| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version | ||
| Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 1259prm.1 | ⊢ 𝑁 = ;;;1259 |
| Ref | Expression |
|---|---|
| 1259prm | ⊢ 𝑁 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 37prm 17051 | . 2 ⊢ ;37 ∈ ℙ | |
| 2 | 3nn0 12421 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 3 | 4nn 12230 | . . 3 ⊢ 4 ∈ ℕ | |
| 4 | 2, 3 | decnncl 12630 | . 2 ⊢ ;34 ∈ ℕ |
| 5 | 1nn0 12419 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 12420 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 7 | 5, 6 | deccl 12625 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
| 8 | 5nn0 12423 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
| 9 | 7, 8 | deccl 12625 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
| 10 | 8nn0 12426 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12625 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
| 12 | 11 | nn0cni 12415 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
| 13 | ax-1cn 11086 | . . . 4 ⊢ 1 ∈ ℂ | |
| 14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
| 15 | eqid 2729 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
| 16 | 8p1e9 12292 | . . . . . 6 ⊢ (8 + 1) = 9 | |
| 17 | 9, 10, 5, 15, 16 | decaddi 12670 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
| 18 | 14, 17 | eqtr4i 2755 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
| 19 | 12, 13, 18 | mvrraddi 11399 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
| 20 | 4nn0 12422 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 21 | 2, 20 | deccl 12625 | . . . 4 ⊢ ;34 ∈ ℕ0 |
| 22 | 7nn0 12425 | . . . 4 ⊢ 7 ∈ ℕ0 | |
| 23 | eqid 2729 | . . . 4 ⊢ ;37 = ;37 | |
| 24 | 6, 2 | deccl 12625 | . . . 4 ⊢ ;23 ∈ ℕ0 |
| 25 | eqid 2729 | . . . . 5 ⊢ ;34 = ;34 | |
| 26 | eqid 2729 | . . . . 5 ⊢ ;23 = ;23 | |
| 27 | 3t3e9 12309 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
| 28 | 2p1e3 12284 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 29 | 27, 28 | oveq12i 7365 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
| 30 | 9p3e12 12698 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
| 31 | 29, 30 | eqtri 2752 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
| 32 | 4t3e12 12708 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
| 33 | 3cn 12228 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 34 | 2cn 12222 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 3p2e5 12293 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
| 36 | 33, 34, 35 | addcomli 11327 | . . . . . 6 ⊢ (2 + 3) = 5 |
| 37 | 5, 6, 2, 32, 36 | decaddi 12670 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
| 38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12662 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
| 39 | 7cn 12241 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
| 40 | 7t3e21 12720 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
| 41 | 39, 33, 40 | mulcomli 11143 | . . . . . 6 ⊢ (3 · 7) = ;21 |
| 42 | 1p2e3 12285 | . . . . . 6 ⊢ (1 + 2) = 3 | |
| 43 | 6, 5, 6, 41, 42 | decaddi 12670 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
| 44 | 4cn 12232 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 45 | 7t4e28 12721 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
| 46 | 39, 44, 45 | mulcomli 11143 | . . . . 5 ⊢ (4 · 7) = ;28 |
| 47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12675 | . . . 4 ⊢ (;34 · 7) = ;;238 |
| 48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12676 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
| 49 | 19, 48 | eqtr4i 2755 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
| 50 | 9nn0 12427 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
| 51 | 9, 50 | deccl 12625 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
| 52 | 14, 51 | eqeltri 2824 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 53 | 52 | nn0cni 12415 | . . . 4 ⊢ 𝑁 ∈ ℂ |
| 54 | npcan 11391 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
| 55 | 53, 13, 54 | mp2an 692 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
| 56 | 55 | eqcomi 2738 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
| 57 | 1nn 12158 | . 2 ⊢ 1 ∈ ℕ | |
| 58 | 2nn 12220 | . 2 ⊢ 2 ∈ ℕ | |
| 59 | 2, 22 | deccl 12625 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
| 60 | 59 | numexp1 17007 | . . . 4 ⊢ (;37↑1) = ;37 |
| 61 | 60 | oveq2i 7364 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
| 62 | 49, 61 | eqtr4i 2755 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
| 63 | 7nn 12239 | . . . 4 ⊢ 7 ∈ ℕ | |
| 64 | 4lt7 12330 | . . . 4 ⊢ 4 < 7 | |
| 65 | 2, 20, 63, 64 | declt 12638 | . . 3 ⊢ ;34 < ;37 |
| 66 | 65, 60 | breqtrri 5122 | . 2 ⊢ ;34 < (;37↑1) |
| 67 | 14 | 1259lem4 17064 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
| 68 | 14 | 1259lem5 17065 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
| 69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16838 | 1 ⊢ 𝑁 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11366 2c2 12202 3c3 12203 4c4 12204 5c5 12205 7c7 12207 8c8 12208 9c9 12209 ℕ0cn0 12403 ;cdc 12610 ↑cexp 13987 ℙcprime 16601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-hash 14257 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-dvds 16183 df-gcd 16425 df-prm 16602 df-odz 16695 df-phi 16696 df-pc 16768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |