Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fmtno5 44897. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12181 | . 2 ⊢ 3 ∈ ℕ0 | |
2 | 6nn0 12184 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 5nn0 12183 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
4 | 2, 3 | deccl 12381 | . . . 4 ⊢ ;65 ∈ ℕ0 |
5 | 4, 3 | deccl 12381 | . . 3 ⊢ ;;655 ∈ ℕ0 |
6 | 5, 1 | deccl 12381 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2738 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 8nn0 12186 | . 2 ⊢ 8 ∈ ℕ0 | |
9 | 1nn0 12179 | . 2 ⊢ 1 ∈ ℕ0 | |
10 | 9nn0 12187 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
11 | 9, 10 | deccl 12381 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
12 | 11, 2 | deccl 12381 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
13 | 12, 3 | deccl 12381 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
14 | 5p1e6 12050 | . . . 4 ⊢ (5 + 1) = 6 | |
15 | eqid 2738 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
16 | 12, 3, 14, 15 | decsuc 12397 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
17 | eqid 2738 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
18 | eqid 2738 | . . . . 5 ⊢ ;;655 = ;;655 | |
19 | eqid 2738 | . . . . . . 7 ⊢ ;65 = ;65 | |
20 | 8p1e9 12053 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
21 | 6t3e18 12471 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
22 | 9, 8, 20, 21 | decsuc 12397 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
23 | 5t3e15 12467 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12431 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
25 | 11, 3, 14, 24 | decsuc 12397 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12431 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
27 | 3t3e9 12070 | . . . 4 ⊢ (3 · 3) = 9 | |
28 | 1, 5, 1, 17, 26, 27 | decmul1 12430 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
29 | 13, 16, 28 | decsucc 12407 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12431 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 3c3 11959 5c5 11961 6c6 11962 8c8 11964 9c9 11965 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: fmtno5lem4 44896 |
Copyright terms: Public domain | W3C validator |