![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fmtno5 46225. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12490 | . 2 ⊢ 3 ∈ ℕ0 | |
2 | 6nn0 12493 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 5nn0 12492 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
4 | 2, 3 | deccl 12692 | . . . 4 ⊢ ;65 ∈ ℕ0 |
5 | 4, 3 | deccl 12692 | . . 3 ⊢ ;;655 ∈ ℕ0 |
6 | 5, 1 | deccl 12692 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2733 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 8nn0 12495 | . 2 ⊢ 8 ∈ ℕ0 | |
9 | 1nn0 12488 | . 2 ⊢ 1 ∈ ℕ0 | |
10 | 9nn0 12496 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
11 | 9, 10 | deccl 12692 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
12 | 11, 2 | deccl 12692 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
13 | 12, 3 | deccl 12692 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
14 | 5p1e6 12359 | . . . 4 ⊢ (5 + 1) = 6 | |
15 | eqid 2733 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
16 | 12, 3, 14, 15 | decsuc 12708 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
17 | eqid 2733 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
18 | eqid 2733 | . . . . 5 ⊢ ;;655 = ;;655 | |
19 | eqid 2733 | . . . . . . 7 ⊢ ;65 = ;65 | |
20 | 8p1e9 12362 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
21 | 6t3e18 12782 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
22 | 9, 8, 20, 21 | decsuc 12708 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
23 | 5t3e15 12778 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12742 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
25 | 11, 3, 14, 24 | decsuc 12708 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12742 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
27 | 3t3e9 12379 | . . . 4 ⊢ (3 · 3) = 9 | |
28 | 1, 5, 1, 17, 26, 27 | decmul1 12741 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
29 | 13, 16, 28 | decsucc 12718 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12742 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 1c1 11111 · cmul 11115 3c3 12268 5c5 12270 6c6 12271 8c8 12273 9c9 12274 ;cdc 12677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-dec 12678 |
This theorem is referenced by: fmtno5lem4 46224 |
Copyright terms: Public domain | W3C validator |