| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version | ||
| Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 1259prm.1 | ⊢ 𝑁 = ;;;1259 |
| Ref | Expression |
|---|---|
| 1259prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 37prm 17067 | . 2 ⊢ ;37 ∈ ℙ | |
| 2 | 3nn0 12436 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn 12245 | . . 3 ⊢ 4 ∈ ℕ | |
| 4 | 2, 3 | decnncl 12645 | . 2 ⊢ ;34 ∈ ℕ |
| 5 | 1nn0 12434 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12435 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12640 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
| 8 | 5nn0 12438 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 9 | 7, 8 | deccl 12640 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
| 10 | 8nn0 12441 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12640 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
| 12 | 11 | nn0cni 12430 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
| 13 | ax-1cn 11102 | . . . 4 ⊢ 1 ∈ ℂ | |
| 14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
| 15 | eqid 2729 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
| 16 | 8p1e9 12307 | . . . . . 6 ⊢ (8 + 1) = 9 | |
| 17 | 9, 10, 5, 15, 16 | decaddi 12685 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
| 18 | 14, 17 | eqtr4i 2755 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
| 19 | 12, 13, 18 | mvrraddi 11414 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
| 20 | 4nn0 12437 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 21 | 2, 20 | deccl 12640 | . . . 4 ⊢ ;34 ∈ ℕ0 |
| 22 | 7nn0 12440 | . . . 4 ⊢ 7 ∈ ℕ0 | |
| 23 | eqid 2729 | . . . 4 ⊢ ;37 = ;37 | |
| 24 | 6, 2 | deccl 12640 | . . . 4 ⊢ ;23 ∈ ℕ0 |
| 25 | eqid 2729 | . . . . 5 ⊢ ;34 = ;34 | |
| 26 | eqid 2729 | . . . . 5 ⊢ ;23 = ;23 | |
| 27 | 3t3e9 12324 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 28 | 2p1e3 12299 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 29 | 27, 28 | oveq12i 7381 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
| 30 | 9p3e12 12713 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
| 31 | 29, 30 | eqtri 2752 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
| 32 | 4t3e12 12723 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
| 33 | 3cn 12243 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 34 | 2cn 12237 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 3p2e5 12308 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 36 | 33, 34, 35 | addcomli 11342 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 37 | 5, 6, 2, 32, 36 | decaddi 12685 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
| 38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12677 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
| 39 | 7cn 12256 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 40 | 7t3e21 12735 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 41 | 39, 33, 40 | mulcomli 11159 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 42 | 1p2e3 12300 | . . . . . 6 ⊢ (1 + 2) = 3 | |
| 43 | 6, 5, 6, 41, 42 | decaddi 12685 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
| 44 | 4cn 12247 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 45 | 7t4e28 12736 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
| 46 | 39, 44, 45 | mulcomli 11159 | . . . . 5 ⊢ (4 · 7) = ;28 |
| 47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12690 | . . . 4 ⊢ (;34 · 7) = ;;238 |
| 48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12691 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
| 49 | 19, 48 | eqtr4i 2755 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
| 50 | 9nn0 12442 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 51 | 9, 50 | deccl 12640 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
| 52 | 14, 51 | eqeltri 2824 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 53 | 52 | nn0cni 12430 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 54 | npcan 11406 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 55 | 53, 13, 54 | mp2an 692 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
| 56 | 55 | eqcomi 2738 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
| 57 | 1nn 12173 | . 2 ⊢ 1 ∈ ℕ | |
| 58 | 2nn 12235 | . 2 ⊢ 2 ∈ ℕ | |
| 59 | 2, 22 | deccl 12640 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
| 60 | 59 | numexp1 17023 | . . . 4 ⊢ (;37↑1) = ;37 |
| 61 | 60 | oveq2i 7380 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
| 62 | 49, 61 | eqtr4i 2755 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
| 63 | 7nn 12254 | . . . 4 ⊢ 7 ∈ ℕ | |
| 64 | 4lt7 12345 | . . . 4 ⊢ 4 < 7 | |
| 65 | 2, 20, 63, 64 | declt 12653 | . . 3 ⊢ ;34 < ;37 |
| 66 | 65, 60 | breqtrri 5129 | . 2 ⊢ ;34 < (;37↑1) |
| 67 | 14 | 1259lem4 17080 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
| 68 | 14 | 1259lem5 17081 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
| 69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16854 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 − cmin 11381 2c2 12217 3c3 12218 4c4 12219 5c5 12220 7c7 12222 8c8 12223 9c9 12224 ℕ0cn0 12418 ;cdc 12625 ↑cexp 14002 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-odz 16711 df-phi 16712 df-pc 16784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |