![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fmtno5 47482. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12542 | . 2 ⊢ 3 ∈ ℕ0 | |
2 | 6nn0 12545 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 5nn0 12544 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
4 | 2, 3 | deccl 12746 | . . . 4 ⊢ ;65 ∈ ℕ0 |
5 | 4, 3 | deccl 12746 | . . 3 ⊢ ;;655 ∈ ℕ0 |
6 | 5, 1 | deccl 12746 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2735 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 8nn0 12547 | . 2 ⊢ 8 ∈ ℕ0 | |
9 | 1nn0 12540 | . 2 ⊢ 1 ∈ ℕ0 | |
10 | 9nn0 12548 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
11 | 9, 10 | deccl 12746 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
12 | 11, 2 | deccl 12746 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
13 | 12, 3 | deccl 12746 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
14 | 5p1e6 12411 | . . . 4 ⊢ (5 + 1) = 6 | |
15 | eqid 2735 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
16 | 12, 3, 14, 15 | decsuc 12762 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
17 | eqid 2735 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
18 | eqid 2735 | . . . . 5 ⊢ ;;655 = ;;655 | |
19 | eqid 2735 | . . . . . . 7 ⊢ ;65 = ;65 | |
20 | 8p1e9 12414 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
21 | 6t3e18 12836 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
22 | 9, 8, 20, 21 | decsuc 12762 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
23 | 5t3e15 12832 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12796 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
25 | 11, 3, 14, 24 | decsuc 12762 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12796 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
27 | 3t3e9 12431 | . . . 4 ⊢ (3 · 3) = 9 | |
28 | 1, 5, 1, 17, 26, 27 | decmul1 12795 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
29 | 13, 16, 28 | decsucc 12772 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12796 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 0cc0 11153 1c1 11154 · cmul 11158 3c3 12320 5c5 12322 6c6 12323 8c8 12325 9c9 12326 ;cdc 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-dec 12732 |
This theorem is referenced by: fmtno5lem4 47481 |
Copyright terms: Public domain | W3C validator |