 . . . . . . . . 9 250 ∈ ℂ
128127addridi 11361 . . . . . . . 8 (250 + 0) = 250
129125, 128eqtri 2752 . . . . . . 7 ((50 · 5) + 0) = 250
13076mul01i 11364 . . . . . . . 8 (50 · 0) = 0
13139dec0h 12671 . . . . . . . 8 0 = 00
132130, 131eqtri 2752 . . . . . . 7 (50 · 0) = 00
13349, 11, 39, 122, 39, 39, 129, 132decmul2c 12715 . . . . . 6 (50 · 50) = 2500
134121, 133eqtr4i 2755 . . . . 5 ((1 · 𝑁) + 1241) = (50 · 50)
13526, 1, 47, 48, 49, 45, 86, 104, 134mod2xi 17040 . . . 4 ((2↑306) mod 𝑁) = (1241 mod 𝑁)
136 eqid 2729 . . . . 5 306 = 306
137 eqid 2729 . . . . . 6 30 = 30
1389dec0h 12671 . . . . . 6 1 = 01
139 00id 11349 . . . . . . . 8 (0 + 0) = 0
140101, 139oveq12i 7399 . . . . . . 7 ((2 · 3) + (0 + 0)) = (6 + 0)
14161addridi 11361 . . . . . . 7 (6 + 0) = 6
142140, 141eqtri 2752 . . . . . 6 ((2 · 3) + (0 + 0)) = 6
14357mul01i 11364 . . . . . . . 8 (2 · 0) = 0
144143oveq1i 7397 . . . . . . 7 ((2 · 0) + 1) = (0 + 1)
145 0p1e1 12303 . . . . . . 7 (0 + 1) = 1
146144, 145, 1383eqtri 2756 . . . . . 6 ((2 · 0) + 1) = 01
14729, 39, 39, 9, 137, 138, 3, 9, 39, 142, 146decma2c 12702 . . . . 5 ((2 · 30) + 1) = 61
1483, 40, 2, 136, 3, 9, 147, 63decmul2c 12715 . . . 4 (2 · 306) = 612
149 eqid 2729 . . . . . 6 18 = 18
15010, 30, 55, 112decsuc 12680 . . . . . 6 (124 + 1) = 125
151 8cn 12283 . . . . . . 7 8 ∈ ℂ
152151, 16, 18addcomli 11366 . . . . . 6 (1 + 8) = 9
15344, 9, 9, 13, 107, 149, 150, 152decadd 12703 . . . . 5 (1241 + 18) = 1259
154153, 17eqtr4i 2755 . . . 4 (1241 + 18) = 𝑁
15534nn0cni 12454 . . . . . 6 324 ∈ ℂ
156155addlidi 11362 . . . . 5 (0 + 324) = 324
15768oveq1i 7397 . . . . 5 ((0 · 𝑁) + 324) = (0 + 324)
1589, 13deccl 12664 . . . . . 6 18 ∈ ℕ0
1599, 30deccl 12664 . . . . . 6 14 ∈ ℕ0
160 eqid 2729 . . . . . . 7 14 = 14
16116mulridi 11178 . . . . . . . . 9 (1 · 1) = 1
162161, 114oveq12i 7399 . . . . . . . 8 ((1 · 1) + (1 + 1)) = (1 + 2)
163 1p2e3 12324 . . . . . . . 8 (1 + 2) = 3
164162, 163eqtri 2752 . . . . . . 7 ((1 · 1) + (1 + 1)) = 3
165151mulridi 11178 . . . . . . . . 9 (8 · 1) = 8
166165oveq1i 7397 . . . . . . . 8 ((8 · 1) + 4) = (8 + 4)
167 8p4e12 12731 . . . . . . . 8 (8 + 4) = 12
168166, 167eqtri 2752 . . . . . . 7 ((8 · 1) + 4) = 12
1699, 13, 9, 30, 149, 160, 9, 3, 9, 164, 168decmac 12701 . . . . . 6 ((18 · 1) + 14) = 32
170151mullidi 11179 . . . . . . . . 9 (1 · 8) = 8
171170oveq1i 7397 . . . . . . . 8 ((1 · 8) + 6) = (8 + 6)
172 8p6e14 12733 . . . . . . . 8 (8 + 6) = 14
173171, 172eqtri 2752 . . . . . . 7 ((1 · 8) + 6) = 14
174 8t8e64 12770 . . . . . . 7 (8 · 8) = 64
17513, 9, 13, 149, 30, 2, 173, 174decmul1c 12714 . . . . . 6 (18 · 8) = 144
176158, 9, 13, 149, 30, 159, 169, 175decmul2c 12715 . . . . 5 (18 · 18) = 324
177156, 157, 1763eqtr4i 2762 . . . 4 ((0 · 𝑁) + 324) = (18 · 18)
1781, 41, 7, 43, 34, 45, 135, 148, 154, 177mod2xnegi 17042 . . 3 ((2↑612) mod 𝑁) = (324 mod 𝑁)
179171259lem1 17101 . . 3 ((2↑17) mod 𝑁) = (136 mod 𝑁)
180 eqid 2729 . . . 4 612 = 612
181 eqid 2729 . . . 4 17 = 17
182 eqid 2729 . . . . 5 61 = 61
1832, 9, 114, 182decsuc 12680 . . . 4 (61 + 1) = 62
184 7p2e9 12342 . . . . 5 (7 + 2) = 9
18556, 57, 184addcomli 11366 . . . 4 (2 + 7) = 9
18627, 3, 9, 35, 180, 181, 183, 185decadd 12703 . . 3 (612 + 17) = 629
18729, 9deccl 12664 . . . . 5 31 ∈ ℕ0
188 eqid 2729 . . . . . . 7 31 = 31
189 3p2e5 12332 . . . . . . . . 9 (3 + 2) = 5
19099, 57, 189addcomli 11366 . . . . . . . 8 (2 + 3) = 5
1919, 3, 29, 113, 190decaddi 12709 . . . . . . 7 (12 + 3) = 15
192 5p1e6 12328 . . . . . . 7 (5 + 1) = 6
19310, 11, 29, 9, 111, 188, 191, 192decadd 12703 . . . . . 6 (125 + 31) = 156
194114oveq1i 7397 . . . . . . . . 9 ((1 + 1) + 1) = (2 + 1)
195194, 73eqtri 2752 . . . . . . . 8 ((1 + 1) + 1) = 3
196 7p5e12 12726 . . . . . . . . 9 (7 + 5) = 12
19756, 92, 196addcomli 11366 . . . . . . . 8 (5 + 7) = 12
1989, 11, 9, 35, 88, 181, 195, 3, 197decaddc 12704 . . . . . . 7 (15 + 17) = 32
199 eqid 2729 . . . . . . . 8 34 = 34
200 7p3e10 12724 . . . . . . . . 9 (7 + 3) = 10
20156, 99, 200addcomli 11366 . . . . . . . 8 (3 + 7) = 10
20299mulridi 11178 . . . . . . . . . 10 (3 · 1) = 3
20316addridi 11361 . . . . . . . . . 10 (1 + 0) = 1
204202, 203oveq12i 7399 . . . . . . . . 9 ((3 · 1) + (1 + 0)) = (3 + 1)
205 3p1e4 12326 . . . . . . . . 9 (3 + 1) = 4
206204, 205eqtri 2752 . . . . . . . 8 ((3 · 1) + (1 + 0)) = 4
207 4cn 12271 . . . . . . . . . . 11 4 ∈ ℂ
208207mulridi 11178 . . . . . . . . . 10 (4 · 1) = 4
209208oveq1i 7397 . . . . . . . . 9 ((4 · 1) + 0) = (4 + 0)
210207addridi 11361 . . . . . . . . 9 (4 + 0) = 4
21130dec0h 12671 . . . . . . . . 9 4 = 04
212209, 210, 2113eqtri 2756 . . . . . . . 8 ((4 · 1) + 0) = 04
21329, 30, 9, 39, 199, 201, 9, 30, 39, 206, 212decmac 12701 . . . . . . 7 ((34 · 1) + (3 + 7)) = 44
2143dec0h 12671 . . . . . . . 8 2 = 02
215100, 145oveq12i 7399 . . . . . . . . 9 ((3 · 2) + (0 + 1)) = (6 + 1)
216 6p1e7 12329 . . . . . . . . 9 (6 + 1) = 7
217215, 216eqtri 2752 . . . . . . . 8 ((3 · 2) + (0 + 1)) = 7
218 4t2e8 12349 . . . . . . . . . 10 (4 · 2) = 8
219218oveq1i 7397 . . . . . . . . 9 ((4 · 2) + 2) = (8 + 2)
220 8p2e10 12729 . . . . . . . . 9 (8 + 2) = 10
221219, 220eqtri 2752 . . . . . . . 8 ((4 · 2) + 2) = 10
22229, 30, 39, 3, 199, 214, 3, 39, 9, 217, 221decmac 12701 . . . . . . 7 ((34 · 2) + 2) = 70
2239, 3, 29, 3, 113, 198, 31, 39, 35, 213, 222decma2c 12702 . . . . . 6 ((34 · 12) + (15 + 17)) = 440
224 5t3e15 12750 . . . . . . . . 9 (5 · 3) = 15
22592, 99, 224mulcomli 11183 . . . . . . . 8 (3 · 5) = 15
226 5p2e7 12337 . . . . . . . 8 (5 + 2) = 7
2279, 11, 3, 225, 226decaddi 12709 . . . . . . 7 ((3 · 5) + 2) = 17
228 5t4e20 12751 . . . . . . . . 9 (5 · 4) = 20
22992, 207, 228mulcomli 11183 . . . . . . . 8 (4 · 5) = 20
23061addlidi 11362 . . . . . . . 8 (0 + 6) = 6
2313, 39, 2, 229, 230decaddi 12709 . . . . . . 7 ((4 · 5) + 6) = 26
23229, 30, 2, 199, 11, 2, 3, 227, 231decrmac 12707 . . . . . 6 ((34 · 5) + 6) = 176
23310, 11, 46, 2, 111, 193, 31, 2, 36, 223, 232decma2c 12702 . . . . 5 ((34 · 125) + (125 + 31)) = 4406
234 9cn 12286 . . . . . . . 8 9 ∈ ℂ
235 9t3e27 12772 . . . . . . . 8 (9 · 3) = 27
236234, 99, 235mulcomli 11183 . . . . . . 7 (3 · 9) = 27
237 7p4e11 12725 . . . . . . 7 (7 + 4) = 11
2383, 35, 30, 236, 73, 9, 237decaddci 12710 . . . . . 6 ((3 · 9) + 4) = 31
239 9t4e36 12773 . . . . . . . 8 (9 · 4) = 36
240234, 207, 239mulcomli 11183 . . . . . . 7 (4 · 9) = 36
241151, 61, 172addcomli 11366 . . . . . . 7 (6 + 8) = 14
24229, 2, 13, 240, 205, 30, 241decaddci 12710 . . . . . 6 ((4 · 9) + 8) = 44
24329, 30, 13, 199, 5, 30, 30, 238, 242decrmac 12707 . . . . 5 ((34 · 9) + 8) = 314
24412, 5, 12, 13, 17, 22, 31, 30, 187, 233, 243decma2c 12702 . . . 4 ((34 · 𝑁) + (𝑁 − 1)) = 44064
245 eqid 2729 . . . . 5 136 = 136
2469, 5deccl 12664 . . . . . 6 19 ∈ ℕ0
247246, 30deccl 12664 . . . . 5 194 ∈ ℕ0
248 eqid 2729 . . . . . 6 13 = 13
249 eqid 2729 . . . . . 6 194 = 194
2505, 35deccl 12664 . . . . . 6 97 ∈ ℕ0
2519, 9deccl 12664 . . . . . . 7 11 ∈ ℕ0
252 eqid 2729 . . . . . . 7 324 = 324
253 eqid 2729 . . . . . . . 8 19 = 19
254 eqid 2729 . . . . . . . 8 97 = 97
255234, 16, 120addcomli 11366 . . . . . . . . 9 (1 + 9) = 10
2569, 39, 145, 255decsuc 12680 . . . . . . . 8 ((1 + 9) + 1) = 11
257 9p7e16 12741 . . . . . . . 8 (9 + 7) = 16
2589, 5, 5, 35, 253, 254, 256, 2, 257decaddc 12704 . . . . . . 7 (19 + 97) = 116
259 eqid 2729 . . . . . . . 8 32 = 32
260 eqid 2729 . . . . . . . . 9 11 = 11
2619, 9, 114, 260decsuc 12680 . . . . . . . 8 (11 + 1) = 12
26289oveq1i 7397 . . . . . . . . 9 ((2 · 1) + 2) = (2 + 2)
263262, 115, 2113eqtri 2756 . . . . . . . 8 ((2 · 1) + 2) = 04
26429, 3, 9, 3, 259, 261, 9, 30, 39, 206, 263decmac 12701 . . . . . . 7 ((32 · 1) + (11 + 1)) = 44
265208oveq1i 7397 . . . . . . . 8 ((4 · 1) + 6) = (4 + 6)
266 6p4e10 12721 . . . . . . . . 9 (6 + 4) = 10
26761, 207, 266addcomli 11366 . . . . . . . 8 (4 + 6) = 10
268265, 267eqtri 2752 . . . . . . 7 ((4 · 1) + 6) = 10
26933, 30, 251, 2, 252, 258, 9, 39, 9, 264, 268decmac 12701 . . . . . 6 ((324 · 1) + (19 + 97)) = 440
270145, 138eqtri 2752 . . . . . . . 8 (0 + 1) = 01
271 3t3e9 12348 . . . . . . . . . 10 (3 · 3) = 9
272271, 139oveq12i 7399 . . . . . . . . 9 ((3 · 3) + (0 + 0)) = (9 + 0)
273234addridi 11361 . . . . . . . . 9 (9 + 0) = 9
274272, 273eqtri 2752 . . . . . . . 8 ((3 · 3) + (0 + 0)) = 9
275101oveq1i 7397 . . . . . . . . 9 ((2 · 3) + 1) = (6 + 1)
27635dec0h 12671 . . . . . . . . 9 7 = 07
277275, 216, 2763eqtri 2756 . . . . . . . 8 ((2 · 3) + 1) = 07
27829, 3, 39, 9, 259, 270, 29, 35, 39, 274, 277decmac 12701 . . . . . . 7 ((32 · 3) + (0 + 1)) = 97
279 4t3e12 12747 . . . . . . . 8 (4 · 3) = 12
280 4p2e6 12334 . . . . . . . . 9 (4 + 2) = 6
281207, 57, 280addcomli 11366 . . . . . . . 8 (2 + 4) = 6
2829, 3, 30, 279, 281decaddi 12709 . . . . . . 7 ((4 · 3) + 4) = 16
28333, 30, 39, 30, 252, 211, 29, 2, 9, 278, 282decmac 12701 . . . . . 6 ((324 · 3) + 4) = 976
2849, 29, 246, 30, 248, 249, 34, 2, 250, 269, 283decma2c 12702 . . . . 5 ((324 · 13) + 194) = 4406
285 6t3e18 12754 . . . . . . . . 9 (6 · 3) = 18
28661, 99, 285mulcomli 11183 . . . . . . . 8 (3 · 6) = 18
2879, 13, 18, 286decsuc 12680 . . . . . . 7 ((3 · 6) + 1) = 19
2889, 3, 3, 63, 115decaddi 12709 . . . . . . 7 ((2 · 6) + 2) = 14
28929, 3, 3, 259, 2, 30, 9, 287, 288decrmac 12707 . . . . . 6 ((32 · 6) + 2) = 194
290 6t4e24 12755 . . . . . . 7 (6 · 4) = 24
29161, 207, 290mulcomli 11183 . . . . . 6 (4 · 6) = 24
2922, 33, 30, 252, 30, 3, 289, 291decmul1c 12714 . . . . 5 (324 · 6) = 1944
29334, 37, 2, 245, 30, 247, 284, 292decmul2c 12715 . . . 4 (324 · 136) = 44064
294244, 293eqtr4i 2755 . . 3 ((34 · 𝑁) + (𝑁 − 1)) = (324 · 136)
29526, 1, 28, 32, 34, 23, 36, 38, 178, 179, 186, 294modxai 17039 . 2 ((2↑629) mod 𝑁) = ((𝑁 − 1) mod 𝑁)
296 eqid 2729 . . . 4 629 = 629
297 eqid 2729 . . . . 5 62 = 62
298139oveq2i 7398 . . . . . 6 ((2 · 6) + (0 + 0)) = ((2 · 6) + 0)
29963oveq1i 7397 . . . . . 6 ((2 · 6) + 0) = (12 + 0)
30010nn0cni 12454 . . . . . . 7 12 ∈ ℂ
301300addridi 11361 . . . . . 6 (12 + 0) = 12
302298, 299, 3013eqtri 2756 . . . . 5 ((2 · 6) + (0 + 0)) = 12
30311dec0h 12671 . . . . . 6 5 = 05
30481, 55, 3033eqtri 2756 . . . . 5 ((2 · 2) + 1) = 05
3052, 3, 39, 9, 297, 138, 3, 11, 39, 302, 304decma2c 12702 . . . 4 ((2 · 62) + 1) = 125
306 9t2e18 12771 . . . . 5 (9 · 2) = 18
307234, 57, 306mulcomli 11183 . . . 4 (2 · 9) = 18
3083, 4, 5, 296, 13, 9, 305, 307decmul2c 12715 . . 3 (2 · 629) = 1258
309308, 22eqtr4i 2755 . 2 (2 · 629) = (𝑁 − 1)
310 npcan 11430 . . 3 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
31167, 16, 310mp2an 692 . 2 ((𝑁 − 1) + 1) = 𝑁
31268oveq1i 7397 . . 3 ((0 · 𝑁) + 1) = (0 + 1)
313145, 312, 1613eqtr4i 2762 . 2 ((0 · 𝑁) + 1) = (1 · 1)
3141, 6, 7, 8, 9, 23, 295, 309, 311, 313mod2xnegi 17042 1 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  cn 12186  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  7c7 12246  8c8 12247  9c9 12248  0cn0 12442  cdc 12649   mod cmo 13831  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027
This theorem is referenced by:  1259prm  17106
  Copyright terms: Public domain W3C validator