Proof of Theorem 139prmALT
| Step | Hyp | Ref
| Expression |
| 1 | | 1nn0 12522 |
. . . 4
⊢ 1 ∈
ℕ0 |
| 2 | | 3nn0 12524 |
. . . 4
⊢ 3 ∈
ℕ0 |
| 3 | 1, 2 | deccl 12728 |
. . 3
⊢ ;13 ∈
ℕ0 |
| 4 | | 9nn 12343 |
. . 3
⊢ 9 ∈
ℕ |
| 5 | 3, 4 | decnncl 12733 |
. 2
⊢ ;;139 ∈ ℕ |
| 6 | | 8nn0 12529 |
. . 3
⊢ 8 ∈
ℕ0 |
| 7 | | 4nn0 12525 |
. . 3
⊢ 4 ∈
ℕ0 |
| 8 | | 9nn0 12530 |
. . 3
⊢ 9 ∈
ℕ0 |
| 9 | | 1lt8 12443 |
. . 3
⊢ 1 <
8 |
| 10 | | 3lt10 12850 |
. . 3
⊢ 3 <
;10 |
| 11 | | 9lt10 12844 |
. . 3
⊢ 9 <
;10 |
| 12 | 1, 6, 2, 7, 8, 1, 9, 10, 11 | 3decltc 12746 |
. 2
⊢ ;;139 < ;;841 |
| 13 | | 3nn 12324 |
. . . 4
⊢ 3 ∈
ℕ |
| 14 | 1, 13 | decnncl 12733 |
. . 3
⊢ ;13 ∈ ℕ |
| 15 | | 1lt10 12852 |
. . 3
⊢ 1 <
;10 |
| 16 | 14, 8, 1, 15 | declti 12751 |
. 2
⊢ 1 <
;;139 |
| 17 | | 4t2e8 12413 |
. . 3
⊢ (4
· 2) = 8 |
| 18 | | df-9 12315 |
. . 3
⊢ 9 = (8 +
1) |
| 19 | 3, 7, 17, 18 | dec2dvds 17088 |
. 2
⊢ ¬ 2
∥ ;;139 |
| 20 | | 3ndvds4 47576 |
. . . 4
⊢ ¬ 3
∥ 4 |
| 21 | 1, 2 | 3dvdsdec 16356 |
. . . . 5
⊢ (3
∥ ;13 ↔ 3 ∥ (1 +
3)) |
| 22 | | 3cn 12326 |
. . . . . . 7
⊢ 3 ∈
ℂ |
| 23 | | ax-1cn 11192 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 24 | | 3p1e4 12390 |
. . . . . . 7
⊢ (3 + 1) =
4 |
| 25 | 22, 23, 24 | addcomli 11432 |
. . . . . 6
⊢ (1 + 3) =
4 |
| 26 | 25 | breq2i 5132 |
. . . . 5
⊢ (3
∥ (1 + 3) ↔ 3 ∥ 4) |
| 27 | 21, 26 | bitri 275 |
. . . 4
⊢ (3
∥ ;13 ↔ 3 ∥
4) |
| 28 | 20, 27 | mtbir 323 |
. . 3
⊢ ¬ 3
∥ ;13 |
| 29 | 1, 2, 8 | 3dvds2dec 16357 |
. . . 4
⊢ (3
∥ ;;139 ↔ 3 ∥ ((1 + 3) + 9)) |
| 30 | 25 | oveq1i 7420 |
. . . . . 6
⊢ ((1 + 3)
+ 9) = (4 + 9) |
| 31 | | 9cn 12345 |
. . . . . . 7
⊢ 9 ∈
ℂ |
| 32 | | 4cn 12330 |
. . . . . . 7
⊢ 4 ∈
ℂ |
| 33 | | 9p4e13 12802 |
. . . . . . 7
⊢ (9 + 4) =
;13 |
| 34 | 31, 32, 33 | addcomli 11432 |
. . . . . 6
⊢ (4 + 9) =
;13 |
| 35 | 30, 34 | eqtri 2759 |
. . . . 5
⊢ ((1 + 3)
+ 9) = ;13 |
| 36 | 35 | breq2i 5132 |
. . . 4
⊢ (3
∥ ((1 + 3) + 9) ↔ 3 ∥ ;13) |
| 37 | 29, 36 | bitri 275 |
. . 3
⊢ (3
∥ ;;139 ↔ 3 ∥ ;13) |
| 38 | 28, 37 | mtbir 323 |
. 2
⊢ ¬ 3
∥ ;;139 |
| 39 | | 4nn 12328 |
. . 3
⊢ 4 ∈
ℕ |
| 40 | | 4lt5 12422 |
. . 3
⊢ 4 <
5 |
| 41 | | 5p4e9 12403 |
. . 3
⊢ (5 + 4) =
9 |
| 42 | 3, 39, 40, 41 | dec5dvds2 17090 |
. 2
⊢ ¬ 5
∥ ;;139 |
| 43 | | 7nn 12337 |
. . 3
⊢ 7 ∈
ℕ |
| 44 | 1, 8 | deccl 12728 |
. . 3
⊢ ;19 ∈
ℕ0 |
| 45 | | 6nn 12334 |
. . 3
⊢ 6 ∈
ℕ |
| 46 | | 0nn0 12521 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 47 | | 6nn0 12527 |
. . . 4
⊢ 6 ∈
ℕ0 |
| 48 | | eqid 2736 |
. . . 4
⊢ ;19 = ;19 |
| 49 | 47 | dec0h 12735 |
. . . 4
⊢ 6 = ;06 |
| 50 | | 7nn0 12528 |
. . . 4
⊢ 7 ∈
ℕ0 |
| 51 | | 7cn 12339 |
. . . . . . 7
⊢ 7 ∈
ℂ |
| 52 | 51 | mulridi 11244 |
. . . . . 6
⊢ (7
· 1) = 7 |
| 53 | | 6cn 12336 |
. . . . . . 7
⊢ 6 ∈
ℂ |
| 54 | 53 | addlidi 11428 |
. . . . . 6
⊢ (0 + 6) =
6 |
| 55 | 52, 54 | oveq12i 7422 |
. . . . 5
⊢ ((7
· 1) + (0 + 6)) = (7 + 6) |
| 56 | | 7p6e13 12791 |
. . . . 5
⊢ (7 + 6) =
;13 |
| 57 | 55, 56 | eqtri 2759 |
. . . 4
⊢ ((7
· 1) + (0 + 6)) = ;13 |
| 58 | | 9t7e63 12840 |
. . . . . 6
⊢ (9
· 7) = ;63 |
| 59 | 31, 51, 58 | mulcomli 11249 |
. . . . 5
⊢ (7
· 9) = ;63 |
| 60 | | 6p3e9 12405 |
. . . . . 6
⊢ (6 + 3) =
9 |
| 61 | 53, 22, 60 | addcomli 11432 |
. . . . 5
⊢ (3 + 6) =
9 |
| 62 | 47, 2, 47, 59, 61 | decaddi 12773 |
. . . 4
⊢ ((7
· 9) + 6) = ;69 |
| 63 | 1, 8, 46, 47, 48, 49, 50, 8, 47, 57, 62 | decma2c 12766 |
. . 3
⊢ ((7
· ;19) + 6) = ;;139 |
| 64 | | 6lt7 12431 |
. . 3
⊢ 6 <
7 |
| 65 | 43, 44, 45, 63, 64 | ndvdsi 16436 |
. 2
⊢ ¬ 7
∥ ;;139 |
| 66 | | 1nn 12256 |
. . . 4
⊢ 1 ∈
ℕ |
| 67 | 1, 66 | decnncl 12733 |
. . 3
⊢ ;11 ∈ ℕ |
| 68 | | 2nn0 12523 |
. . . 4
⊢ 2 ∈
ℕ0 |
| 69 | 1, 68 | deccl 12728 |
. . 3
⊢ ;12 ∈
ℕ0 |
| 70 | | eqid 2736 |
. . . 4
⊢ ;12 = ;12 |
| 71 | 50 | dec0h 12735 |
. . . 4
⊢ 7 = ;07 |
| 72 | 1, 1 | deccl 12728 |
. . . 4
⊢ ;11 ∈
ℕ0 |
| 73 | | 2cn 12320 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 74 | 73 | addlidi 11428 |
. . . . . 6
⊢ (0 + 2) =
2 |
| 75 | 74 | oveq2i 7421 |
. . . . 5
⊢ ((;11 · 1) + (0 + 2)) = ((;11 · 1) + 2) |
| 76 | 67 | nncni 12255 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
| 77 | 76 | mulridi 11244 |
. . . . . 6
⊢ (;11 · 1) = ;11 |
| 78 | | 1p2e3 12388 |
. . . . . 6
⊢ (1 + 2) =
3 |
| 79 | 1, 1, 68, 77, 78 | decaddi 12773 |
. . . . 5
⊢ ((;11 · 1) + 2) = ;13 |
| 80 | 75, 79 | eqtri 2759 |
. . . 4
⊢ ((;11 · 1) + (0 + 2)) = ;13 |
| 81 | | eqid 2736 |
. . . . 5
⊢ ;11 = ;11 |
| 82 | 73 | mullidi 11245 |
. . . . . . 7
⊢ (1
· 2) = 2 |
| 83 | | 00id 11415 |
. . . . . . 7
⊢ (0 + 0) =
0 |
| 84 | 82, 83 | oveq12i 7422 |
. . . . . 6
⊢ ((1
· 2) + (0 + 0)) = (2 + 0) |
| 85 | 73 | addridi 11427 |
. . . . . 6
⊢ (2 + 0) =
2 |
| 86 | 84, 85 | eqtri 2759 |
. . . . 5
⊢ ((1
· 2) + (0 + 0)) = 2 |
| 87 | 82 | oveq1i 7420 |
. . . . . 6
⊢ ((1
· 2) + 7) = (2 + 7) |
| 88 | | 7p2e9 12406 |
. . . . . . 7
⊢ (7 + 2) =
9 |
| 89 | 51, 73, 88 | addcomli 11432 |
. . . . . 6
⊢ (2 + 7) =
9 |
| 90 | 8 | dec0h 12735 |
. . . . . 6
⊢ 9 = ;09 |
| 91 | 87, 89, 90 | 3eqtri 2763 |
. . . . 5
⊢ ((1
· 2) + 7) = ;09 |
| 92 | 1, 1, 46, 50, 81, 71, 68, 8, 46, 86, 91 | decmac 12765 |
. . . 4
⊢ ((;11 · 2) + 7) = ;29 |
| 93 | 1, 68, 46, 50, 70, 71, 72, 8, 68, 80, 92 | decma2c 12766 |
. . 3
⊢ ((;11 · ;12) + 7) = ;;139 |
| 94 | | 7lt10 12846 |
. . . 4
⊢ 7 <
;10 |
| 95 | 66, 1, 50, 94 | declti 12751 |
. . 3
⊢ 7 <
;11 |
| 96 | 67, 69, 43, 93, 95 | ndvdsi 16436 |
. 2
⊢ ¬
;11 ∥ ;;139 |
| 97 | 1, 46 | deccl 12728 |
. . 3
⊢ ;10 ∈
ℕ0 |
| 98 | | eqid 2736 |
. . . 4
⊢ ;10 = ;10 |
| 99 | 3 | nn0cni 12518 |
. . . . . . 7
⊢ ;13 ∈ ℂ |
| 100 | 99 | mulridi 11244 |
. . . . . 6
⊢ (;13 · 1) = ;13 |
| 101 | 100, 83 | oveq12i 7422 |
. . . . 5
⊢ ((;13 · 1) + (0 + 0)) = (;13 + 0) |
| 102 | 99 | addridi 11427 |
. . . . 5
⊢ (;13 + 0) = ;13 |
| 103 | 101, 102 | eqtri 2759 |
. . . 4
⊢ ((;13 · 1) + (0 + 0)) = ;13 |
| 104 | 99 | mul01i 11430 |
. . . . . 6
⊢ (;13 · 0) = 0 |
| 105 | 104 | oveq1i 7420 |
. . . . 5
⊢ ((;13 · 0) + 9) = (0 +
9) |
| 106 | 31 | addlidi 11428 |
. . . . 5
⊢ (0 + 9) =
9 |
| 107 | 105, 106,
90 | 3eqtri 2763 |
. . . 4
⊢ ((;13 · 0) + 9) = ;09 |
| 108 | 1, 46, 46, 8, 98, 90, 3, 8, 46, 103, 107 | decma2c 12766 |
. . 3
⊢ ((;13 · ;10) + 9) = ;;139 |
| 109 | 66, 2, 8, 11 | declti 12751 |
. . 3
⊢ 9 <
;13 |
| 110 | 14, 97, 4, 108, 109 | ndvdsi 16436 |
. 2
⊢ ¬
;13 ∥ ;;139 |
| 111 | 1, 43 | decnncl 12733 |
. . 3
⊢ ;17 ∈ ℕ |
| 112 | | eqid 2736 |
. . . 4
⊢ ;17 = ;17 |
| 113 | 2 | dec0h 12735 |
. . . 4
⊢ 3 = ;03 |
| 114 | | 5nn0 12526 |
. . . 4
⊢ 5 ∈
ℕ0 |
| 115 | | 8cn 12342 |
. . . . . . 7
⊢ 8 ∈
ℂ |
| 116 | 115 | mullidi 11245 |
. . . . . 6
⊢ (1
· 8) = 8 |
| 117 | | 5cn 12333 |
. . . . . . 7
⊢ 5 ∈
ℂ |
| 118 | 117 | addlidi 11428 |
. . . . . 6
⊢ (0 + 5) =
5 |
| 119 | 116, 118 | oveq12i 7422 |
. . . . 5
⊢ ((1
· 8) + (0 + 5)) = (8 + 5) |
| 120 | | 8p5e13 12796 |
. . . . 5
⊢ (8 + 5) =
;13 |
| 121 | 119, 120 | eqtri 2759 |
. . . 4
⊢ ((1
· 8) + (0 + 5)) = ;13 |
| 122 | | 8t7e56 12833 |
. . . . . 6
⊢ (8
· 7) = ;56 |
| 123 | 115, 51, 122 | mulcomli 11249 |
. . . . 5
⊢ (7
· 8) = ;56 |
| 124 | 114, 47, 2, 123, 60 | decaddi 12773 |
. . . 4
⊢ ((7
· 8) + 3) = ;59 |
| 125 | 1, 50, 46, 2, 112, 113, 6, 8, 114, 121, 124 | decmac 12765 |
. . 3
⊢ ((;17 · 8) + 3) = ;;139 |
| 126 | 66, 50, 2, 10 | declti 12751 |
. . 3
⊢ 3 <
;17 |
| 127 | 111, 6, 13, 125, 126 | ndvdsi 16436 |
. 2
⊢ ¬
;17 ∥ ;;139 |
| 128 | 1, 4 | decnncl 12733 |
. . 3
⊢ ;19 ∈ ℕ |
| 129 | 51 | mullidi 11245 |
. . . . . 6
⊢ (1
· 7) = 7 |
| 130 | 129, 54 | oveq12i 7422 |
. . . . 5
⊢ ((1
· 7) + (0 + 6)) = (7 + 6) |
| 131 | 130, 56 | eqtri 2759 |
. . . 4
⊢ ((1
· 7) + (0 + 6)) = ;13 |
| 132 | 47, 2, 47, 58, 61 | decaddi 12773 |
. . . 4
⊢ ((9
· 7) + 6) = ;69 |
| 133 | 1, 8, 46, 47, 48, 49, 50, 8, 47, 131, 132 | decmac 12765 |
. . 3
⊢ ((;19 · 7) + 6) = ;;139 |
| 134 | | 6lt10 12847 |
. . . 4
⊢ 6 <
;10 |
| 135 | 66, 8, 47, 134 | declti 12751 |
. . 3
⊢ 6 <
;19 |
| 136 | 128, 50, 45, 133, 135 | ndvdsi 16436 |
. 2
⊢ ¬
;19 ∥ ;;139 |
| 137 | 68, 13 | decnncl 12733 |
. . 3
⊢ ;23 ∈ ℕ |
| 138 | | eqid 2736 |
. . . 4
⊢ ;23 = ;23 |
| 139 | | 2p1e3 12387 |
. . . . 5
⊢ (2 + 1) =
3 |
| 140 | | 6t2e12 12817 |
. . . . . 6
⊢ (6
· 2) = ;12 |
| 141 | 53, 73, 140 | mulcomli 11249 |
. . . . 5
⊢ (2
· 6) = ;12 |
| 142 | 1, 68, 139, 141 | decsuc 12744 |
. . . 4
⊢ ((2
· 6) + 1) = ;13 |
| 143 | | 8p1e9 12395 |
. . . . 5
⊢ (8 + 1) =
9 |
| 144 | | 6t3e18 12818 |
. . . . . 6
⊢ (6
· 3) = ;18 |
| 145 | 53, 22, 144 | mulcomli 11249 |
. . . . 5
⊢ (3
· 6) = ;18 |
| 146 | 1, 6, 143, 145 | decsuc 12744 |
. . . 4
⊢ ((3
· 6) + 1) = ;19 |
| 147 | 68, 2, 1, 138, 47, 8, 1, 142, 146 | decrmac 12771 |
. . 3
⊢ ((;23 · 6) + 1) = ;;139 |
| 148 | | 2nn 12318 |
. . . 4
⊢ 2 ∈
ℕ |
| 149 | 148, 2, 1, 15 | declti 12751 |
. . 3
⊢ 1 <
;23 |
| 150 | 137, 47, 66, 147, 149 | ndvdsi 16436 |
. 2
⊢ ¬
;23 ∥ ;;139 |
| 151 | 5, 12, 16, 19, 38, 42, 65, 96, 110, 127, 136, 150 | prmlem2 17144 |
1
⊢ ;;139 ∈ ℙ |