| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version | ||
| Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 1259prm.1 | ⊢ 𝑁 = ;;;1259 |
| Ref | Expression |
|---|---|
| 1259prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 37prm 17138 | . 2 ⊢ ;37 ∈ ℙ | |
| 2 | 3nn0 12517 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn 12321 | . . 3 ⊢ 4 ∈ ℕ | |
| 4 | 2, 3 | decnncl 12726 | . 2 ⊢ ;34 ∈ ℕ |
| 5 | 1nn0 12515 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12516 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12721 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
| 8 | 5nn0 12519 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 9 | 7, 8 | deccl 12721 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
| 10 | 8nn0 12522 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12721 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
| 12 | 11 | nn0cni 12511 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
| 13 | ax-1cn 11185 | . . . 4 ⊢ 1 ∈ ℂ | |
| 14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
| 15 | eqid 2735 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
| 16 | 8p1e9 12388 | . . . . . 6 ⊢ (8 + 1) = 9 | |
| 17 | 9, 10, 5, 15, 16 | decaddi 12766 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
| 18 | 14, 17 | eqtr4i 2761 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
| 19 | 12, 13, 18 | mvrraddi 11497 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
| 20 | 4nn0 12518 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 21 | 2, 20 | deccl 12721 | . . . 4 ⊢ ;34 ∈ ℕ0 |
| 22 | 7nn0 12521 | . . . 4 ⊢ 7 ∈ ℕ0 | |
| 23 | eqid 2735 | . . . 4 ⊢ ;37 = ;37 | |
| 24 | 6, 2 | deccl 12721 | . . . 4 ⊢ ;23 ∈ ℕ0 |
| 25 | eqid 2735 | . . . . 5 ⊢ ;34 = ;34 | |
| 26 | eqid 2735 | . . . . 5 ⊢ ;23 = ;23 | |
| 27 | 3t3e9 12405 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 28 | 2p1e3 12380 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 29 | 27, 28 | oveq12i 7415 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
| 30 | 9p3e12 12794 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
| 31 | 29, 30 | eqtri 2758 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
| 32 | 4t3e12 12804 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
| 33 | 3cn 12319 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 34 | 2cn 12313 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 3p2e5 12389 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 36 | 33, 34, 35 | addcomli 11425 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 37 | 5, 6, 2, 32, 36 | decaddi 12766 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
| 38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12758 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
| 39 | 7cn 12332 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 40 | 7t3e21 12816 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 41 | 39, 33, 40 | mulcomli 11242 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 42 | 1p2e3 12381 | . . . . . 6 ⊢ (1 + 2) = 3 | |
| 43 | 6, 5, 6, 41, 42 | decaddi 12766 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
| 44 | 4cn 12323 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 45 | 7t4e28 12817 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
| 46 | 39, 44, 45 | mulcomli 11242 | . . . . 5 ⊢ (4 · 7) = ;28 |
| 47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12771 | . . . 4 ⊢ (;34 · 7) = ;;238 |
| 48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12772 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
| 49 | 19, 48 | eqtr4i 2761 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
| 50 | 9nn0 12523 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 51 | 9, 50 | deccl 12721 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
| 52 | 14, 51 | eqeltri 2830 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 53 | 52 | nn0cni 12511 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 54 | npcan 11489 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 55 | 53, 13, 54 | mp2an 692 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
| 56 | 55 | eqcomi 2744 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
| 57 | 1nn 12249 | . 2 ⊢ 1 ∈ ℕ | |
| 58 | 2nn 12311 | . 2 ⊢ 2 ∈ ℕ | |
| 59 | 2, 22 | deccl 12721 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
| 60 | 59 | numexp1 17094 | . . . 4 ⊢ (;37↑1) = ;37 |
| 61 | 60 | oveq2i 7414 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
| 62 | 49, 61 | eqtr4i 2761 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
| 63 | 7nn 12330 | . . . 4 ⊢ 7 ∈ ℕ | |
| 64 | 4lt7 12426 | . . . 4 ⊢ 4 < 7 | |
| 65 | 2, 20, 63, 64 | declt 12734 | . . 3 ⊢ ;34 < ;37 |
| 66 | 65, 60 | breqtrri 5146 | . 2 ⊢ ;34 < (;37↑1) |
| 67 | 14 | 1259lem4 17151 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
| 68 | 14 | 1259lem5 17152 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
| 69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16925 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 1c1 11128 + caddc 11130 · cmul 11132 < clt 11267 − cmin 11464 2c2 12293 3c3 12294 4c4 12295 5c5 12296 7c7 12298 8c8 12299 9c9 12300 ℕ0cn0 12499 ;cdc 12706 ↑cexp 14077 ℙcprime 16688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-gcd 16512 df-prm 16689 df-odz 16782 df-phi 16783 df-pc 16855 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |