![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1259prm | Structured version Visualization version GIF version |
Description: 1259 is a prime number. (Contributed by Mario Carneiro, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
1259prm.1 | ⊢ 𝑁 = ;;;1259 |
Ref | Expression |
---|---|
1259prm | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 37prm 17168 | . 2 ⊢ ;37 ∈ ℙ | |
2 | 3nn0 12571 | . . 3 ⊢ 3 ∈ ℕ0 | |
3 | 4nn 12376 | . . 3 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12778 | . 2 ⊢ ;34 ∈ ℕ |
5 | 1nn0 12569 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 12570 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
7 | 5, 6 | deccl 12773 | . . . . . . 7 ⊢ ;12 ∈ ℕ0 |
8 | 5nn0 12573 | . . . . . . 7 ⊢ 5 ∈ ℕ0 | |
9 | 7, 8 | deccl 12773 | . . . . . 6 ⊢ ;;125 ∈ ℕ0 |
10 | 8nn0 12576 | . . . . . 6 ⊢ 8 ∈ ℕ0 | |
11 | 9, 10 | deccl 12773 | . . . . 5 ⊢ ;;;1258 ∈ ℕ0 |
12 | 11 | nn0cni 12565 | . . . 4 ⊢ ;;;1258 ∈ ℂ |
13 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
14 | 1259prm.1 | . . . . 5 ⊢ 𝑁 = ;;;1259 | |
15 | eqid 2740 | . . . . . 6 ⊢ ;;;1258 = ;;;1258 | |
16 | 8p1e9 12443 | . . . . . 6 ⊢ (8 + 1) = 9 | |
17 | 9, 10, 5, 15, 16 | decaddi 12818 | . . . . 5 ⊢ (;;;1258 + 1) = ;;;1259 |
18 | 14, 17 | eqtr4i 2771 | . . . 4 ⊢ 𝑁 = (;;;1258 + 1) |
19 | 12, 13, 18 | mvrraddi 11553 | . . 3 ⊢ (𝑁 − 1) = ;;;1258 |
20 | 4nn0 12572 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
21 | 2, 20 | deccl 12773 | . . . 4 ⊢ ;34 ∈ ℕ0 |
22 | 7nn0 12575 | . . . 4 ⊢ 7 ∈ ℕ0 | |
23 | eqid 2740 | . . . 4 ⊢ ;37 = ;37 | |
24 | 6, 2 | deccl 12773 | . . . 4 ⊢ ;23 ∈ ℕ0 |
25 | eqid 2740 | . . . . 5 ⊢ ;34 = ;34 | |
26 | eqid 2740 | . . . . 5 ⊢ ;23 = ;23 | |
27 | 3t3e9 12460 | . . . . . . 7 ⊢ (3 · 3) = 9 | |
28 | 2p1e3 12435 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
29 | 27, 28 | oveq12i 7460 | . . . . . 6 ⊢ ((3 · 3) + (2 + 1)) = (9 + 3) |
30 | 9p3e12 12846 | . . . . . 6 ⊢ (9 + 3) = ;12 | |
31 | 29, 30 | eqtri 2768 | . . . . 5 ⊢ ((3 · 3) + (2 + 1)) = ;12 |
32 | 4t3e12 12856 | . . . . . 6 ⊢ (4 · 3) = ;12 | |
33 | 3cn 12374 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
34 | 2cn 12368 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 3p2e5 12444 | . . . . . . 7 ⊢ (3 + 2) = 5 | |
36 | 33, 34, 35 | addcomli 11482 | . . . . . 6 ⊢ (2 + 3) = 5 |
37 | 5, 6, 2, 32, 36 | decaddi 12818 | . . . . 5 ⊢ ((4 · 3) + 3) = ;15 |
38 | 2, 20, 6, 2, 25, 26, 2, 8, 5, 31, 37 | decmac 12810 | . . . 4 ⊢ ((;34 · 3) + ;23) = ;;125 |
39 | 7cn 12387 | . . . . . . 7 ⊢ 7 ∈ ℂ | |
40 | 7t3e21 12868 | . . . . . . 7 ⊢ (7 · 3) = ;21 | |
41 | 39, 33, 40 | mulcomli 11299 | . . . . . 6 ⊢ (3 · 7) = ;21 |
42 | 1p2e3 12436 | . . . . . 6 ⊢ (1 + 2) = 3 | |
43 | 6, 5, 6, 41, 42 | decaddi 12818 | . . . . 5 ⊢ ((3 · 7) + 2) = ;23 |
44 | 4cn 12378 | . . . . . 6 ⊢ 4 ∈ ℂ | |
45 | 7t4e28 12869 | . . . . . 6 ⊢ (7 · 4) = ;28 | |
46 | 39, 44, 45 | mulcomli 11299 | . . . . 5 ⊢ (4 · 7) = ;28 |
47 | 22, 2, 20, 25, 10, 6, 43, 46 | decmul1c 12823 | . . . 4 ⊢ (;34 · 7) = ;;238 |
48 | 21, 2, 22, 23, 10, 24, 38, 47 | decmul2c 12824 | . . 3 ⊢ (;34 · ;37) = ;;;1258 |
49 | 19, 48 | eqtr4i 2771 | . 2 ⊢ (𝑁 − 1) = (;34 · ;37) |
50 | 9nn0 12577 | . . . . . . 7 ⊢ 9 ∈ ℕ0 | |
51 | 9, 50 | deccl 12773 | . . . . . 6 ⊢ ;;;1259 ∈ ℕ0 |
52 | 14, 51 | eqeltri 2840 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
53 | 52 | nn0cni 12565 | . . . 4 ⊢ 𝑁 ∈ ℂ |
54 | npcan 11545 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
55 | 53, 13, 54 | mp2an 691 | . . 3 ⊢ ((𝑁 − 1) + 1) = 𝑁 |
56 | 55 | eqcomi 2749 | . 2 ⊢ 𝑁 = ((𝑁 − 1) + 1) |
57 | 1nn 12304 | . 2 ⊢ 1 ∈ ℕ | |
58 | 2nn 12366 | . 2 ⊢ 2 ∈ ℕ | |
59 | 2, 22 | deccl 12773 | . . . . 5 ⊢ ;37 ∈ ℕ0 |
60 | 59 | numexp1 17124 | . . . 4 ⊢ (;37↑1) = ;37 |
61 | 60 | oveq2i 7459 | . . 3 ⊢ (;34 · (;37↑1)) = (;34 · ;37) |
62 | 49, 61 | eqtr4i 2771 | . 2 ⊢ (𝑁 − 1) = (;34 · (;37↑1)) |
63 | 7nn 12385 | . . . 4 ⊢ 7 ∈ ℕ | |
64 | 4lt7 12481 | . . . 4 ⊢ 4 < 7 | |
65 | 2, 20, 63, 64 | declt 12786 | . . 3 ⊢ ;34 < ;37 |
66 | 65, 60 | breqtrri 5193 | . 2 ⊢ ;34 < (;37↑1) |
67 | 14 | 1259lem4 17181 | . 2 ⊢ ((2↑(𝑁 − 1)) mod 𝑁) = (1 mod 𝑁) |
68 | 14 | 1259lem5 17182 | . 2 ⊢ (((2↑;34) − 1) gcd 𝑁) = 1 |
69 | 1, 4, 49, 56, 4, 57, 58, 62, 66, 67, 68 | pockthi 16954 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 − cmin 11520 2c2 12348 3c3 12349 4c4 12350 5c5 12351 7c7 12353 8c8 12354 9c9 12355 ℕ0cn0 12553 ;cdc 12758 ↑cexp 14112 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 df-odz 16812 df-phi 16813 df-pc 16884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |