| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fmtno5 47719. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12410 | . 2 ⊢ 3 ∈ ℕ0 | |
| 2 | 6nn0 12413 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12412 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12613 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12613 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 6 | 5, 1 | deccl 12613 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2733 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 8nn0 12415 | . 2 ⊢ 8 ∈ ℕ0 | |
| 9 | 1nn0 12408 | . 2 ⊢ 1 ∈ ℕ0 | |
| 10 | 9nn0 12416 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12613 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
| 12 | 11, 2 | deccl 12613 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
| 13 | 12, 3 | deccl 12613 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
| 14 | 5p1e6 12278 | . . . 4 ⊢ (5 + 1) = 6 | |
| 15 | eqid 2733 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
| 16 | 12, 3, 14, 15 | decsuc 12629 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
| 17 | eqid 2733 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 18 | eqid 2733 | . . . . 5 ⊢ ;;655 = ;;655 | |
| 19 | eqid 2733 | . . . . . . 7 ⊢ ;65 = ;65 | |
| 20 | 8p1e9 12281 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
| 21 | 6t3e18 12703 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
| 22 | 9, 8, 20, 21 | decsuc 12629 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
| 23 | 5t3e15 12699 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
| 24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12663 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
| 25 | 11, 3, 14, 24 | decsuc 12629 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
| 26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12663 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
| 27 | 3t3e9 12298 | . . . 4 ⊢ (3 · 3) = 9 | |
| 28 | 1, 5, 1, 17, 26, 27 | decmul1 12662 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
| 29 | 13, 16, 28 | decsucc 12639 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
| 30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12663 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 0cc0 11017 1c1 11018 · cmul 11022 3c3 12192 5c5 12194 6c6 12195 8c8 12197 9c9 12198 ;cdc 12598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-dec 12599 |
| This theorem is referenced by: fmtno5lem4 47718 |
| Copyright terms: Public domain | W3C validator |