MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem4 Structured version   Visualization version   GIF version

Theorem 1259lem4 16835
Description: Lemma for 1259prm 16837. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
1259prm.1 𝑁 = 1259
Assertion
Ref Expression
1259lem4 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)

Proof of Theorem 1259lem4
StepHypRef Expression
1 2nn 12046 . 2 2 ∈ ℕ
2 6nn0 12254 . . . 4 6 ∈ ℕ0
3 2nn0 12250 . . . 4 2 ∈ ℕ0
42, 3deccl 12452 . . 3 62 ∈ ℕ0
5 9nn0 12257 . . 3 9 ∈ ℕ0
64, 5deccl 12452 . 2 629 ∈ ℕ0
7 0z 12330 . 2 0 ∈ ℤ
8 1nn 11984 . 2 1 ∈ ℕ
9 1nn0 12249 . 2 1 ∈ ℕ0
109, 3deccl 12452 . . . . . . 7 12 ∈ ℕ0
11 5nn0 12253 . . . . . . 7 5 ∈ ℕ0
1210, 11deccl 12452 . . . . . 6 125 ∈ ℕ0
13 8nn0 12256 . . . . . 6 8 ∈ ℕ0
1412, 13deccl 12452 . . . . 5 1258 ∈ ℕ0
1514nn0cni 12245 . . . 4 1258 ∈ ℂ
16 ax-1cn 10929 . . . 4 1 ∈ ℂ
17 1259prm.1 . . . . 5 𝑁 = 1259
18 8p1e9 12123 . . . . . 6 (8 + 1) = 9
19 eqid 2738 . . . . . 6 1258 = 1258
2012, 13, 18, 19decsuc 12468 . . . . 5 (1258 + 1) = 1259
2117, 20eqtr4i 2769 . . . 4 𝑁 = (1258 + 1)
2215, 16, 21mvrraddi 11238 . . 3 (𝑁 − 1) = 1258
2322, 14eqeltri 2835 . 2 (𝑁 − 1) ∈ ℕ0
24 9nn 12071 . . . . 5 9 ∈ ℕ
2512, 24decnncl 12457 . . . 4 1259 ∈ ℕ
2617, 25eqeltri 2835 . . 3 𝑁 ∈ ℕ
272, 9deccl 12452 . . . 4 61 ∈ ℕ0
2827, 3deccl 12452 . . 3 612 ∈ ℕ0
29 3nn0 12251 . . . . 5 3 ∈ ℕ0
30 4nn0 12252 . . . . 5 4 ∈ ℕ0
3129, 30deccl 12452 . . . 4 34 ∈ ℕ0
3231nn0zi 12345 . . 3 34 ∈ ℤ
3329, 3deccl 12452 . . . 4 32 ∈ ℕ0
3433, 30deccl 12452 . . 3 324 ∈ ℕ0
35 7nn0 12255 . . . 4 7 ∈ ℕ0
369, 35deccl 12452 . . 3 17 ∈ ℕ0
379, 29deccl 12452 . . . 4 13 ∈ ℕ0
3837, 2deccl 12452 . . 3 136 ∈ ℕ0
39 0nn0 12248 . . . . . 6 0 ∈ ℕ0
4029, 39deccl 12452 . . . . 5 30 ∈ ℕ0
4140, 2deccl 12452 . . . 4 306 ∈ ℕ0
42 8nn 12068 . . . . 5 8 ∈ ℕ
439, 42decnncl 12457 . . . 4 18 ∈ ℕ
4410, 30deccl 12452 . . . . 5 124 ∈ ℕ0
4544, 9deccl 12452 . . . 4 1241 ∈ ℕ0
469, 11deccl 12452 . . . . . 6 15 ∈ ℕ0
4746, 29deccl 12452 . . . . 5 153 ∈ ℕ0
48 1z 12350 . . . . 5 1 ∈ ℤ
4911, 39deccl 12452 . . . . 5 50 ∈ ℕ0
5046, 3deccl 12452 . . . . . 6 152 ∈ ℕ0
513, 11deccl 12452 . . . . . 6 25 ∈ ℕ0
5235, 2deccl 12452 . . . . . . 7 76 ∈ ℕ0
53171259lem3 16834 . . . . . . 7 ((2↑76) mod 𝑁) = (5 mod 𝑁)
54 eqid 2738 . . . . . . . 8 76 = 76
55 4p1e5 12119 . . . . . . . . 9 (4 + 1) = 5
56 7cn 12067 . . . . . . . . . 10 7 ∈ ℂ
57 2cn 12048 . . . . . . . . . 10 2 ∈ ℂ
58 7t2e14 12546 . . . . . . . . . 10 (7 · 2) = 14
5956, 57, 58mulcomli 10984 . . . . . . . . 9 (2 · 7) = 14
609, 30, 55, 59decsuc 12468 . . . . . . . 8 ((2 · 7) + 1) = 15
61 6cn 12064 . . . . . . . . 9 6 ∈ ℂ
62 6t2e12 12541 . . . . . . . . 9 (6 · 2) = 12
6361, 57, 62mulcomli 10984 . . . . . . . 8 (2 · 6) = 12
643, 35, 2, 54, 3, 9, 60, 63decmul2c 12503 . . . . . . 7 (2 · 76) = 152
6551nn0cni 12245 . . . . . . . . 9 25 ∈ ℂ
6665addid2i 11163 . . . . . . . 8 (0 + 25) = 25
6726nncni 11983 . . . . . . . . . 10 𝑁 ∈ ℂ
6867mul02i 11164 . . . . . . . . 9 (0 · 𝑁) = 0
6968oveq1i 7285 . . . . . . . 8 ((0 · 𝑁) + 25) = (0 + 25)
70 5t5e25 12540 . . . . . . . 8 (5 · 5) = 25
7166, 69, 703eqtr4i 2776 . . . . . . 7 ((0 · 𝑁) + 25) = (5 · 5)
7226, 1, 52, 7, 11, 51, 53, 64, 71mod2xi 16770 . . . . . 6 ((2↑152) mod 𝑁) = (25 mod 𝑁)
73 2p1e3 12115 . . . . . . 7 (2 + 1) = 3
74 eqid 2738 . . . . . . 7 152 = 152
7546, 3, 73, 74decsuc 12468 . . . . . 6 (152 + 1) = 153
7649nn0cni 12245 . . . . . . . 8 50 ∈ ℂ
7776addid2i 11163 . . . . . . 7 (0 + 50) = 50
7868oveq1i 7285 . . . . . . 7 ((0 · 𝑁) + 50) = (0 + 50)
79 eqid 2738 . . . . . . . 8 25 = 25
80 2t2e4 12137 . . . . . . . . . 10 (2 · 2) = 4
8180oveq1i 7285 . . . . . . . . 9 ((2 · 2) + 1) = (4 + 1)
8281, 55eqtri 2766 . . . . . . . 8 ((2 · 2) + 1) = 5
83 5t2e10 12537 . . . . . . . 8 (5 · 2) = 10
843, 3, 11, 79, 39, 9, 82, 83decmul1c 12502 . . . . . . 7 (25 · 2) = 50
8577, 78, 843eqtr4i 2776 . . . . . 6 ((0 · 𝑁) + 50) = (25 · 2)
8626, 1, 50, 7, 51, 49, 72, 75, 85modxp1i 16771 . . . . 5 ((2↑153) mod 𝑁) = (50 mod 𝑁)
87 eqid 2738 . . . . . 6 153 = 153
88 eqid 2738 . . . . . . . . 9 15 = 15
8957mulid1i 10979 . . . . . . . . . . 11 (2 · 1) = 2
9089oveq1i 7285 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
9190, 73eqtri 2766 . . . . . . . . 9 ((2 · 1) + 1) = 3
92 5cn 12061 . . . . . . . . . 10 5 ∈ ℂ
9392, 57, 83mulcomli 10984 . . . . . . . . 9 (2 · 5) = 10
943, 9, 11, 88, 39, 9, 91, 93decmul2c 12503 . . . . . . . 8 (2 · 15) = 30
9594oveq1i 7285 . . . . . . 7 ((2 · 15) + 0) = (30 + 0)
9640nn0cni 12245 . . . . . . . 8 30 ∈ ℂ
9796addid1i 11162 . . . . . . 7 (30 + 0) = 30
9895, 97eqtri 2766 . . . . . 6 ((2 · 15) + 0) = 30
99 3cn 12054 . . . . . . . 8 3 ∈ ℂ
100 3t2e6 12139 . . . . . . . 8 (3 · 2) = 6
10199, 57, 100mulcomli 10984 . . . . . . 7 (2 · 3) = 6
1022dec0h 12459 . . . . . . 7 6 = 06
103101, 102eqtri 2766 . . . . . 6 (2 · 3) = 06
1043, 46, 29, 87, 2, 39, 98, 103decmul2c 12503 . . . . 5 (2 · 153) = 306
10567mulid2i 10980 . . . . . . . 8 (1 · 𝑁) = 𝑁
106105, 17eqtri 2766 . . . . . . 7 (1 · 𝑁) = 1259
107 eqid 2738 . . . . . . 7 1241 = 1241
1083, 30deccl 12452 . . . . . . . 8 24 ∈ ℕ0
109 eqid 2738 . . . . . . . . 9 24 = 24
1103, 30, 55, 109decsuc 12468 . . . . . . . 8 (24 + 1) = 25
111 eqid 2738 . . . . . . . . 9 125 = 125
112 eqid 2738 . . . . . . . . 9 124 = 124
113 eqid 2738 . . . . . . . . . 10 12 = 12
114 1p1e2 12098 . . . . . . . . . 10 (1 + 1) = 2
115 2p2e4 12108 . . . . . . . . . 10 (2 + 2) = 4
1169, 3, 9, 3, 113, 113, 114, 115decadd 12491 . . . . . . . . 9 (12 + 12) = 24
117 5p4e9 12131 . . . . . . . . 9 (5 + 4) = 9
11810, 11, 10, 30, 111, 112, 116, 117decadd 12491 . . . . . . . 8 (125 + 124) = 249
119108, 110, 118decsucc 12478 . . . . . . 7 ((125 + 124) + 1) = 250
120 9p1e10 12439 . . . . . . 7 (9 + 1) = 10
12112, 5, 44, 9, 106, 107, 119, 120decaddc2 12493 . . . . . 6 ((1 · 𝑁) + 1241) = 2500
122 eqid 2738 . . . . . . 7 50 = 50
12392mul02i 11164 . . . . . . . . . 10 (0 · 5) = 0
12411, 11, 39, 122, 70, 123decmul1 12501 . . . . . . . . 9 (50 · 5) = 250
125124oveq1i 7285 . . . . . . . 8 ((50 · 5) + 0) = (250 + 0)
12651, 39deccl 12452 . . . . . . . . . 10 250 ∈ ℕ0
127126nn0cni 12245 . . . . . . . . 9 250 ∈ ℂ
128127addid1i 11162 . . . . . . . 8 (250 + 0) = 250
129125, 128eqtri 2766 . . . . . . 7 ((50 · 5) + 0) = 250
13076mul01i 11165 . . . . . . . 8 (50 · 0) = 0
13139dec0h 12459 . . . . . . . 8 0 = 00
132130, 131eqtri 2766 . . . . . . 7 (50 · 0) = 00
13349, 11, 39, 122, 39, 39, 129, 132decmul2c 12503 . . . . . 6 (50 · 50) = 2500
134121, 133eqtr4i 2769 . . . . 5 ((1 · 𝑁) + 1241) = (50 · 50)
13526, 1, 47, 48, 49, 45, 86, 104, 134mod2xi 16770 . . . 4 ((2↑306) mod 𝑁) = (1241 mod 𝑁)
136 eqid 2738 . . . . 5 306 = 306
137 eqid 2738 . . . . . 6 30 = 30
1389dec0h 12459 . . . . . 6 1 = 01
139 00id 11150 . . . . . . . 8 (0 + 0) = 0
140101, 139oveq12i 7287 . . . . . . 7 ((2 · 3) + (0 + 0)) = (6 + 0)
14161addid1i 11162 . . . . . . 7 (6 + 0) = 6
142140, 141eqtri 2766 . . . . . 6 ((2 · 3) + (0 + 0)) = 6
14357mul01i 11165 . . . . . . . 8 (2 · 0) = 0
144143oveq1i 7285 . . . . . . 7 ((2 · 0) + 1) = (0 + 1)
145 0p1e1 12095 . . . . . . 7 (0 + 1) = 1
146144, 145, 1383eqtri 2770 . . . . . 6 ((2 · 0) + 1) = 01
14729, 39, 39, 9, 137, 138, 3, 9, 39, 142, 146decma2c 12490 . . . . 5 ((2 · 30) + 1) = 61
1483, 40, 2, 136, 3, 9, 147, 63decmul2c 12503 . . . 4 (2 · 306) = 612
149 eqid 2738 . . . . . 6 18 = 18
15010, 30, 55, 112decsuc 12468 . . . . . 6 (124 + 1) = 125
151 8cn 12070 . . . . . . 7 8 ∈ ℂ
152151, 16, 18addcomli 11167 . . . . . 6 (1 + 8) = 9
15344, 9, 9, 13, 107, 149, 150, 152decadd 12491 . . . . 5 (1241 + 18) = 1259
154153, 17eqtr4i 2769 . . . 4 (1241 + 18) = 𝑁
15534nn0cni 12245 . . . . . 6 324 ∈ ℂ
156155addid2i 11163 . . . . 5 (0 + 324) = 324
15768oveq1i 7285 . . . . 5 ((0 · 𝑁) + 324) = (0 + 324)
1589, 13deccl 12452 . . . . . 6 18 ∈ ℕ0
1599, 30deccl 12452 . . . . . 6 14 ∈ ℕ0
160 eqid 2738 . . . . . . 7 14 = 14
16116mulid1i 10979 . . . . . . . . 9 (1 · 1) = 1
162161, 114oveq12i 7287 . . . . . . . 8 ((1 · 1) + (1 + 1)) = (1 + 2)
163 1p2e3 12116 . . . . . . . 8 (1 + 2) = 3
164162, 163eqtri 2766 . . . . . . 7 ((1 · 1) + (1 + 1)) = 3
165151mulid1i 10979 . . . . . . . . 9 (8 · 1) = 8
166165oveq1i 7285 . . . . . . . 8 ((8 · 1) + 4) = (8 + 4)
167 8p4e12 12519 . . . . . . . 8 (8 + 4) = 12
168166, 167eqtri 2766 . . . . . . 7 ((8 · 1) + 4) = 12
1699, 13, 9, 30, 149, 160, 9, 3, 9, 164, 168decmac 12489 . . . . . 6 ((18 · 1) + 14) = 32
170151mulid2i 10980 . . . . . . . . 9 (1 · 8) = 8
171170oveq1i 7285 . . . . . . . 8 ((1 · 8) + 6) = (8 + 6)
172 8p6e14 12521 . . . . . . . 8 (8 + 6) = 14
173171, 172eqtri 2766 . . . . . . 7 ((1 · 8) + 6) = 14
174 8t8e64 12558 . . . . . . 7 (8 · 8) = 64
17513, 9, 13, 149, 30, 2, 173, 174decmul1c 12502 . . . . . 6 (18 · 8) = 144
176158, 9, 13, 149, 30, 159, 169, 175decmul2c 12503 . . . . 5 (18 · 18) = 324
177156, 157, 1763eqtr4i 2776 . . . 4 ((0 · 𝑁) + 324) = (18 · 18)
1781, 41, 7, 43, 34, 45, 135, 148, 154, 177mod2xnegi 16772 . . 3 ((2↑612) mod 𝑁) = (324 mod 𝑁)
179171259lem1 16832 . . 3 ((2↑17) mod 𝑁) = (136 mod 𝑁)
180 eqid 2738 . . . 4 612 = 612
181 eqid 2738 . . . 4 17 = 17
182 eqid 2738 . . . . 5 61 = 61
1832, 9, 114, 182decsuc 12468 . . . 4 (61 + 1) = 62
184 7p2e9 12134 . . . . 5 (7 + 2) = 9
18556, 57, 184addcomli 11167 . . . 4 (2 + 7) = 9
18627, 3, 9, 35, 180, 181, 183, 185decadd 12491 . . 3 (612 + 17) = 629
18729, 9deccl 12452 . . . . 5 31 ∈ ℕ0
188 eqid 2738 . . . . . . 7 31 = 31
189 3p2e5 12124 . . . . . . . . 9 (3 + 2) = 5
19099, 57, 189addcomli 11167 . . . . . . . 8 (2 + 3) = 5
1919, 3, 29, 113, 190decaddi 12497 . . . . . . 7 (12 + 3) = 15
192 5p1e6 12120 . . . . . . 7 (5 + 1) = 6
19310, 11, 29, 9, 111, 188, 191, 192decadd 12491 . . . . . 6 (125 + 31) = 156
194114oveq1i 7285 . . . . . . . . 9 ((1 + 1) + 1) = (2 + 1)
195194, 73eqtri 2766 . . . . . . . 8 ((1 + 1) + 1) = 3
196 7p5e12 12514 . . . . . . . . 9 (7 + 5) = 12
19756, 92, 196addcomli 11167 . . . . . . . 8 (5 + 7) = 12
1989, 11, 9, 35, 88, 181, 195, 3, 197decaddc 12492 . . . . . . 7 (15 + 17) = 32
199 eqid 2738 . . . . . . . 8 34 = 34
200 7p3e10 12512 . . . . . . . . 9 (7 + 3) = 10
20156, 99, 200addcomli 11167 . . . . . . . 8 (3 + 7) = 10
20299mulid1i 10979 . . . . . . . . . 10 (3 · 1) = 3
20316addid1i 11162 . . . . . . . . . 10 (1 + 0) = 1
204202, 203oveq12i 7287 . . . . . . . . 9 ((3 · 1) + (1 + 0)) = (3 + 1)
205 3p1e4 12118 . . . . . . . . 9 (3 + 1) = 4
206204, 205eqtri 2766 . . . . . . . 8 ((3 · 1) + (1 + 0)) = 4
207 4cn 12058 . . . . . . . . . . 11 4 ∈ ℂ
208207mulid1i 10979 . . . . . . . . . 10 (4 · 1) = 4
209208oveq1i 7285 . . . . . . . . 9 ((4 · 1) + 0) = (4 + 0)
210207addid1i 11162 . . . . . . . . 9 (4 + 0) = 4
21130dec0h 12459 . . . . . . . . 9 4 = 04
212209, 210, 2113eqtri 2770 . . . . . . . 8 ((4 · 1) + 0) = 04
21329, 30, 9, 39, 199, 201, 9, 30, 39, 206, 212decmac 12489 . . . . . . 7 ((34 · 1) + (3 + 7)) = 44
2143dec0h 12459 . . . . . . . 8 2 = 02
215100, 145oveq12i 7287 . . . . . . . . 9 ((3 · 2) + (0 + 1)) = (6 + 1)
216 6p1e7 12121 . . . . . . . . 9 (6 + 1) = 7
217215, 216eqtri 2766 . . . . . . . 8 ((3 · 2) + (0 + 1)) = 7
218 4t2e8 12141 . . . . . . . . . 10 (4 · 2) = 8
219218oveq1i 7285 . . . . . . . . 9 ((4 · 2) + 2) = (8 + 2)
220 8p2e10 12517 . . . . . . . . 9 (8 + 2) = 10
221219, 220eqtri 2766 . . . . . . . 8 ((4 · 2) + 2) = 10
22229, 30, 39, 3, 199, 214, 3, 39, 9, 217, 221decmac 12489 . . . . . . 7 ((34 · 2) + 2) = 70
2239, 3, 29, 3, 113, 198, 31, 39, 35, 213, 222decma2c 12490 . . . . . 6 ((34 · 12) + (15 + 17)) = 440
224 5t3e15 12538 . . . . . . . . 9 (5 · 3) = 15
22592, 99, 224mulcomli 10984 . . . . . . . 8 (3 · 5) = 15
226 5p2e7 12129 . . . . . . . 8 (5 + 2) = 7
2279, 11, 3, 225, 226decaddi 12497 . . . . . . 7 ((3 · 5) + 2) = 17
228 5t4e20 12539 . . . . . . . . 9 (5 · 4) = 20
22992, 207, 228mulcomli 10984 . . . . . . . 8 (4 · 5) = 20
23061addid2i 11163 . . . . . . . 8 (0 + 6) = 6
2313, 39, 2, 229, 230decaddi 12497 . . . . . . 7 ((4 · 5) + 6) = 26
23229, 30, 2, 199, 11, 2, 3, 227, 231decrmac 12495 . . . . . 6 ((34 · 5) + 6) = 176
23310, 11, 46, 2, 111, 193, 31, 2, 36, 223, 232decma2c 12490 . . . . 5 ((34 · 125) + (125 + 31)) = 4406
234 9cn 12073 . . . . . . . 8 9 ∈ ℂ
235 9t3e27 12560 . . . . . . . 8 (9 · 3) = 27
236234, 99, 235mulcomli 10984 . . . . . . 7 (3 · 9) = 27
237 7p4e11 12513 . . . . . . 7 (7 + 4) = 11
2383, 35, 30, 236, 73, 9, 237decaddci 12498 . . . . . 6 ((3 · 9) + 4) = 31
239 9t4e36 12561 . . . . . . . 8 (9 · 4) = 36
240234, 207, 239mulcomli 10984 . . . . . . 7 (4 · 9) = 36
241151, 61, 172addcomli 11167 . . . . . . 7 (6 + 8) = 14
24229, 2, 13, 240, 205, 30, 241decaddci 12498 . . . . . 6 ((4 · 9) + 8) = 44
24329, 30, 13, 199, 5, 30, 30, 238, 242decrmac 12495 . . . . 5 ((34 · 9) + 8) = 314
24412, 5, 12, 13, 17, 22, 31, 30, 187, 233, 243decma2c 12490 . . . 4 ((34 · 𝑁) + (𝑁 − 1)) = 44064
245 eqid 2738 . . . . 5 136 = 136
2469, 5deccl 12452 . . . . . 6 19 ∈ ℕ0
247246, 30deccl 12452 . . . . 5 194 ∈ ℕ0
248 eqid 2738 . . . . . 6 13 = 13
249 eqid 2738 . . . . . 6 194 = 194
2505, 35deccl 12452 . . . . . 6 97 ∈ ℕ0
2519, 9deccl 12452 . . . . . . 7 11 ∈ ℕ0
252 eqid 2738 . . . . . . 7 324 = 324
253 eqid 2738 . . . . . . . 8 19 = 19
254 eqid 2738 . . . . . . . 8 97 = 97
255234, 16, 120addcomli 11167 . . . . . . . . 9 (1 + 9) = 10
2569, 39, 145, 255decsuc 12468 . . . . . . . 8 ((1 + 9) + 1) = 11
257 9p7e16 12529 . . . . . . . 8 (9 + 7) = 16
2589, 5, 5, 35, 253, 254, 256, 2, 257decaddc 12492 . . . . . . 7 (19 + 97) = 116
259 eqid 2738 . . . . . . . 8 32 = 32
260 eqid 2738 . . . . . . . . 9 11 = 11
2619, 9, 114, 260decsuc 12468 . . . . . . . 8 (11 + 1) = 12
26289oveq1i 7285 . . . . . . . . 9 ((2 · 1) + 2) = (2 + 2)
263262, 115, 2113eqtri 2770 . . . . . . . 8 ((2 · 1) + 2) = 04
26429, 3, 9, 3, 259, 261, 9, 30, 39, 206, 263decmac 12489 . . . . . . 7 ((32 · 1) + (11 + 1)) = 44
265208oveq1i 7285 . . . . . . . 8 ((4 · 1) + 6) = (4 + 6)
266 6p4e10 12509 . . . . . . . . 9 (6 + 4) = 10
26761, 207, 266addcomli 11167 . . . . . . . 8 (4 + 6) = 10
268265, 267eqtri 2766 . . . . . . 7 ((4 · 1) + 6) = 10
26933, 30, 251, 2, 252, 258, 9, 39, 9, 264, 268decmac 12489 . . . . . 6 ((324 · 1) + (19 + 97)) = 440
270145, 138eqtri 2766 . . . . . . . 8 (0 + 1) = 01
271 3t3e9 12140 . . . . . . . . . 10 (3 · 3) = 9
272271, 139oveq12i 7287 . . . . . . . . 9 ((3 · 3) + (0 + 0)) = (9 + 0)
273234addid1i 11162 . . . . . . . . 9 (9 + 0) = 9
274272, 273eqtri 2766 . . . . . . . 8 ((3 · 3) + (0 + 0)) = 9
275101oveq1i 7285 . . . . . . . . 9 ((2 · 3) + 1) = (6 + 1)
27635dec0h 12459 . . . . . . . . 9 7 = 07
277275, 216, 2763eqtri 2770 . . . . . . . 8 ((2 · 3) + 1) = 07
27829, 3, 39, 9, 259, 270, 29, 35, 39, 274, 277decmac 12489 . . . . . . 7 ((32 · 3) + (0 + 1)) = 97
279 4t3e12 12535 . . . . . . . 8 (4 · 3) = 12
280 4p2e6 12126 . . . . . . . . 9 (4 + 2) = 6
281207, 57, 280addcomli 11167 . . . . . . . 8 (2 + 4) = 6
2829, 3, 30, 279, 281decaddi 12497 . . . . . . 7 ((4 · 3) + 4) = 16
28333, 30, 39, 30, 252, 211, 29, 2, 9, 278, 282decmac 12489 . . . . . 6 ((324 · 3) + 4) = 976
2849, 29, 246, 30, 248, 249, 34, 2, 250, 269, 283decma2c 12490 . . . . 5 ((324 · 13) + 194) = 4406
285 6t3e18 12542 . . . . . . . . 9 (6 · 3) = 18
28661, 99, 285mulcomli 10984 . . . . . . . 8 (3 · 6) = 18
2879, 13, 18, 286decsuc 12468 . . . . . . 7 ((3 · 6) + 1) = 19
2889, 3, 3, 63, 115decaddi 12497 . . . . . . 7 ((2 · 6) + 2) = 14
28929, 3, 3, 259, 2, 30, 9, 287, 288decrmac 12495 . . . . . 6 ((32 · 6) + 2) = 194
290 6t4e24 12543 . . . . . . 7 (6 · 4) = 24
29161, 207, 290mulcomli 10984 . . . . . 6 (4 · 6) = 24
2922, 33, 30, 252, 30, 3, 289, 291decmul1c 12502 . . . . 5 (324 · 6) = 1944
29334, 37, 2, 245, 30, 247, 284, 292decmul2c 12503 . . . 4 (324 · 136) = 44064
294244, 293eqtr4i 2769 . . 3 ((34 · 𝑁) + (𝑁 − 1)) = (324 · 136)
29526, 1, 28, 32, 34, 23, 36, 38, 178, 179, 186, 294modxai 16769 . 2 ((2↑629) mod 𝑁) = ((𝑁 − 1) mod 𝑁)
296 eqid 2738 . . . 4 629 = 629
297 eqid 2738 . . . . 5 62 = 62
298139oveq2i 7286 . . . . . 6 ((2 · 6) + (0 + 0)) = ((2 · 6) + 0)
29963oveq1i 7285 . . . . . 6 ((2 · 6) + 0) = (12 + 0)
30010nn0cni 12245 . . . . . . 7 12 ∈ ℂ
301300addid1i 11162 . . . . . 6 (12 + 0) = 12
302298, 299, 3013eqtri 2770 . . . . 5 ((2 · 6) + (0 + 0)) = 12
30311dec0h 12459 . . . . . 6 5 = 05
30481, 55, 3033eqtri 2770 . . . . 5 ((2 · 2) + 1) = 05
3052, 3, 39, 9, 297, 138, 3, 11, 39, 302, 304decma2c 12490 . . . 4 ((2 · 62) + 1) = 125
306 9t2e18 12559 . . . . 5 (9 · 2) = 18
307234, 57, 306mulcomli 10984 . . . 4 (2 · 9) = 18
3083, 4, 5, 296, 13, 9, 305, 307decmul2c 12503 . . 3 (2 · 629) = 1258
309308, 22eqtr4i 2769 . 2 (2 · 629) = (𝑁 − 1)
310 npcan 11230 . . 3 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
31167, 16, 310mp2an 689 . 2 ((𝑁 − 1) + 1) = 𝑁
31268oveq1i 7285 . . 3 ((0 · 𝑁) + 1) = (0 + 1)
313145, 312, 1613eqtr4i 2776 . 2 ((0 · 𝑁) + 1) = (1 · 1)
3141, 6, 7, 8, 9, 23, 295, 309, 311, 313mod2xnegi 16772 1 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cn 11973  2c2 12028  3c3 12029  4c4 12030  5c5 12031  6c6 12032  7c7 12033  8c8 12034  9c9 12035  0cn0 12233  cdc 12437   mod cmo 13589  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783
This theorem is referenced by:  1259prm  16837
  Copyright terms: Public domain W3C validator