| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version | ||
| Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 1259prm.1 | ⊢ 𝑁 = ;;;1259 |
| Ref | Expression |
|---|---|
| 1259prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 37prm 17027 | . 2 ⊢ ;37 ∈ ℙ | |
| 2 | 3nn0 12394 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn 12203 | . . 3 ⊢ 4 ∈ ℕ | |
| 4 | 2, 3 | decnncl 12603 | . 2 ⊢ ;34 ∈ ℕ |
| 5 | 1nn0 12392 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12393 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12598 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
| 8 | 5nn0 12396 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 9 | 7, 8 | deccl 12598 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
| 10 | 8nn0 12399 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12598 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
| 12 | 11 | nn0cni 12388 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
| 13 | ax-1cn 11059 | . . . 4 ⊢ 1 ∈ ℂ | |
| 14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
| 15 | eqid 2731 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
| 16 | 8p1e9 12265 | . . . . . 6 ⊢ (8 + 1) = 9 | |
| 17 | 9, 10, 5, 15, 16 | decaddi 12643 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
| 18 | 14, 17 | eqtr4i 2757 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
| 19 | 12, 13, 18 | mvrraddi 11372 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
| 20 | 4nn0 12395 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 21 | 2, 20 | deccl 12598 | . . . 4 ⊢ ;34 ∈ ℕ0 |
| 22 | 7nn0 12398 | . . . 4 ⊢ 7 ∈ ℕ0 | |
| 23 | eqid 2731 | . . . 4 ⊢ ;37 = ;37 | |
| 24 | 6, 2 | deccl 12598 | . . . 4 ⊢ ;23 ∈ ℕ0 |
| 25 | eqid 2731 | . . . . 5 ⊢ ;34 = ;34 | |
| 26 | eqid 2731 | . . . . 5 ⊢ ;23 = ;23 | |
| 27 | 3t3e9 12282 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 28 | 2p1e3 12257 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 29 | 27, 28 | oveq12i 7353 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
| 30 | 9p3e12 12671 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
| 31 | 29, 30 | eqtri 2754 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
| 32 | 4t3e12 12681 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
| 33 | 3cn 12201 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 34 | 2cn 12195 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 3p2e5 12266 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 36 | 33, 34, 35 | addcomli 11300 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 37 | 5, 6, 2, 32, 36 | decaddi 12643 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
| 38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12635 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
| 39 | 7cn 12214 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 40 | 7t3e21 12693 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 41 | 39, 33, 40 | mulcomli 11116 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 42 | 1p2e3 12258 | . . . . . 6 ⊢ (1 + 2) = 3 | |
| 43 | 6, 5, 6, 41, 42 | decaddi 12643 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
| 44 | 4cn 12205 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 45 | 7t4e28 12694 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
| 46 | 39, 44, 45 | mulcomli 11116 | . . . . 5 ⊢ (4 · 7) = ;28 |
| 47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12648 | . . . 4 ⊢ (;34 · 7) = ;;238 |
| 48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12649 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
| 49 | 19, 48 | eqtr4i 2757 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
| 50 | 9nn0 12400 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 51 | 9, 50 | deccl 12598 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
| 52 | 14, 51 | eqeltri 2827 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 53 | 52 | nn0cni 12388 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 54 | npcan 11364 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 55 | 53, 13, 54 | mp2an 692 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
| 56 | 55 | eqcomi 2740 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
| 57 | 1nn 12131 | . 2 ⊢ 1 ∈ ℕ | |
| 58 | 2nn 12193 | . 2 ⊢ 2 ∈ ℕ | |
| 59 | 2, 22 | deccl 12598 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
| 60 | 59 | numexp1 16983 | . . . 4 ⊢ (;37↑1) = ;37 |
| 61 | 60 | oveq2i 7352 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
| 62 | 49, 61 | eqtr4i 2757 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
| 63 | 7nn 12212 | . . . 4 ⊢ 7 ∈ ℕ | |
| 64 | 4lt7 12303 | . . . 4 ⊢ 4 < 7 | |
| 65 | 2, 20, 63, 64 | declt 12611 | . . 3 ⊢ ;34 < ;37 |
| 66 | 65, 60 | breqtrri 5113 | . 2 ⊢ ;34 < (;37↑1) |
| 67 | 14 | 1259lem4 17040 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
| 68 | 14 | 1259lem5 17041 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
| 69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16814 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 − cmin 11339 2c2 12175 3c3 12176 4c4 12177 5c5 12178 7c7 12180 8c8 12181 9c9 12182 ℕ0cn0 12376 ;cdc 12583 ↑cexp 13963 ℙcprime 16577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 df-prm 16578 df-odz 16671 df-phi 16672 df-pc 16744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |