| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fmtno5 47531. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5lem3 | ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12436 | . 2 ⊢ 3 ∈ ℕ0 | |
| 2 | 6nn0 12439 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
| 3 | 5nn0 12438 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 4 | 2, 3 | deccl 12640 | . . . 4 ⊢ ;65 ∈ ℕ0 |
| 5 | 4, 3 | deccl 12640 | . . 3 ⊢ ;;655 ∈ ℕ0 |
| 6 | 5, 1 | deccl 12640 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
| 7 | eqid 2729 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
| 8 | 8nn0 12441 | . 2 ⊢ 8 ∈ ℕ0 | |
| 9 | 1nn0 12434 | . 2 ⊢ 1 ∈ ℕ0 | |
| 10 | 9nn0 12442 | . . . . . 6 ⊢ 9 ∈ ℕ0 | |
| 11 | 9, 10 | deccl 12640 | . . . . 5 ⊢ ;19 ∈ ℕ0 |
| 12 | 11, 2 | deccl 12640 | . . . 4 ⊢ ;;196 ∈ ℕ0 |
| 13 | 12, 3 | deccl 12640 | . . 3 ⊢ ;;;1965 ∈ ℕ0 |
| 14 | 5p1e6 12304 | . . . 4 ⊢ (5 + 1) = 6 | |
| 15 | eqid 2729 | . . . 4 ⊢ ;;;1965 = ;;;1965 | |
| 16 | 12, 3, 14, 15 | decsuc 12656 | . . 3 ⊢ (;;;1965 + 1) = ;;;1966 |
| 17 | eqid 2729 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
| 18 | eqid 2729 | . . . . 5 ⊢ ;;655 = ;;655 | |
| 19 | eqid 2729 | . . . . . . 7 ⊢ ;65 = ;65 | |
| 20 | 8p1e9 12307 | . . . . . . . 8 ⊢ (8 + 1) = 9 | |
| 21 | 6t3e18 12730 | . . . . . . . 8 ⊢ (6 · 3) = ;18 | |
| 22 | 9, 8, 20, 21 | decsuc 12656 | . . . . . . 7 ⊢ ((6 · 3) + 1) = ;19 |
| 23 | 5t3e15 12726 | . . . . . . 7 ⊢ (5 · 3) = ;15 | |
| 24 | 1, 2, 3, 19, 3, 9, 22, 23 | decmul1c 12690 | . . . . . 6 ⊢ (;65 · 3) = ;;195 |
| 25 | 11, 3, 14, 24 | decsuc 12656 | . . . . 5 ⊢ ((;65 · 3) + 1) = ;;196 |
| 26 | 1, 4, 3, 18, 3, 9, 25, 23 | decmul1c 12690 | . . . 4 ⊢ (;;655 · 3) = ;;;1965 |
| 27 | 3t3e9 12324 | . . . 4 ⊢ (3 · 3) = 9 | |
| 28 | 1, 5, 1, 17, 26, 27 | decmul1 12689 | . . 3 ⊢ (;;;6553 · 3) = ;;;;19659 |
| 29 | 13, 16, 28 | decsucc 12666 | . 2 ⊢ ((;;;6553 · 3) + 1) = ;;;;19660 |
| 30 | 1, 6, 2, 7, 8, 9, 29, 21 | decmul1c 12690 | 1 ⊢ (;;;;65536 · 3) = ;;;;;196608 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 0cc0 11044 1c1 11045 · cmul 11049 3c3 12218 5c5 12220 6c6 12221 8c8 12223 9c9 12224 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 |
| This theorem is referenced by: fmtno5lem4 47530 |
| Copyright terms: Public domain | W3C validator |