| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version | ||
| Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 1259prm.1 | ⊢ 𝑁 = ;;;1259 |
| Ref | Expression |
|---|---|
| 1259prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 37prm 17098 | . 2 ⊢ ;37 ∈ ℙ | |
| 2 | 3nn0 12467 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn 12276 | . . 3 ⊢ 4 ∈ ℕ | |
| 4 | 2, 3 | decnncl 12676 | . 2 ⊢ ;34 ∈ ℕ |
| 5 | 1nn0 12465 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12466 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12671 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
| 8 | 5nn0 12469 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 9 | 7, 8 | deccl 12671 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
| 10 | 8nn0 12472 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12671 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
| 12 | 11 | nn0cni 12461 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
| 13 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
| 15 | eqid 2730 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
| 16 | 8p1e9 12338 | . . . . . 6 ⊢ (8 + 1) = 9 | |
| 17 | 9, 10, 5, 15, 16 | decaddi 12716 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
| 18 | 14, 17 | eqtr4i 2756 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
| 19 | 12, 13, 18 | mvrraddi 11445 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
| 20 | 4nn0 12468 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 21 | 2, 20 | deccl 12671 | . . . 4 ⊢ ;34 ∈ ℕ0 |
| 22 | 7nn0 12471 | . . . 4 ⊢ 7 ∈ ℕ0 | |
| 23 | eqid 2730 | . . . 4 ⊢ ;37 = ;37 | |
| 24 | 6, 2 | deccl 12671 | . . . 4 ⊢ ;23 ∈ ℕ0 |
| 25 | eqid 2730 | . . . . 5 ⊢ ;34 = ;34 | |
| 26 | eqid 2730 | . . . . 5 ⊢ ;23 = ;23 | |
| 27 | 3t3e9 12355 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 28 | 2p1e3 12330 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 29 | 27, 28 | oveq12i 7402 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
| 30 | 9p3e12 12744 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
| 31 | 29, 30 | eqtri 2753 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
| 32 | 4t3e12 12754 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
| 33 | 3cn 12274 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 34 | 2cn 12268 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 3p2e5 12339 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 36 | 33, 34, 35 | addcomli 11373 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 37 | 5, 6, 2, 32, 36 | decaddi 12716 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
| 38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12708 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
| 39 | 7cn 12287 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 40 | 7t3e21 12766 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 41 | 39, 33, 40 | mulcomli 11190 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 42 | 1p2e3 12331 | . . . . . 6 ⊢ (1 + 2) = 3 | |
| 43 | 6, 5, 6, 41, 42 | decaddi 12716 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
| 44 | 4cn 12278 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 45 | 7t4e28 12767 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
| 46 | 39, 44, 45 | mulcomli 11190 | . . . . 5 ⊢ (4 · 7) = ;28 |
| 47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12721 | . . . 4 ⊢ (;34 · 7) = ;;238 |
| 48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12722 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
| 49 | 19, 48 | eqtr4i 2756 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
| 50 | 9nn0 12473 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 51 | 9, 50 | deccl 12671 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
| 52 | 14, 51 | eqeltri 2825 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 53 | 52 | nn0cni 12461 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 54 | npcan 11437 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 55 | 53, 13, 54 | mp2an 692 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
| 56 | 55 | eqcomi 2739 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
| 57 | 1nn 12204 | . 2 ⊢ 1 ∈ ℕ | |
| 58 | 2nn 12266 | . 2 ⊢ 2 ∈ ℕ | |
| 59 | 2, 22 | deccl 12671 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
| 60 | 59 | numexp1 17054 | . . . 4 ⊢ (;37↑1) = ;37 |
| 61 | 60 | oveq2i 7401 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
| 62 | 49, 61 | eqtr4i 2756 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
| 63 | 7nn 12285 | . . . 4 ⊢ 7 ∈ ℕ | |
| 64 | 4lt7 12376 | . . . 4 ⊢ 4 < 7 | |
| 65 | 2, 20, 63, 64 | declt 12684 | . . 3 ⊢ ;34 < ;37 |
| 66 | 65, 60 | breqtrri 5137 | . 2 ⊢ ;34 < (;37↑1) |
| 67 | 14 | 1259lem4 17111 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
| 68 | 14 | 1259lem5 17112 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
| 69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16885 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 2c2 12248 3c3 12249 4c4 12250 5c5 12251 7c7 12253 8c8 12254 9c9 12255 ℕ0cn0 12449 ;cdc 12656 ↑cexp 14033 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-odz 16742 df-phi 16743 df-pc 16815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |