Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version |
Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
1259prm.1 | ⊢ 𝑁 = ;;;1259 |
Ref | Expression |
---|---|
1259prm | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 37prm 16750 | . 2 ⊢ ;37 ∈ ℙ | |
2 | 3nn0 12181 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | 4nn 11986 | . . 3 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12386 | . 2 ⊢ ;34 ∈ ℕ |
5 | 1nn0 12179 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12180 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
7 | 5, 6 | deccl 12381 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
8 | 5nn0 12183 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
9 | 7, 8 | deccl 12381 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
10 | 8nn0 12186 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
11 | 9, 10 | deccl 12381 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
12 | 11 | nn0cni 12175 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
13 | ax-1cn 10860 | . . . 4 ⊢ 1 ∈ ℂ | |
14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
15 | eqid 2738 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
16 | 8p1e9 12053 | . . . . . 6 ⊢ (8 + 1) = 9 | |
17 | 9, 10, 5, 15, 16 | decaddi 12426 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
18 | 14, 17 | eqtr4i 2769 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
19 | 12, 13, 18 | mvrraddi 11168 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
20 | 4nn0 12182 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
21 | 2, 20 | deccl 12381 | . . . 4 ⊢ ;34 ∈ ℕ0 |
22 | 7nn0 12185 | . . . 4 ⊢ 7 ∈ ℕ0 | |
23 | eqid 2738 | . . . 4 ⊢ ;37 = ;37 | |
24 | 6, 2 | deccl 12381 | . . . 4 ⊢ ;23 ∈ ℕ0 |
25 | eqid 2738 | . . . . 5 ⊢ ;34 = ;34 | |
26 | eqid 2738 | . . . . 5 ⊢ ;23 = ;23 | |
27 | 3t3e9 12070 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
28 | 2p1e3 12045 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
29 | 27, 28 | oveq12i 7267 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
30 | 9p3e12 12454 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
31 | 29, 30 | eqtri 2766 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
32 | 4t3e12 12464 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
33 | 3cn 11984 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
34 | 2cn 11978 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 3p2e5 12054 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
36 | 33, 34, 35 | addcomli 11097 | . . . . . 6 ⊢ (2 + 3) = 5 |
37 | 5, 6, 2, 32, 36 | decaddi 12426 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12418 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
39 | 7cn 11997 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
40 | 7t3e21 12476 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
41 | 39, 33, 40 | mulcomli 10915 | . . . . . 6 ⊢ (3 · 7) = ;21 |
42 | 1p2e3 12046 | . . . . . 6 ⊢ (1 + 2) = 3 | |
43 | 6, 5, 6, 41, 42 | decaddi 12426 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
44 | 4cn 11988 | . . . . . 6 ⊢ 4 ∈ ℂ | |
45 | 7t4e28 12477 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
46 | 39, 44, 45 | mulcomli 10915 | . . . . 5 ⊢ (4 · 7) = ;28 |
47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12431 | . . . 4 ⊢ (;34 · 7) = ;;238 |
48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12432 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
49 | 19, 48 | eqtr4i 2769 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
50 | 9nn0 12187 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
51 | 9, 50 | deccl 12381 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
52 | 14, 51 | eqeltri 2835 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
53 | 52 | nn0cni 12175 | . . . 4 ⊢ 𝑁 ∈ ℂ |
54 | npcan 11160 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
55 | 53, 13, 54 | mp2an 688 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
56 | 55 | eqcomi 2747 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
57 | 1nn 11914 | . 2 ⊢ 1 ∈ ℕ | |
58 | 2nn 11976 | . 2 ⊢ 2 ∈ ℕ | |
59 | 2, 22 | deccl 12381 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
60 | 59 | numexp1 16706 | . . . 4 ⊢ (;37↑1) = ;37 |
61 | 60 | oveq2i 7266 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
62 | 49, 61 | eqtr4i 2769 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
63 | 7nn 11995 | . . . 4 ⊢ 7 ∈ ℕ | |
64 | 4lt7 12091 | . . . 4 ⊢ 4 < 7 | |
65 | 2, 20, 63, 64 | declt 12394 | . . 3 ⊢ ;34 < ;37 |
66 | 65, 60 | breqtrri 5097 | . 2 ⊢ ;34 < (;37↑1) |
67 | 14 | 1259lem4 16763 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
68 | 14 | 1259lem5 16764 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16536 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 − cmin 11135 2c2 11958 3c3 11959 4c4 11960 5c5 11961 7c7 11963 8c8 11964 9c9 11965 ℕ0cn0 12163 ;cdc 12366 ↑cexp 13710 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-odz 16394 df-phi 16395 df-pc 16466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |