Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version |
Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
1259prm.1 | ⊢ 𝑁 = ;;;1259 |
Ref | Expression |
---|---|
1259prm | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 37prm 16822 | . 2 ⊢ ;37 ∈ ℙ | |
2 | 3nn0 12251 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | 4nn 12056 | . . 3 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12457 | . 2 ⊢ ;34 ∈ ℕ |
5 | 1nn0 12249 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12250 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
7 | 5, 6 | deccl 12452 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
8 | 5nn0 12253 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
9 | 7, 8 | deccl 12452 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
10 | 8nn0 12256 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
11 | 9, 10 | deccl 12452 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
12 | 11 | nn0cni 12245 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
13 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
15 | eqid 2738 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
16 | 8p1e9 12123 | . . . . . 6 ⊢ (8 + 1) = 9 | |
17 | 9, 10, 5, 15, 16 | decaddi 12497 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
18 | 14, 17 | eqtr4i 2769 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
19 | 12, 13, 18 | mvrraddi 11238 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
20 | 4nn0 12252 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
21 | 2, 20 | deccl 12452 | . . . 4 ⊢ ;34 ∈ ℕ0 |
22 | 7nn0 12255 | . . . 4 ⊢ 7 ∈ ℕ0 | |
23 | eqid 2738 | . . . 4 ⊢ ;37 = ;37 | |
24 | 6, 2 | deccl 12452 | . . . 4 ⊢ ;23 ∈ ℕ0 |
25 | eqid 2738 | . . . . 5 ⊢ ;34 = ;34 | |
26 | eqid 2738 | . . . . 5 ⊢ ;23 = ;23 | |
27 | 3t3e9 12140 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
28 | 2p1e3 12115 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
29 | 27, 28 | oveq12i 7287 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
30 | 9p3e12 12525 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
31 | 29, 30 | eqtri 2766 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
32 | 4t3e12 12535 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
33 | 3cn 12054 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
34 | 2cn 12048 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 3p2e5 12124 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
36 | 33, 34, 35 | addcomli 11167 | . . . . . 6 ⊢ (2 + 3) = 5 |
37 | 5, 6, 2, 32, 36 | decaddi 12497 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12489 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
39 | 7cn 12067 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
40 | 7t3e21 12547 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
41 | 39, 33, 40 | mulcomli 10984 | . . . . . 6 ⊢ (3 · 7) = ;21 |
42 | 1p2e3 12116 | . . . . . 6 ⊢ (1 + 2) = 3 | |
43 | 6, 5, 6, 41, 42 | decaddi 12497 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
44 | 4cn 12058 | . . . . . 6 ⊢ 4 ∈ ℂ | |
45 | 7t4e28 12548 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
46 | 39, 44, 45 | mulcomli 10984 | . . . . 5 ⊢ (4 · 7) = ;28 |
47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12502 | . . . 4 ⊢ (;34 · 7) = ;;238 |
48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12503 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
49 | 19, 48 | eqtr4i 2769 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
50 | 9nn0 12257 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
51 | 9, 50 | deccl 12452 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
52 | 14, 51 | eqeltri 2835 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
53 | 52 | nn0cni 12245 | . . . 4 ⊢ 𝑁 ∈ ℂ |
54 | npcan 11230 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
55 | 53, 13, 54 | mp2an 689 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
56 | 55 | eqcomi 2747 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
57 | 1nn 11984 | . 2 ⊢ 1 ∈ ℕ | |
58 | 2nn 12046 | . 2 ⊢ 2 ∈ ℕ | |
59 | 2, 22 | deccl 12452 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
60 | 59 | numexp1 16778 | . . . 4 ⊢ (;37↑1) = ;37 |
61 | 60 | oveq2i 7286 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
62 | 49, 61 | eqtr4i 2769 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
63 | 7nn 12065 | . . . 4 ⊢ 7 ∈ ℕ | |
64 | 4lt7 12161 | . . . 4 ⊢ 4 < 7 | |
65 | 2, 20, 63, 64 | declt 12465 | . . 3 ⊢ ;34 < ;37 |
66 | 65, 60 | breqtrri 5101 | . 2 ⊢ ;34 < (;37↑1) |
67 | 14 | 1259lem4 16835 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
68 | 14 | 1259lem5 16836 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16608 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 − cmin 11205 2c2 12028 3c3 12029 4c4 12030 5c5 12031 7c7 12033 8c8 12034 9c9 12035 ℕ0cn0 12233 ;cdc 12437 ↑cexp 13782 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 df-odz 16466 df-phi 16467 df-pc 16538 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |