| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fmtno5 47562. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12467 | . 2 ⊢ 3 ∈ ℕ0 | |
| 2 | 6nn0 12470 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12469 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12671 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12671 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 6 | 5, 1 | deccl 12671 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2730 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 8nn0 12472 | . 2 ⊢ 8 ∈ ℕ0 | |
| 9 | 1nn0 12465 | . 2 ⊢ 1 ∈ ℕ0 | |
| 10 | 9nn0 12473 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12671 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
| 12 | 11, 2 | deccl 12671 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
| 13 | 12, 3 | deccl 12671 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
| 14 | 5p1e6 12335 | . . . 4 ⊢ (5 + 1) = 6 | |
| 15 | eqid 2730 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
| 16 | 12, 3, 14, 15 | decsuc 12687 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
| 17 | eqid 2730 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 18 | eqid 2730 | . . . . 5 ⊢ ;;655 = ;;655 | |
| 19 | eqid 2730 | . . . . . . 7 ⊢ ;65 = ;65 | |
| 20 | 8p1e9 12338 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
| 21 | 6t3e18 12761 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
| 22 | 9, 8, 20, 21 | decsuc 12687 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
| 23 | 5t3e15 12757 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
| 24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12721 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
| 25 | 11, 3, 14, 24 | decsuc 12687 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
| 26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12721 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
| 27 | 3t3e9 12355 | . . . 4 ⊢ (3 · 3) = 9 | |
| 28 | 1, 5, 1, 17, 26, 27 | decmul1 12720 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
| 29 | 13, 16, 28 | decsucc 12697 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
| 30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12721 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 0cc0 11075 1c1 11076 · cmul 11080 3c3 12249 5c5 12251 6c6 12252 8c8 12254 9c9 12255 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: fmtno5lem4 47561 |
| Copyright terms: Public domain | W3C validator |