| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fmtno5 47588. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12394 | . 2 ⊢ 3 ∈ ℕ0 | |
| 2 | 6nn0 12397 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12396 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12598 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12598 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 6 | 5, 1 | deccl 12598 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2731 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 8nn0 12399 | . 2 ⊢ 8 ∈ ℕ0 | |
| 9 | 1nn0 12392 | . 2 ⊢ 1 ∈ ℕ0 | |
| 10 | 9nn0 12400 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12598 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
| 12 | 11, 2 | deccl 12598 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
| 13 | 12, 3 | deccl 12598 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
| 14 | 5p1e6 12262 | . . . 4 ⊢ (5 + 1) = 6 | |
| 15 | eqid 2731 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
| 16 | 12, 3, 14, 15 | decsuc 12614 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
| 17 | eqid 2731 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 18 | eqid 2731 | . . . . 5 ⊢ ;;655 = ;;655 | |
| 19 | eqid 2731 | . . . . . . 7 ⊢ ;65 = ;65 | |
| 20 | 8p1e9 12265 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
| 21 | 6t3e18 12688 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
| 22 | 9, 8, 20, 21 | decsuc 12614 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
| 23 | 5t3e15 12684 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
| 24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12648 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
| 25 | 11, 3, 14, 24 | decsuc 12614 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
| 26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12648 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
| 27 | 3t3e9 12282 | . . . 4 ⊢ (3 · 3) = 9 | |
| 28 | 1, 5, 1, 17, 26, 27 | decmul1 12647 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
| 29 | 13, 16, 28 | decsucc 12624 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
| 30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12648 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 11001 1c1 11002 · cmul 11006 3c3 12176 5c5 12178 6c6 12179 8c8 12181 9c9 12182 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-dec 12584 |
| This theorem is referenced by: fmtno5lem4 47587 |
| Copyright terms: Public domain | W3C validator |