MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  139prm Structured version   Visualization version   GIF version

Theorem 139prm 17094
Description: 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
139prm 139 ∈ ℙ

Proof of Theorem 139prm
StepHypRef Expression
1 1nn0 12458 . . . 4 1 ∈ ℕ0
2 3nn0 12460 . . . 4 3 ∈ ℕ0
31, 2deccl 12664 . . 3 13 ∈ ℕ0
4 9nn 12284 . . 3 9 ∈ ℕ
53, 4decnncl 12669 . 2 139 ∈ ℕ
6 8nn0 12465 . . 3 8 ∈ ℕ0
7 4nn0 12461 . . 3 4 ∈ ℕ0
8 9nn0 12466 . . 3 9 ∈ ℕ0
9 1lt8 12379 . . 3 1 < 8
10 3lt10 12786 . . 3 3 < 10
11 9lt10 12780 . . 3 9 < 10
121, 6, 2, 7, 8, 1, 9, 10, 113decltc 12682 . 2 139 < 841
13 3nn 12265 . . . 4 3 ∈ ℕ
141, 13decnncl 12669 . . 3 13 ∈ ℕ
15 1lt10 12788 . . 3 1 < 10
1614, 8, 1, 15declti 12687 . 2 1 < 139
17 4t2e8 12349 . . 3 (4 · 2) = 8
18 df-9 12256 . . 3 9 = (8 + 1)
193, 7, 17, 18dec2dvds 17034 . 2 ¬ 2 ∥ 139
20 6nn0 12463 . . . 4 6 ∈ ℕ0
217, 20deccl 12664 . . 3 46 ∈ ℕ0
22 1nn 12197 . . 3 1 ∈ ℕ
23 0nn0 12457 . . . 4 0 ∈ ℕ0
24 eqid 2729 . . . 4 46 = 46
251dec0h 12671 . . . 4 1 = 01
26 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
2726addlidi 11362 . . . . . 6 (0 + 1) = 1
2827oveq2i 7398 . . . . 5 ((3 · 4) + (0 + 1)) = ((3 · 4) + 1)
29 2nn0 12459 . . . . . 6 2 ∈ ℕ0
30 2p1e3 12323 . . . . . 6 (2 + 1) = 3
317nn0cni 12454 . . . . . . 7 4 ∈ ℂ
32 3cn 12267 . . . . . . 7 3 ∈ ℂ
33 4t3e12 12747 . . . . . . 7 (4 · 3) = 12
3431, 32, 33mulcomli 11183 . . . . . 6 (3 · 4) = 12
351, 29, 30, 34decsuc 12680 . . . . 5 ((3 · 4) + 1) = 13
3628, 35eqtri 2752 . . . 4 ((3 · 4) + (0 + 1)) = 13
37 8p1e9 12331 . . . . 5 (8 + 1) = 9
3820nn0cni 12454 . . . . . 6 6 ∈ ℂ
39 6t3e18 12754 . . . . . 6 (6 · 3) = 18
4038, 32, 39mulcomli 11183 . . . . 5 (3 · 6) = 18
411, 6, 37, 40decsuc 12680 . . . 4 ((3 · 6) + 1) = 19
427, 20, 23, 1, 24, 25, 2, 8, 1, 36, 41decma2c 12702 . . 3 ((3 · 46) + 1) = 139
43 1lt3 12354 . . 3 1 < 3
4413, 21, 22, 42, 43ndvdsi 16382 . 2 ¬ 3 ∥ 139
45 4nn 12269 . . 3 4 ∈ ℕ
46 4lt5 12358 . . 3 4 < 5
47 5p4e9 12339 . . 3 (5 + 4) = 9
483, 45, 46, 47dec5dvds2 17036 . 2 ¬ 5 ∥ 139
49 7nn 12278 . . 3 7 ∈ ℕ
501, 8deccl 12664 . . 3 19 ∈ ℕ0
51 6nn 12275 . . 3 6 ∈ ℕ
52 eqid 2729 . . . 4 19 = 19
5320dec0h 12671 . . . 4 6 = 06
54 7nn0 12464 . . . 4 7 ∈ ℕ0
55 7cn 12280 . . . . . . 7 7 ∈ ℂ
5655mulridi 11178 . . . . . 6 (7 · 1) = 7
5738addlidi 11362 . . . . . 6 (0 + 6) = 6
5856, 57oveq12i 7399 . . . . 5 ((7 · 1) + (0 + 6)) = (7 + 6)
59 7p6e13 12727 . . . . 5 (7 + 6) = 13
6058, 59eqtri 2752 . . . 4 ((7 · 1) + (0 + 6)) = 13
61 9cn 12286 . . . . . 6 9 ∈ ℂ
62 9t7e63 12776 . . . . . 6 (9 · 7) = 63
6361, 55, 62mulcomli 11183 . . . . 5 (7 · 9) = 63
64 6p3e9 12341 . . . . . 6 (6 + 3) = 9
6538, 32, 64addcomli 11366 . . . . 5 (3 + 6) = 9
6620, 2, 20, 63, 65decaddi 12709 . . . 4 ((7 · 9) + 6) = 69
671, 8, 23, 20, 52, 53, 54, 8, 20, 60, 66decma2c 12702 . . 3 ((7 · 19) + 6) = 139
68 6lt7 12367 . . 3 6 < 7
6949, 50, 51, 67, 68ndvdsi 16382 . 2 ¬ 7 ∥ 139
701, 22decnncl 12669 . . 3 11 ∈ ℕ
711, 29deccl 12664 . . 3 12 ∈ ℕ0
72 eqid 2729 . . . 4 12 = 12
7354dec0h 12671 . . . 4 7 = 07
741, 1deccl 12664 . . . 4 11 ∈ ℕ0
75 2cn 12261 . . . . . . 7 2 ∈ ℂ
7675addlidi 11362 . . . . . 6 (0 + 2) = 2
7776oveq2i 7398 . . . . 5 ((11 · 1) + (0 + 2)) = ((11 · 1) + 2)
7870nncni 12196 . . . . . . 7 11 ∈ ℂ
7978mulridi 11178 . . . . . 6 (11 · 1) = 11
80 1p2e3 12324 . . . . . 6 (1 + 2) = 3
811, 1, 29, 79, 80decaddi 12709 . . . . 5 ((11 · 1) + 2) = 13
8277, 81eqtri 2752 . . . 4 ((11 · 1) + (0 + 2)) = 13
83 eqid 2729 . . . . 5 11 = 11
8475mullidi 11179 . . . . . . 7 (1 · 2) = 2
85 00id 11349 . . . . . . 7 (0 + 0) = 0
8684, 85oveq12i 7399 . . . . . 6 ((1 · 2) + (0 + 0)) = (2 + 0)
8775addridi 11361 . . . . . 6 (2 + 0) = 2
8886, 87eqtri 2752 . . . . 5 ((1 · 2) + (0 + 0)) = 2
8984oveq1i 7397 . . . . . 6 ((1 · 2) + 7) = (2 + 7)
90 7p2e9 12342 . . . . . . 7 (7 + 2) = 9
9155, 75, 90addcomli 11366 . . . . . 6 (2 + 7) = 9
928dec0h 12671 . . . . . 6 9 = 09
9389, 91, 923eqtri 2756 . . . . 5 ((1 · 2) + 7) = 09
941, 1, 23, 54, 83, 73, 29, 8, 23, 88, 93decmac 12701 . . . 4 ((11 · 2) + 7) = 29
951, 29, 23, 54, 72, 73, 74, 8, 29, 82, 94decma2c 12702 . . 3 ((11 · 12) + 7) = 139
96 7lt10 12782 . . . 4 7 < 10
9722, 1, 54, 96declti 12687 . . 3 7 < 11
9870, 71, 49, 95, 97ndvdsi 16382 . 2 ¬ 11 ∥ 139
99 10nn0 12667 . . 3 10 ∈ ℕ0
100 eqid 2729 . . . 4 10 = 10
101 eqid 2729 . . . . 5 13 = 13
10223dec0h 12671 . . . . . 6 0 = 00
10385, 102eqtri 2752 . . . . 5 (0 + 0) = 00
10426mulridi 11178 . . . . . . 7 (1 · 1) = 1
105104, 85oveq12i 7399 . . . . . 6 ((1 · 1) + (0 + 0)) = (1 + 0)
10626addridi 11361 . . . . . 6 (1 + 0) = 1
107105, 106eqtri 2752 . . . . 5 ((1 · 1) + (0 + 0)) = 1
10832mulridi 11178 . . . . . . 7 (3 · 1) = 3
109108oveq1i 7397 . . . . . 6 ((3 · 1) + 0) = (3 + 0)
11032addridi 11361 . . . . . 6 (3 + 0) = 3
1112dec0h 12671 . . . . . 6 3 = 03
112109, 110, 1113eqtri 2756 . . . . 5 ((3 · 1) + 0) = 03
1131, 2, 23, 23, 101, 103, 1, 2, 23, 107, 112decmac 12701 . . . 4 ((13 · 1) + (0 + 0)) = 13
1143nn0cni 12454 . . . . . . 7 13 ∈ ℂ
115114mul01i 11364 . . . . . 6 (13 · 0) = 0
116115oveq1i 7397 . . . . 5 ((13 · 0) + 9) = (0 + 9)
11761addlidi 11362 . . . . 5 (0 + 9) = 9
118116, 117, 923eqtri 2756 . . . 4 ((13 · 0) + 9) = 09
1191, 23, 23, 8, 100, 92, 3, 8, 23, 113, 118decma2c 12702 . . 3 ((13 · 10) + 9) = 139
12022, 2, 8, 11declti 12687 . . 3 9 < 13
12114, 99, 4, 119, 120ndvdsi 16382 . 2 ¬ 13 ∥ 139
1221, 49decnncl 12669 . . 3 17 ∈ ℕ
123 eqid 2729 . . . 4 17 = 17
124 5nn0 12462 . . . 4 5 ∈ ℕ0
125 8cn 12283 . . . . . . 7 8 ∈ ℂ
126125mullidi 11179 . . . . . 6 (1 · 8) = 8
127 5cn 12274 . . . . . . 7 5 ∈ ℂ
128127addlidi 11362 . . . . . 6 (0 + 5) = 5
129126, 128oveq12i 7399 . . . . 5 ((1 · 8) + (0 + 5)) = (8 + 5)
130 8p5e13 12732 . . . . 5 (8 + 5) = 13
131129, 130eqtri 2752 . . . 4 ((1 · 8) + (0 + 5)) = 13
132 8t7e56 12769 . . . . . 6 (8 · 7) = 56
133125, 55, 132mulcomli 11183 . . . . 5 (7 · 8) = 56
134124, 20, 2, 133, 64decaddi 12709 . . . 4 ((7 · 8) + 3) = 59
1351, 54, 23, 2, 123, 111, 6, 8, 124, 131, 134decmac 12701 . . 3 ((17 · 8) + 3) = 139
13622, 54, 2, 10declti 12687 . . 3 3 < 17
137122, 6, 13, 135, 136ndvdsi 16382 . 2 ¬ 17 ∥ 139
1381, 4decnncl 12669 . . 3 19 ∈ ℕ
13955mullidi 11179 . . . . . 6 (1 · 7) = 7
140139, 57oveq12i 7399 . . . . 5 ((1 · 7) + (0 + 6)) = (7 + 6)
141140, 59eqtri 2752 . . . 4 ((1 · 7) + (0 + 6)) = 13
14220, 2, 20, 62, 65decaddi 12709 . . . 4 ((9 · 7) + 6) = 69
1431, 8, 23, 20, 52, 53, 54, 8, 20, 141, 142decmac 12701 . . 3 ((19 · 7) + 6) = 139
144 6lt10 12783 . . . 4 6 < 10
14522, 8, 20, 144declti 12687 . . 3 6 < 19
146138, 54, 51, 143, 145ndvdsi 16382 . 2 ¬ 19 ∥ 139
14729, 13decnncl 12669 . . 3 23 ∈ ℕ
148 eqid 2729 . . . 4 23 = 23
149 6t2e12 12753 . . . . . 6 (6 · 2) = 12
15038, 75, 149mulcomli 11183 . . . . 5 (2 · 6) = 12
1511, 29, 30, 150decsuc 12680 . . . 4 ((2 · 6) + 1) = 13
15229, 2, 1, 148, 20, 8, 1, 151, 41decrmac 12707 . . 3 ((23 · 6) + 1) = 139
153 2nn 12259 . . . 4 2 ∈ ℕ
154153, 2, 1, 15declti 12687 . . 3 1 < 23
155147, 20, 22, 152, 154ndvdsi 16382 . 2 ¬ 23 ∥ 139
1565, 12, 16, 19, 44, 48, 69, 98, 121, 137, 146, 155prmlem2 17090 1 139 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  2c2 12241  3c3 12242  4c4 12243  5c5 12244  6c6 12245  7c7 12246  8c8 12247  9c9 12248  cdc 12649  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642
This theorem is referenced by:  2503prm  17110
  Copyright terms: Public domain W3C validator