![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version |
Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
1259prm.1 | ⊢ 𝑁 = ;;;1259 |
Ref | Expression |
---|---|
1259prm | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 37prm 17154 | . 2 ⊢ ;37 ∈ ℙ | |
2 | 3nn0 12541 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | 4nn 12346 | . . 3 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12750 | . 2 ⊢ ;34 ∈ ℕ |
5 | 1nn0 12539 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12540 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
7 | 5, 6 | deccl 12745 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
8 | 5nn0 12543 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
9 | 7, 8 | deccl 12745 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
10 | 8nn0 12546 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
11 | 9, 10 | deccl 12745 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
12 | 11 | nn0cni 12535 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
13 | ax-1cn 11210 | . . . 4 ⊢ 1 ∈ ℂ | |
14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
15 | eqid 2734 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
16 | 8p1e9 12413 | . . . . . 6 ⊢ (8 + 1) = 9 | |
17 | 9, 10, 5, 15, 16 | decaddi 12790 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
18 | 14, 17 | eqtr4i 2765 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
19 | 12, 13, 18 | mvrraddi 11522 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
20 | 4nn0 12542 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
21 | 2, 20 | deccl 12745 | . . . 4 ⊢ ;34 ∈ ℕ0 |
22 | 7nn0 12545 | . . . 4 ⊢ 7 ∈ ℕ0 | |
23 | eqid 2734 | . . . 4 ⊢ ;37 = ;37 | |
24 | 6, 2 | deccl 12745 | . . . 4 ⊢ ;23 ∈ ℕ0 |
25 | eqid 2734 | . . . . 5 ⊢ ;34 = ;34 | |
26 | eqid 2734 | . . . . 5 ⊢ ;23 = ;23 | |
27 | 3t3e9 12430 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
28 | 2p1e3 12405 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
29 | 27, 28 | oveq12i 7442 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
30 | 9p3e12 12818 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
31 | 29, 30 | eqtri 2762 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
32 | 4t3e12 12828 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
33 | 3cn 12344 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
34 | 2cn 12338 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 3p2e5 12414 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
36 | 33, 34, 35 | addcomli 11450 | . . . . . 6 ⊢ (2 + 3) = 5 |
37 | 5, 6, 2, 32, 36 | decaddi 12790 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12782 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
39 | 7cn 12357 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
40 | 7t3e21 12840 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
41 | 39, 33, 40 | mulcomli 11267 | . . . . . 6 ⊢ (3 · 7) = ;21 |
42 | 1p2e3 12406 | . . . . . 6 ⊢ (1 + 2) = 3 | |
43 | 6, 5, 6, 41, 42 | decaddi 12790 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
44 | 4cn 12348 | . . . . . 6 ⊢ 4 ∈ ℂ | |
45 | 7t4e28 12841 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
46 | 39, 44, 45 | mulcomli 11267 | . . . . 5 ⊢ (4 · 7) = ;28 |
47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12795 | . . . 4 ⊢ (;34 · 7) = ;;238 |
48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12796 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
49 | 19, 48 | eqtr4i 2765 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
50 | 9nn0 12547 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
51 | 9, 50 | deccl 12745 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
52 | 14, 51 | eqeltri 2834 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
53 | 52 | nn0cni 12535 | . . . 4 ⊢ 𝑁 ∈ ℂ |
54 | npcan 11514 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
55 | 53, 13, 54 | mp2an 692 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
56 | 55 | eqcomi 2743 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
57 | 1nn 12274 | . 2 ⊢ 1 ∈ ℕ | |
58 | 2nn 12336 | . 2 ⊢ 2 ∈ ℕ | |
59 | 2, 22 | deccl 12745 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
60 | 59 | numexp1 17110 | . . . 4 ⊢ (;37↑1) = ;37 |
61 | 60 | oveq2i 7441 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
62 | 49, 61 | eqtr4i 2765 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
63 | 7nn 12355 | . . . 4 ⊢ 7 ∈ ℕ | |
64 | 4lt7 12451 | . . . 4 ⊢ 4 < 7 | |
65 | 2, 20, 63, 64 | declt 12758 | . . 3 ⊢ ;34 < ;37 |
66 | 65, 60 | breqtrri 5174 | . 2 ⊢ ;34 < (;37↑1) |
67 | 14 | 1259lem4 17167 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
68 | 14 | 1259lem5 17168 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16940 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 + caddc 11155 · cmul 11157 < clt 11292 − cmin 11489 2c2 12318 3c3 12319 4c4 12320 5c5 12321 7c7 12323 8c8 12324 9c9 12325 ℕ0cn0 12523 ;cdc 12730 ↑cexp 14098 ℙcprime 16704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-xnn0 12597 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-gcd 16528 df-prm 16705 df-odz 16798 df-phi 16799 df-pc 16870 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |