MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem4 Structured version   Visualization version   GIF version

Theorem 1259lem4 17111
Description: Lemma for 1259prm 17113. Calculate a power mod. In decimal, we calculate 2↑306 = (2↑76)↑4 · 4≡5↑4 · 4 = 2𝑁 − 18, 2↑612 = (2↑306)↑2≡18↑2 = 324, 2↑629 = 2↑612 · 2↑17≡324 · 136 = 35𝑁 − 1 and finally 2↑(𝑁 − 1) = (2↑629)↑2≡1↑2 = 1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
1259prm.1 𝑁 = 1259
Assertion
Ref Expression
1259lem4 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)

Proof of Theorem 1259lem4
StepHypRef Expression
1 2nn 12266 . 2 2 ∈ ℕ
2 6nn0 12470 . . . 4 6 ∈ ℕ0
3 2nn0 12466 . . . 4 2 ∈ ℕ0
42, 3deccl 12671 . . 3 62 ∈ ℕ0
5 9nn0 12473 . . 3 9 ∈ ℕ0
64, 5deccl 12671 . 2 629 ∈ ℕ0
7 0z 12547 . 2 0 ∈ ℤ
8 1nn 12204 . 2 1 ∈ ℕ
9 1nn0 12465 . 2 1 ∈ ℕ0
109, 3deccl 12671 . . . . . . 7 12 ∈ ℕ0
11 5nn0 12469 . . . . . . 7 5 ∈ ℕ0
1210, 11deccl 12671 . . . . . 6 125 ∈ ℕ0
13 8nn0 12472 . . . . . 6 8 ∈ ℕ0
1412, 13deccl 12671 . . . . 5 1258 ∈ ℕ0
1514nn0cni 12461 . . . 4 1258 ∈ ℂ
16 ax-1cn 11133 . . . 4 1 ∈ ℂ
17 1259prm.1 . . . . 5 𝑁 = 1259
18 8p1e9 12338 . . . . . 6 (8 + 1) = 9
19 eqid 2730 . . . . . 6 1258 = 1258
2012, 13, 18, 19decsuc 12687 . . . . 5 (1258 + 1) = 1259
2117, 20eqtr4i 2756 . . . 4 𝑁 = (1258 + 1)
2215, 16, 21mvrraddi 11445 . . 3 (𝑁 − 1) = 1258
2322, 14eqeltri 2825 . 2 (𝑁 − 1) ∈ ℕ0
24 9nn 12291 . . . . 5 9 ∈ ℕ
2512, 24decnncl 12676 . . . 4 1259 ∈ ℕ
2617, 25eqeltri 2825 . . 3 𝑁 ∈ ℕ
272, 9deccl 12671 . . . 4 61 ∈ ℕ0
2827, 3deccl 12671 . . 3 612 ∈ ℕ0
29 3nn0 12467 . . . . 5 3 ∈ ℕ0
30 4nn0 12468 . . . . 5 4 ∈ ℕ0
3129, 30deccl 12671 . . . 4 34 ∈ ℕ0
3231nn0zi 12565 . . 3 34 ∈ ℤ
3329, 3deccl 12671 . . . 4 32 ∈ ℕ0
3433, 30deccl 12671 . . 3 324 ∈ ℕ0
35 7nn0 12471 . . . 4 7 ∈ ℕ0
369, 35deccl 12671 . . 3 17 ∈ ℕ0
379, 29deccl 12671 . . . 4 13 ∈ ℕ0
3837, 2deccl 12671 . . 3 136 ∈ ℕ0
39 0nn0 12464 . . . . . 6 0 ∈ ℕ0
4029, 39deccl 12671 . . . . 5 30 ∈ ℕ0
4140, 2deccl 12671 . . . 4 306 ∈ ℕ0
42 8nn 12288 . . . . 5 8 ∈ ℕ
439, 42decnncl 12676 . . . 4 18 ∈ ℕ
4410, 30deccl 12671 . . . . 5 124 ∈ ℕ0
4544, 9deccl 12671 . . . 4 1241 ∈ ℕ0
469, 11deccl 12671 . . . . . 6 15 ∈ ℕ0
4746, 29deccl 12671 . . . . 5 153 ∈ ℕ0
48 1z 12570 . . . . 5 1 ∈ ℤ
4911, 39deccl 12671 . . . . 5 50 ∈ ℕ0
5046, 3deccl 12671 . . . . . 6 152 ∈ ℕ0
513, 11deccl 12671 . . . . . 6 25 ∈ ℕ0
5235, 2deccl 12671 . . . . . . 7 76 ∈ ℕ0
53171259lem3 17110 . . . . . . 7 ((2↑76) mod 𝑁) = (5 mod 𝑁)
54 eqid 2730 . . . . . . . 8 76 = 76
55 4p1e5 12334 . . . . . . . . 9 (4 + 1) = 5
56 7cn 12287 . . . . . . . . . 10 7 ∈ ℂ
57 2cn 12268 . . . . . . . . . 10 2 ∈ ℂ
58 7t2e14 12765 . . . . . . . . . 10 (7 · 2) = 14
5956, 57, 58mulcomli 11190 . . . . . . . . 9 (2 · 7) = 14
609, 30, 55, 59decsuc 12687 . . . . . . . 8 ((2 · 7) + 1) = 15
61 6cn 12284 . . . . . . . . 9 6 ∈ ℂ
62 6t2e12 12760 . . . . . . . . 9 (6 · 2) = 12
6361, 57, 62mulcomli 11190 . . . . . . . 8 (2 · 6) = 12
643, 35, 2, 54, 3, 9, 60, 63decmul2c 12722 . . . . . . 7 (2 · 76) = 152
6551nn0cni 12461 . . . . . . . . 9 25 ∈ ℂ
6665addlidi 11369 . . . . . . . 8 (0 + 25) = 25
6726nncni 12203 . . . . . . . . . 10 𝑁 ∈ ℂ
6867mul02i 11370 . . . . . . . . 9 (0 · 𝑁) = 0
6968oveq1i 7400 . . . . . . . 8 ((0 · 𝑁) + 25) = (0 + 25)
70 5t5e25 12759 . . . . . . . 8 (5 · 5) = 25
7166, 69, 703eqtr4i 2763 . . . . . . 7 ((0 · 𝑁) + 25) = (5 · 5)
7226, 1, 52, 7, 11, 51, 53, 64, 71mod2xi 17047 . . . . . 6 ((2↑152) mod 𝑁) = (25 mod 𝑁)
73 2p1e3 12330 . . . . . . 7 (2 + 1) = 3
74 eqid 2730 . . . . . . 7 152 = 152
7546, 3, 73, 74decsuc 12687 . . . . . 6 (152 + 1) = 153
7649nn0cni 12461 . . . . . . . 8 50 ∈ ℂ
7776addlidi 11369 . . . . . . 7 (0 + 50) = 50
7868oveq1i 7400 . . . . . . 7 ((0 · 𝑁) + 50) = (0 + 50)
79 eqid 2730 . . . . . . . 8 25 = 25
80 2t2e4 12352 . . . . . . . . . 10 (2 · 2) = 4
8180oveq1i 7400 . . . . . . . . 9 ((2 · 2) + 1) = (4 + 1)
8281, 55eqtri 2753 . . . . . . . 8 ((2 · 2) + 1) = 5
83 5t2e10 12756 . . . . . . . 8 (5 · 2) = 10
843, 3, 11, 79, 39, 9, 82, 83decmul1c 12721 . . . . . . 7 (25 · 2) = 50
8577, 78, 843eqtr4i 2763 . . . . . 6 ((0 · 𝑁) + 50) = (25 · 2)
8626, 1, 50, 7, 51, 49, 72, 75, 85modxp1i 17048 . . . . 5 ((2↑153) mod 𝑁) = (50 mod 𝑁)
87 eqid 2730 . . . . . 6 153 = 153
88 eqid 2730 . . . . . . . . 9 15 = 15
8957mulridi 11185 . . . . . . . . . . 11 (2 · 1) = 2
9089oveq1i 7400 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
9190, 73eqtri 2753 . . . . . . . . 9 ((2 · 1) + 1) = 3
92 5cn 12281 . . . . . . . . . 10 5 ∈ ℂ
9392, 57, 83mulcomli 11190 . . . . . . . . 9 (2 · 5) = 10
943, 9, 11, 88, 39, 9, 91, 93decmul2c 12722 . . . . . . . 8 (2 · 15) = 30
9594oveq1i 7400 . . . . . . 7 ((2 · 15) + 0) = (30 + 0)
9640nn0cni 12461 . . . . . . . 8 30 ∈ ℂ
9796addridi 11368 . . . . . . 7 (30 + 0) = 30
9895, 97eqtri 2753 . . . . . 6 ((2 · 15) + 0) = 30
99 3cn 12274 . . . . . . . 8 3 ∈ ℂ
100 3t2e6 12354 . . . . . . . 8 (3 · 2) = 6
10199, 57, 100mulcomli 11190 . . . . . . 7 (2 · 3) = 6
1022dec0h 12678 . . . . . . 7 6 = 06
103101, 102eqtri 2753 . . . . . 6 (2 · 3) = 06
1043, 46, 29, 87, 2, 39, 98, 103decmul2c 12722 . . . . 5 (2 · 153) = 306
10567mullidi 11186 . . . . . . . 8 (1 · 𝑁) = 𝑁
106105, 17eqtri 2753 . . . . . . 7 (1 · 𝑁) = 1259
107 eqid 2730 . . . . . . 7 1241 = 1241
1083, 30deccl 12671 . . . . . . . 8 24 ∈ ℕ0
109 eqid 2730 . . . . . . . . 9 24 = 24
1103, 30, 55, 109decsuc 12687 . . . . . . . 8 (24 + 1) = 25
111 eqid 2730 . . . . . . . . 9 125 = 125
112 eqid 2730 . . . . . . . . 9 124 = 124
113 eqid 2730 . . . . . . . . . 10 12 = 12
114 1p1e2 12313 . . . . . . . . . 10 (1 + 1) = 2
115 2p2e4 12323 . . . . . . . . . 10 (2 + 2) = 4
1169, 3, 9, 3, 113, 113, 114, 115decadd 12710 . . . . . . . . 9 (12 + 12) = 24
117 5p4e9 12346 . . . . . . . . 9 (5 + 4) = 9
11810, 11, 10, 30, 111, 112, 116, 117decadd 12710 . . . . . . . 8 (125 + 124) = 249
119108, 110, 118decsucc 12697 . . . . . . 7 ((125 + 124) + 1) = 250
120 9p1e10 12658 . . . . . . 7 (9 + 1) = 10
12112, 5, 44, 9, 106, 107, 119, 120decaddc2 12712 . . . . . 6 ((1 · 𝑁) + 1241) = 2500
122 eqid 2730 . . . . . . 7 50 = 50
12392mul02i 11370 . . . . . . . . . 10 (0 · 5) = 0
12411, 11, 39, 122, 70, 123decmul1 12720 . . . . . . . . 9 (50 · 5) = 250
125124oveq1i 7400 . . . . . . . 8 ((50 · 5) + 0) = (250 + 0)
12651, 39deccl 12671 . . . . . . . . . 10 250 ∈ ℕ0
127126nn0cni 12461 . . . . . . . . 9 250 ∈ ℂ
128127addridi 11368 . . . . . . . 8 (250 + 0) = 250
129125, 128eqtri 2753 . . . . . . 7 ((50 · 5) + 0) = 250
13076mul01i 11371 . . . . . . . 8 (50 · 0) = 0
13139dec0h 12678 . . . . . . . 8 0 = 00
132130, 131eqtri 2753 . . . . . . 7 (50 · 0) = 00
13349, 11, 39, 122, 39, 39, 129, 132decmul2c 12722 . . . . . 6 (50 · 50) = 2500
134121, 133eqtr4i 2756 . . . . 5 ((1 · 𝑁) + 1241) = (50 · 50)
13526, 1, 47, 48, 49, 45, 86, 104, 134mod2xi 17047 . . . 4 ((2↑306) mod 𝑁) = (1241 mod 𝑁)
136 eqid 2730 . . . . 5 306 = 306
137 eqid 2730 . . . . . 6 30 = 30
1389dec0h 12678 . . . . . 6 1 = 01
139 00id 11356 . . . . . . . 8 (0 + 0) = 0
140101, 139oveq12i 7402 . . . . . . 7 ((2 · 3) + (0 + 0)) = (6 + 0)
14161addridi 11368 . . . . . . 7 (6 + 0) = 6
142140, 141eqtri 2753 . . . . . 6 ((2 · 3) + (0 + 0)) = 6
14357mul01i 11371 . . . . . . . 8 (2 · 0) = 0
144143oveq1i 7400 . . . . . . 7 ((2 · 0) + 1) = (0 + 1)
145 0p1e1 12310 . . . . . . 7 (0 + 1) = 1
146144, 145, 1383eqtri 2757 . . . . . 6 ((2 · 0) + 1) = 01
14729, 39, 39, 9, 137, 138, 3, 9, 39, 142, 146decma2c 12709 . . . . 5 ((2 · 30) + 1) = 61
1483, 40, 2, 136, 3, 9, 147, 63decmul2c 12722 . . . 4 (2 · 306) = 612
149 eqid 2730 . . . . . 6 18 = 18
15010, 30, 55, 112decsuc 12687 . . . . . 6 (124 + 1) = 125
151 8cn 12290 . . . . . . 7 8 ∈ ℂ
152151, 16, 18addcomli 11373 . . . . . 6 (1 + 8) = 9
15344, 9, 9, 13, 107, 149, 150, 152decadd 12710 . . . . 5 (1241 + 18) = 1259
154153, 17eqtr4i 2756 . . . 4 (1241 + 18) = 𝑁
15534nn0cni 12461 . . . . . 6 324 ∈ ℂ
156155addlidi 11369 . . . . 5 (0 + 324) = 324
15768oveq1i 7400 . . . . 5 ((0 · 𝑁) + 324) = (0 + 324)
1589, 13deccl 12671 . . . . . 6 18 ∈ ℕ0
1599, 30deccl 12671 . . . . . 6 14 ∈ ℕ0
160 eqid 2730 . . . . . . 7 14 = 14
16116mulridi 11185 . . . . . . . . 9 (1 · 1) = 1
162161, 114oveq12i 7402 . . . . . . . 8 ((1 · 1) + (1 + 1)) = (1 + 2)
163 1p2e3 12331 . . . . . . . 8 (1 + 2) = 3
164162, 163eqtri 2753 . . . . . . 7 ((1 · 1) + (1 + 1)) = 3
165151mulridi 11185 . . . . . . . . 9 (8 · 1) = 8
166165oveq1i 7400 . . . . . . . 8 ((8 · 1) + 4) = (8 + 4)
167 8p4e12 12738 . . . . . . . 8 (8 + 4) = 12
168166, 167eqtri 2753 . . . . . . 7 ((8 · 1) + 4) = 12
1699, 13, 9, 30, 149, 160, 9, 3, 9, 164, 168decmac 12708 . . . . . 6 ((18 · 1) + 14) = 32
170151mullidi 11186 . . . . . . . . 9 (1 · 8) = 8
171170oveq1i 7400 . . . . . . . 8 ((1 · 8) + 6) = (8 + 6)
172 8p6e14 12740 . . . . . . . 8 (8 + 6) = 14
173171, 172eqtri 2753 . . . . . . 7 ((1 · 8) + 6) = 14
174 8t8e64 12777 . . . . . . 7 (8 · 8) = 64
17513, 9, 13, 149, 30, 2, 173, 174decmul1c 12721 . . . . . 6 (18 · 8) = 144
176158, 9, 13, 149, 30, 159, 169, 175decmul2c 12722 . . . . 5 (18 · 18) = 324
177156, 157, 1763eqtr4i 2763 . . . 4 ((0 · 𝑁) + 324) = (18 · 18)
1781, 41, 7, 43, 34, 45, 135, 148, 154, 177mod2xnegi 17049 . . 3 ((2↑612) mod 𝑁) = (324 mod 𝑁)
179171259lem1 17108 . . 3 ((2↑17) mod 𝑁) = (136 mod 𝑁)
180 eqid 2730 . . . 4 612 = 612
181 eqid 2730 . . . 4 17 = 17
182 eqid 2730 . . . . 5 61 = 61
1832, 9, 114, 182decsuc 12687 . . . 4 (61 + 1) = 62
184 7p2e9 12349 . . . . 5 (7 + 2) = 9
18556, 57, 184addcomli 11373 . . . 4 (2 + 7) = 9
18627, 3, 9, 35, 180, 181, 183, 185decadd 12710 . . 3 (612 + 17) = 629
18729, 9deccl 12671 . . . . 5 31 ∈ ℕ0
188 eqid 2730 . . . . . . 7 31 = 31
189 3p2e5 12339 . . . . . . . . 9 (3 + 2) = 5
19099, 57, 189addcomli 11373 . . . . . . . 8 (2 + 3) = 5
1919, 3, 29, 113, 190decaddi 12716 . . . . . . 7 (12 + 3) = 15
192 5p1e6 12335 . . . . . . 7 (5 + 1) = 6
19310, 11, 29, 9, 111, 188, 191, 192decadd 12710 . . . . . 6 (125 + 31) = 156
194114oveq1i 7400 . . . . . . . . 9 ((1 + 1) + 1) = (2 + 1)
195194, 73eqtri 2753 . . . . . . . 8 ((1 + 1) + 1) = 3
196 7p5e12 12733 . . . . . . . . 9 (7 + 5) = 12
19756, 92, 196addcomli 11373 . . . . . . . 8 (5 + 7) = 12
1989, 11, 9, 35, 88, 181, 195, 3, 197decaddc 12711 . . . . . . 7 (15 + 17) = 32
199 eqid 2730 . . . . . . . 8 34 = 34
200 7p3e10 12731 . . . . . . . . 9 (7 + 3) = 10
20156, 99, 200addcomli 11373 . . . . . . . 8 (3 + 7) = 10
20299mulridi 11185 . . . . . . . . . 10 (3 · 1) = 3
20316addridi 11368 . . . . . . . . . 10 (1 + 0) = 1
204202, 203oveq12i 7402 . . . . . . . . 9 ((3 · 1) + (1 + 0)) = (3 + 1)
205 3p1e4 12333 . . . . . . . . 9 (3 + 1) = 4
206204, 205eqtri 2753 . . . . . . . 8 ((3 · 1) + (1 + 0)) = 4
207 4cn 12278 . . . . . . . . . . 11 4 ∈ ℂ
208207mulridi 11185 . . . . . . . . . 10 (4 · 1) = 4
209208oveq1i 7400 . . . . . . . . 9 ((4 · 1) + 0) = (4 + 0)
210207addridi 11368 . . . . . . . . 9 (4 + 0) = 4
21130dec0h 12678 . . . . . . . . 9 4 = 04
212209, 210, 2113eqtri 2757 . . . . . . . 8 ((4 · 1) + 0) = 04
21329, 30, 9, 39, 199, 201, 9, 30, 39, 206, 212decmac 12708 . . . . . . 7 ((34 · 1) + (3 + 7)) = 44
2143dec0h 12678 . . . . . . . 8 2 = 02
215100, 145oveq12i 7402 . . . . . . . . 9 ((3 · 2) + (0 + 1)) = (6 + 1)
216 6p1e7 12336 . . . . . . . . 9 (6 + 1) = 7
217215, 216eqtri 2753 . . . . . . . 8 ((3 · 2) + (0 + 1)) = 7
218 4t2e8 12356 . . . . . . . . . 10 (4 · 2) = 8
219218oveq1i 7400 . . . . . . . . 9 ((4 · 2) + 2) = (8 + 2)
220 8p2e10 12736 . . . . . . . . 9 (8 + 2) = 10
221219, 220eqtri 2753 . . . . . . . 8 ((4 · 2) + 2) = 10
22229, 30, 39, 3, 199, 214, 3, 39, 9, 217, 221decmac 12708 . . . . . . 7 ((34 · 2) + 2) = 70
2239, 3, 29, 3, 113, 198, 31, 39, 35, 213, 222decma2c 12709 . . . . . 6 ((34 · 12) + (15 + 17)) = 440
224 5t3e15 12757 . . . . . . . . 9 (5 · 3) = 15
22592, 99, 224mulcomli 11190 . . . . . . . 8 (3 · 5) = 15
226 5p2e7 12344 . . . . . . . 8 (5 + 2) = 7
2279, 11, 3, 225, 226decaddi 12716 . . . . . . 7 ((3 · 5) + 2) = 17
228 5t4e20 12758 . . . . . . . . 9 (5 · 4) = 20
22992, 207, 228mulcomli 11190 . . . . . . . 8 (4 · 5) = 20
23061addlidi 11369 . . . . . . . 8 (0 + 6) = 6
2313, 39, 2, 229, 230decaddi 12716 . . . . . . 7 ((4 · 5) + 6) = 26
23229, 30, 2, 199, 11, 2, 3, 227, 231decrmac 12714 . . . . . 6 ((34 · 5) + 6) = 176
23310, 11, 46, 2, 111, 193, 31, 2, 36, 223, 232decma2c 12709 . . . . 5 ((34 · 125) + (125 + 31)) = 4406
234 9cn 12293 . . . . . . . 8 9 ∈ ℂ
235 9t3e27 12779 . . . . . . . 8 (9 · 3) = 27
236234, 99, 235mulcomli 11190 . . . . . . 7 (3 · 9) = 27
237 7p4e11 12732 . . . . . . 7 (7 + 4) = 11
2383, 35, 30, 236, 73, 9, 237decaddci 12717 . . . . . 6 ((3 · 9) + 4) = 31
239 9t4e36 12780 . . . . . . . 8 (9 · 4) = 36
240234, 207, 239mulcomli 11190 . . . . . . 7 (4 · 9) = 36
241151, 61, 172addcomli 11373 . . . . . . 7 (6 + 8) = 14
24229, 2, 13, 240, 205, 30, 241decaddci 12717 . . . . . 6 ((4 · 9) + 8) = 44
24329, 30, 13, 199, 5, 30, 30, 238, 242decrmac 12714 . . . . 5 ((34 · 9) + 8) = 314
24412, 5, 12, 13, 17, 22, 31, 30, 187, 233, 243decma2c 12709 . . . 4 ((34 · 𝑁) + (𝑁 − 1)) = 44064
245 eqid 2730 . . . . 5 136 = 136
2469, 5deccl 12671 . . . . . 6 19 ∈ ℕ0
247246, 30deccl 12671 . . . . 5 194 ∈ ℕ0
248 eqid 2730 . . . . . 6 13 = 13
249 eqid 2730 . . . . . 6 194 = 194
2505, 35deccl 12671 . . . . . 6 97 ∈ ℕ0
2519, 9deccl 12671 . . . . . . 7 11 ∈ ℕ0
252 eqid 2730 . . . . . . 7 324 = 324
253 eqid 2730 . . . . . . . 8 19 = 19
254 eqid 2730 . . . . . . . 8 97 = 97
255234, 16, 120addcomli 11373 . . . . . . . . 9 (1 + 9) = 10
2569, 39, 145, 255decsuc 12687 . . . . . . . 8 ((1 + 9) + 1) = 11
257 9p7e16 12748 . . . . . . . 8 (9 + 7) = 16
2589, 5, 5, 35, 253, 254, 256, 2, 257decaddc 12711 . . . . . . 7 (19 + 97) = 116
259 eqid 2730 . . . . . . . 8 32 = 32
260 eqid 2730 . . . . . . . . 9 11 = 11
2619, 9, 114, 260decsuc 12687 . . . . . . . 8 (11 + 1) = 12
26289oveq1i 7400 . . . . . . . . 9 ((2 · 1) + 2) = (2 + 2)
263262, 115, 2113eqtri 2757 . . . . . . . 8 ((2 · 1) + 2) = 04
26429, 3, 9, 3, 259, 261, 9, 30, 39, 206, 263decmac 12708 . . . . . . 7 ((32 · 1) + (11 + 1)) = 44
265208oveq1i 7400 . . . . . . . 8 ((4 · 1) + 6) = (4 + 6)
266 6p4e10 12728 . . . . . . . . 9 (6 + 4) = 10
26761, 207, 266addcomli 11373 . . . . . . . 8 (4 + 6) = 10
268265, 267eqtri 2753 . . . . . . 7 ((4 · 1) + 6) = 10
26933, 30, 251, 2, 252, 258, 9, 39, 9, 264, 268decmac 12708 . . . . . 6 ((324 · 1) + (19 + 97)) = 440
270145, 138eqtri 2753 . . . . . . . 8 (0 + 1) = 01
271 3t3e9 12355 . . . . . . . . . 10 (3 · 3) = 9
272271, 139oveq12i 7402 . . . . . . . . 9 ((3 · 3) + (0 + 0)) = (9 + 0)
273234addridi 11368 . . . . . . . . 9 (9 + 0) = 9
274272, 273eqtri 2753 . . . . . . . 8 ((3 · 3) + (0 + 0)) = 9
275101oveq1i 7400 . . . . . . . . 9 ((2 · 3) + 1) = (6 + 1)
27635dec0h 12678 . . . . . . . . 9 7 = 07
277275, 216, 2763eqtri 2757 . . . . . . . 8 ((2 · 3) + 1) = 07
27829, 3, 39, 9, 259, 270, 29, 35, 39, 274, 277decmac 12708 . . . . . . 7 ((32 · 3) + (0 + 1)) = 97
279 4t3e12 12754 . . . . . . . 8 (4 · 3) = 12
280 4p2e6 12341 . . . . . . . . 9 (4 + 2) = 6
281207, 57, 280addcomli 11373 . . . . . . . 8 (2 + 4) = 6
2829, 3, 30, 279, 281decaddi 12716 . . . . . . 7 ((4 · 3) + 4) = 16
28333, 30, 39, 30, 252, 211, 29, 2, 9, 278, 282decmac 12708 . . . . . 6 ((324 · 3) + 4) = 976
2849, 29, 246, 30, 248, 249, 34, 2, 250, 269, 283decma2c 12709 . . . . 5 ((324 · 13) + 194) = 4406
285 6t3e18 12761 . . . . . . . . 9 (6 · 3) = 18
28661, 99, 285mulcomli 11190 . . . . . . . 8 (3 · 6) = 18
2879, 13, 18, 286decsuc 12687 . . . . . . 7 ((3 · 6) + 1) = 19
2889, 3, 3, 63, 115decaddi 12716 . . . . . . 7 ((2 · 6) + 2) = 14
28929, 3, 3, 259, 2, 30, 9, 287, 288decrmac 12714 . . . . . 6 ((32 · 6) + 2) = 194
290 6t4e24 12762 . . . . . . 7 (6 · 4) = 24
29161, 207, 290mulcomli 11190 . . . . . 6 (4 · 6) = 24
2922, 33, 30, 252, 30, 3, 289, 291decmul1c 12721 . . . . 5 (324 · 6) = 1944
29334, 37, 2, 245, 30, 247, 284, 292decmul2c 12722 . . . 4 (324 · 136) = 44064
294244, 293eqtr4i 2756 . . 3 ((34 · 𝑁) + (𝑁 − 1)) = (324 · 136)
29526, 1, 28, 32, 34, 23, 36, 38, 178, 179, 186, 294modxai 17046 . 2 ((2↑629) mod 𝑁) = ((𝑁 − 1) mod 𝑁)
296 eqid 2730 . . . 4 629 = 629
297 eqid 2730 . . . . 5 62 = 62
298139oveq2i 7401 . . . . . 6 ((2 · 6) + (0 + 0)) = ((2 · 6) + 0)
29963oveq1i 7400 . . . . . 6 ((2 · 6) + 0) = (12 + 0)
30010nn0cni 12461 . . . . . . 7 12 ∈ ℂ
301300addridi 11368 . . . . . 6 (12 + 0) = 12
302298, 299, 3013eqtri 2757 . . . . 5 ((2 · 6) + (0 + 0)) = 12
30311dec0h 12678 . . . . . 6 5 = 05
30481, 55, 3033eqtri 2757 . . . . 5 ((2 · 2) + 1) = 05
3052, 3, 39, 9, 297, 138, 3, 11, 39, 302, 304decma2c 12709 . . . 4 ((2 · 62) + 1) = 125
306 9t2e18 12778 . . . . 5 (9 · 2) = 18
307234, 57, 306mulcomli 11190 . . . 4 (2 · 9) = 18
3083, 4, 5, 296, 13, 9, 305, 307decmul2c 12722 . . 3 (2 · 629) = 1258
309308, 22eqtr4i 2756 . 2 (2 · 629) = (𝑁 − 1)
310 npcan 11437 . . 3 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
31167, 16, 310mp2an 692 . 2 ((𝑁 − 1) + 1) = 𝑁
31268oveq1i 7400 . . 3 ((0 · 𝑁) + 1) = (0 + 1)
313145, 312, 1613eqtr4i 2763 . 2 ((0 · 𝑁) + 1) = (1 · 1)
3141, 6, 7, 8, 9, 23, 295, 309, 311, 313mod2xnegi 17049 1 ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  cn 12193  2c2 12248  3c3 12249  4c4 12250  5c5 12251  6c6 12252  7c7 12253  8c8 12254  9c9 12255  0cn0 12449  cdc 12656   mod cmo 13838  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034
This theorem is referenced by:  1259prm  17113
  Copyright terms: Public domain W3C validator