Proof of Theorem 139prm
Step | Hyp | Ref
| Expression |
1 | | 1nn0 12232 |
. . . 4
⊢ 1 ∈
ℕ0 |
2 | | 3nn0 12234 |
. . . 4
⊢ 3 ∈
ℕ0 |
3 | 1, 2 | deccl 12434 |
. . 3
⊢ ;13 ∈
ℕ0 |
4 | | 9nn 12054 |
. . 3
⊢ 9 ∈
ℕ |
5 | 3, 4 | decnncl 12439 |
. 2
⊢ ;;139 ∈ ℕ |
6 | | 8nn0 12239 |
. . 3
⊢ 8 ∈
ℕ0 |
7 | | 4nn0 12235 |
. . 3
⊢ 4 ∈
ℕ0 |
8 | | 9nn0 12240 |
. . 3
⊢ 9 ∈
ℕ0 |
9 | | 1lt8 12154 |
. . 3
⊢ 1 <
8 |
10 | | 3lt10 12556 |
. . 3
⊢ 3 <
;10 |
11 | | 9lt10 12550 |
. . 3
⊢ 9 <
;10 |
12 | 1, 6, 2, 7, 8, 1, 9, 10, 11 | 3decltc 12452 |
. 2
⊢ ;;139 < ;;841 |
13 | | 3nn 12035 |
. . . 4
⊢ 3 ∈
ℕ |
14 | 1, 13 | decnncl 12439 |
. . 3
⊢ ;13 ∈ ℕ |
15 | | 1lt10 12558 |
. . 3
⊢ 1 <
;10 |
16 | 14, 8, 1, 15 | declti 12457 |
. 2
⊢ 1 <
;;139 |
17 | | 4t2e8 12124 |
. . 3
⊢ (4
· 2) = 8 |
18 | | df-9 12026 |
. . 3
⊢ 9 = (8 +
1) |
19 | 3, 7, 17, 18 | dec2dvds 16745 |
. 2
⊢ ¬ 2
∥ ;;139 |
20 | | 6nn0 12237 |
. . . 4
⊢ 6 ∈
ℕ0 |
21 | 7, 20 | deccl 12434 |
. . 3
⊢ ;46 ∈
ℕ0 |
22 | | 1nn 11967 |
. . 3
⊢ 1 ∈
ℕ |
23 | | 0nn0 12231 |
. . . 4
⊢ 0 ∈
ℕ0 |
24 | | eqid 2739 |
. . . 4
⊢ ;46 = ;46 |
25 | 1 | dec0h 12441 |
. . . 4
⊢ 1 = ;01 |
26 | | ax-1cn 10913 |
. . . . . . 7
⊢ 1 ∈
ℂ |
27 | 26 | addid2i 11146 |
. . . . . 6
⊢ (0 + 1) =
1 |
28 | 27 | oveq2i 7279 |
. . . . 5
⊢ ((3
· 4) + (0 + 1)) = ((3 · 4) + 1) |
29 | | 2nn0 12233 |
. . . . . 6
⊢ 2 ∈
ℕ0 |
30 | | 2p1e3 12098 |
. . . . . 6
⊢ (2 + 1) =
3 |
31 | 7 | nn0cni 12228 |
. . . . . . 7
⊢ 4 ∈
ℂ |
32 | | 3cn 12037 |
. . . . . . 7
⊢ 3 ∈
ℂ |
33 | | 4t3e12 12517 |
. . . . . . 7
⊢ (4
· 3) = ;12 |
34 | 31, 32, 33 | mulcomli 10968 |
. . . . . 6
⊢ (3
· 4) = ;12 |
35 | 1, 29, 30, 34 | decsuc 12450 |
. . . . 5
⊢ ((3
· 4) + 1) = ;13 |
36 | 28, 35 | eqtri 2767 |
. . . 4
⊢ ((3
· 4) + (0 + 1)) = ;13 |
37 | | 8p1e9 12106 |
. . . . 5
⊢ (8 + 1) =
9 |
38 | 20 | nn0cni 12228 |
. . . . . 6
⊢ 6 ∈
ℂ |
39 | | 6t3e18 12524 |
. . . . . 6
⊢ (6
· 3) = ;18 |
40 | 38, 32, 39 | mulcomli 10968 |
. . . . 5
⊢ (3
· 6) = ;18 |
41 | 1, 6, 37, 40 | decsuc 12450 |
. . . 4
⊢ ((3
· 6) + 1) = ;19 |
42 | 7, 20, 23, 1, 24, 25, 2, 8, 1,
36, 41 | decma2c 12472 |
. . 3
⊢ ((3
· ;46) + 1) = ;;139 |
43 | | 1lt3 12129 |
. . 3
⊢ 1 <
3 |
44 | 13, 21, 22, 42, 43 | ndvdsi 16102 |
. 2
⊢ ¬ 3
∥ ;;139 |
45 | | 4nn 12039 |
. . 3
⊢ 4 ∈
ℕ |
46 | | 4lt5 12133 |
. . 3
⊢ 4 <
5 |
47 | | 5p4e9 12114 |
. . 3
⊢ (5 + 4) =
9 |
48 | 3, 45, 46, 47 | dec5dvds2 16747 |
. 2
⊢ ¬ 5
∥ ;;139 |
49 | | 7nn 12048 |
. . 3
⊢ 7 ∈
ℕ |
50 | 1, 8 | deccl 12434 |
. . 3
⊢ ;19 ∈
ℕ0 |
51 | | 6nn 12045 |
. . 3
⊢ 6 ∈
ℕ |
52 | | eqid 2739 |
. . . 4
⊢ ;19 = ;19 |
53 | 20 | dec0h 12441 |
. . . 4
⊢ 6 = ;06 |
54 | | 7nn0 12238 |
. . . 4
⊢ 7 ∈
ℕ0 |
55 | | 7cn 12050 |
. . . . . . 7
⊢ 7 ∈
ℂ |
56 | 55 | mulid1i 10963 |
. . . . . 6
⊢ (7
· 1) = 7 |
57 | 38 | addid2i 11146 |
. . . . . 6
⊢ (0 + 6) =
6 |
58 | 56, 57 | oveq12i 7280 |
. . . . 5
⊢ ((7
· 1) + (0 + 6)) = (7 + 6) |
59 | | 7p6e13 12497 |
. . . . 5
⊢ (7 + 6) =
;13 |
60 | 58, 59 | eqtri 2767 |
. . . 4
⊢ ((7
· 1) + (0 + 6)) = ;13 |
61 | | 9cn 12056 |
. . . . . 6
⊢ 9 ∈
ℂ |
62 | | 9t7e63 12546 |
. . . . . 6
⊢ (9
· 7) = ;63 |
63 | 61, 55, 62 | mulcomli 10968 |
. . . . 5
⊢ (7
· 9) = ;63 |
64 | | 6p3e9 12116 |
. . . . . 6
⊢ (6 + 3) =
9 |
65 | 38, 32, 64 | addcomli 11150 |
. . . . 5
⊢ (3 + 6) =
9 |
66 | 20, 2, 20, 63, 65 | decaddi 12479 |
. . . 4
⊢ ((7
· 9) + 6) = ;69 |
67 | 1, 8, 23, 20, 52, 53, 54, 8, 20, 60, 66 | decma2c 12472 |
. . 3
⊢ ((7
· ;19) + 6) = ;;139 |
68 | | 6lt7 12142 |
. . 3
⊢ 6 <
7 |
69 | 49, 50, 51, 67, 68 | ndvdsi 16102 |
. 2
⊢ ¬ 7
∥ ;;139 |
70 | 1, 22 | decnncl 12439 |
. . 3
⊢ ;11 ∈ ℕ |
71 | 1, 29 | deccl 12434 |
. . 3
⊢ ;12 ∈
ℕ0 |
72 | | eqid 2739 |
. . . 4
⊢ ;12 = ;12 |
73 | 54 | dec0h 12441 |
. . . 4
⊢ 7 = ;07 |
74 | 1, 1 | deccl 12434 |
. . . 4
⊢ ;11 ∈
ℕ0 |
75 | | 2cn 12031 |
. . . . . . 7
⊢ 2 ∈
ℂ |
76 | 75 | addid2i 11146 |
. . . . . 6
⊢ (0 + 2) =
2 |
77 | 76 | oveq2i 7279 |
. . . . 5
⊢ ((;11 · 1) + (0 + 2)) = ((;11 · 1) + 2) |
78 | 70 | nncni 11966 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
79 | 78 | mulid1i 10963 |
. . . . . 6
⊢ (;11 · 1) = ;11 |
80 | | 1p2e3 12099 |
. . . . . 6
⊢ (1 + 2) =
3 |
81 | 1, 1, 29, 79, 80 | decaddi 12479 |
. . . . 5
⊢ ((;11 · 1) + 2) = ;13 |
82 | 77, 81 | eqtri 2767 |
. . . 4
⊢ ((;11 · 1) + (0 + 2)) = ;13 |
83 | | eqid 2739 |
. . . . 5
⊢ ;11 = ;11 |
84 | 75 | mulid2i 10964 |
. . . . . . 7
⊢ (1
· 2) = 2 |
85 | | 00id 11133 |
. . . . . . 7
⊢ (0 + 0) =
0 |
86 | 84, 85 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 2) + (0 + 0)) = (2 + 0) |
87 | 75 | addid1i 11145 |
. . . . . 6
⊢ (2 + 0) =
2 |
88 | 86, 87 | eqtri 2767 |
. . . . 5
⊢ ((1
· 2) + (0 + 0)) = 2 |
89 | 84 | oveq1i 7278 |
. . . . . 6
⊢ ((1
· 2) + 7) = (2 + 7) |
90 | | 7p2e9 12117 |
. . . . . . 7
⊢ (7 + 2) =
9 |
91 | 55, 75, 90 | addcomli 11150 |
. . . . . 6
⊢ (2 + 7) =
9 |
92 | 8 | dec0h 12441 |
. . . . . 6
⊢ 9 = ;09 |
93 | 89, 91, 92 | 3eqtri 2771 |
. . . . 5
⊢ ((1
· 2) + 7) = ;09 |
94 | 1, 1, 23, 54, 83, 73, 29, 8, 23, 88, 93 | decmac 12471 |
. . . 4
⊢ ((;11 · 2) + 7) = ;29 |
95 | 1, 29, 23, 54, 72, 73, 74, 8, 29, 82, 94 | decma2c 12472 |
. . 3
⊢ ((;11 · ;12) + 7) = ;;139 |
96 | | 7lt10 12552 |
. . . 4
⊢ 7 <
;10 |
97 | 22, 1, 54, 96 | declti 12457 |
. . 3
⊢ 7 <
;11 |
98 | 70, 71, 49, 95, 97 | ndvdsi 16102 |
. 2
⊢ ¬
;11 ∥ ;;139 |
99 | | 10nn0 12437 |
. . 3
⊢ ;10 ∈
ℕ0 |
100 | | eqid 2739 |
. . . 4
⊢ ;10 = ;10 |
101 | | eqid 2739 |
. . . . 5
⊢ ;13 = ;13 |
102 | 23 | dec0h 12441 |
. . . . . 6
⊢ 0 = ;00 |
103 | 85, 102 | eqtri 2767 |
. . . . 5
⊢ (0 + 0) =
;00 |
104 | 26 | mulid1i 10963 |
. . . . . . 7
⊢ (1
· 1) = 1 |
105 | 104, 85 | oveq12i 7280 |
. . . . . 6
⊢ ((1
· 1) + (0 + 0)) = (1 + 0) |
106 | 26 | addid1i 11145 |
. . . . . 6
⊢ (1 + 0) =
1 |
107 | 105, 106 | eqtri 2767 |
. . . . 5
⊢ ((1
· 1) + (0 + 0)) = 1 |
108 | 32 | mulid1i 10963 |
. . . . . . 7
⊢ (3
· 1) = 3 |
109 | 108 | oveq1i 7278 |
. . . . . 6
⊢ ((3
· 1) + 0) = (3 + 0) |
110 | 32 | addid1i 11145 |
. . . . . 6
⊢ (3 + 0) =
3 |
111 | 2 | dec0h 12441 |
. . . . . 6
⊢ 3 = ;03 |
112 | 109, 110,
111 | 3eqtri 2771 |
. . . . 5
⊢ ((3
· 1) + 0) = ;03 |
113 | 1, 2, 23, 23, 101, 103, 1, 2, 23, 107, 112 | decmac 12471 |
. . . 4
⊢ ((;13 · 1) + (0 + 0)) = ;13 |
114 | 3 | nn0cni 12228 |
. . . . . . 7
⊢ ;13 ∈ ℂ |
115 | 114 | mul01i 11148 |
. . . . . 6
⊢ (;13 · 0) = 0 |
116 | 115 | oveq1i 7278 |
. . . . 5
⊢ ((;13 · 0) + 9) = (0 +
9) |
117 | 61 | addid2i 11146 |
. . . . 5
⊢ (0 + 9) =
9 |
118 | 116, 117,
92 | 3eqtri 2771 |
. . . 4
⊢ ((;13 · 0) + 9) = ;09 |
119 | 1, 23, 23, 8, 100, 92, 3, 8, 23, 113, 118 | decma2c 12472 |
. . 3
⊢ ((;13 · ;10) + 9) = ;;139 |
120 | 22, 2, 8, 11 | declti 12457 |
. . 3
⊢ 9 <
;13 |
121 | 14, 99, 4, 119, 120 | ndvdsi 16102 |
. 2
⊢ ¬
;13 ∥ ;;139 |
122 | 1, 49 | decnncl 12439 |
. . 3
⊢ ;17 ∈ ℕ |
123 | | eqid 2739 |
. . . 4
⊢ ;17 = ;17 |
124 | | 5nn0 12236 |
. . . 4
⊢ 5 ∈
ℕ0 |
125 | | 8cn 12053 |
. . . . . . 7
⊢ 8 ∈
ℂ |
126 | 125 | mulid2i 10964 |
. . . . . 6
⊢ (1
· 8) = 8 |
127 | | 5cn 12044 |
. . . . . . 7
⊢ 5 ∈
ℂ |
128 | 127 | addid2i 11146 |
. . . . . 6
⊢ (0 + 5) =
5 |
129 | 126, 128 | oveq12i 7280 |
. . . . 5
⊢ ((1
· 8) + (0 + 5)) = (8 + 5) |
130 | | 8p5e13 12502 |
. . . . 5
⊢ (8 + 5) =
;13 |
131 | 129, 130 | eqtri 2767 |
. . . 4
⊢ ((1
· 8) + (0 + 5)) = ;13 |
132 | | 8t7e56 12539 |
. . . . . 6
⊢ (8
· 7) = ;56 |
133 | 125, 55, 132 | mulcomli 10968 |
. . . . 5
⊢ (7
· 8) = ;56 |
134 | 124, 20, 2, 133, 64 | decaddi 12479 |
. . . 4
⊢ ((7
· 8) + 3) = ;59 |
135 | 1, 54, 23, 2, 123, 111, 6, 8, 124, 131, 134 | decmac 12471 |
. . 3
⊢ ((;17 · 8) + 3) = ;;139 |
136 | 22, 54, 2, 10 | declti 12457 |
. . 3
⊢ 3 <
;17 |
137 | 122, 6, 13, 135, 136 | ndvdsi 16102 |
. 2
⊢ ¬
;17 ∥ ;;139 |
138 | 1, 4 | decnncl 12439 |
. . 3
⊢ ;19 ∈ ℕ |
139 | 55 | mulid2i 10964 |
. . . . . 6
⊢ (1
· 7) = 7 |
140 | 139, 57 | oveq12i 7280 |
. . . . 5
⊢ ((1
· 7) + (0 + 6)) = (7 + 6) |
141 | 140, 59 | eqtri 2767 |
. . . 4
⊢ ((1
· 7) + (0 + 6)) = ;13 |
142 | 20, 2, 20, 62, 65 | decaddi 12479 |
. . . 4
⊢ ((9
· 7) + 6) = ;69 |
143 | 1, 8, 23, 20, 52, 53, 54, 8, 20, 141, 142 | decmac 12471 |
. . 3
⊢ ((;19 · 7) + 6) = ;;139 |
144 | | 6lt10 12553 |
. . . 4
⊢ 6 <
;10 |
145 | 22, 8, 20, 144 | declti 12457 |
. . 3
⊢ 6 <
;19 |
146 | 138, 54, 51, 143, 145 | ndvdsi 16102 |
. 2
⊢ ¬
;19 ∥ ;;139 |
147 | 29, 13 | decnncl 12439 |
. . 3
⊢ ;23 ∈ ℕ |
148 | | eqid 2739 |
. . . 4
⊢ ;23 = ;23 |
149 | | 6t2e12 12523 |
. . . . . 6
⊢ (6
· 2) = ;12 |
150 | 38, 75, 149 | mulcomli 10968 |
. . . . 5
⊢ (2
· 6) = ;12 |
151 | 1, 29, 30, 150 | decsuc 12450 |
. . . 4
⊢ ((2
· 6) + 1) = ;13 |
152 | 29, 2, 1, 148, 20, 8, 1, 151, 41 | decrmac 12477 |
. . 3
⊢ ((;23 · 6) + 1) = ;;139 |
153 | | 2nn 12029 |
. . . 4
⊢ 2 ∈
ℕ |
154 | 153, 2, 1, 15 | declti 12457 |
. . 3
⊢ 1 <
;23 |
155 | 147, 20, 22, 152, 154 | ndvdsi 16102 |
. 2
⊢ ¬
;23 ∥ ;;139 |
156 | 5, 12, 16, 19, 44, 48, 69, 98, 121, 137, 146, 155 | prmlem2 16802 |
1
⊢ ;;139 ∈ ℙ |