| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fmtno5 47571. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12519 | . 2 ⊢ 3 ∈ ℕ0 | |
| 2 | 6nn0 12522 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12521 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12723 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12723 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 6 | 5, 1 | deccl 12723 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2735 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 8nn0 12524 | . 2 ⊢ 8 ∈ ℕ0 | |
| 9 | 1nn0 12517 | . 2 ⊢ 1 ∈ ℕ0 | |
| 10 | 9nn0 12525 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12723 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
| 12 | 11, 2 | deccl 12723 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
| 13 | 12, 3 | deccl 12723 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
| 14 | 5p1e6 12387 | . . . 4 ⊢ (5 + 1) = 6 | |
| 15 | eqid 2735 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
| 16 | 12, 3, 14, 15 | decsuc 12739 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
| 17 | eqid 2735 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 18 | eqid 2735 | . . . . 5 ⊢ ;;655 = ;;655 | |
| 19 | eqid 2735 | . . . . . . 7 ⊢ ;65 = ;65 | |
| 20 | 8p1e9 12390 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
| 21 | 6t3e18 12813 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
| 22 | 9, 8, 20, 21 | decsuc 12739 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
| 23 | 5t3e15 12809 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
| 24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12773 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
| 25 | 11, 3, 14, 24 | decsuc 12739 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
| 26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12773 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
| 27 | 3t3e9 12407 | . . . 4 ⊢ (3 · 3) = 9 | |
| 28 | 1, 5, 1, 17, 26, 27 | decmul1 12772 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
| 29 | 13, 16, 28 | decsucc 12749 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
| 30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12773 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 0cc0 11129 1c1 11130 · cmul 11134 3c3 12296 5c5 12298 6c6 12299 8c8 12301 9c9 12302 ;cdc 12708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-dec 12709 |
| This theorem is referenced by: fmtno5lem4 47570 |
| Copyright terms: Public domain | W3C validator |