Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpop3 Structured version   Visualization version   GIF version

Theorem evengpop3 45138
Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.)
Assertion
Ref Expression
evengpop3 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpop3
StepHypRef Expression
1 3odd 45048 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘9) → 3 ∈ Odd )
32anim1i 614 . . . . 5 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 461 . . . 4 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 45044 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 5074 . . . . 5 (𝑚 = (𝑁 − 3) → (5 < 𝑚 ↔ 5 < (𝑁 − 3)))
8 eleq1 2826 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOddW ↔ (𝑁 − 3) ∈ GoldbachOddW ))
97, 8imbi12d 344 . . . 4 (𝑚 = (𝑁 − 3) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
109adantl 481 . . 3 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
116, 10rspcdv 3543 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
12 eluz2 12517 . . . . 5 (𝑁 ∈ (ℤ‘9) ↔ (9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁))
13 5p3e8 12060 . . . . . . . 8 (5 + 3) = 8
14 8p1e9 12053 . . . . . . . . 9 (8 + 1) = 9
15 9cn 12003 . . . . . . . . . 10 9 ∈ ℂ
16 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
17 8cn 12000 . . . . . . . . . 10 8 ∈ ℂ
1815, 16, 17subadd2i 11239 . . . . . . . . 9 ((9 − 1) = 8 ↔ (8 + 1) = 9)
1914, 18mpbir 230 . . . . . . . 8 (9 − 1) = 8
2013, 19eqtr4i 2769 . . . . . . 7 (5 + 3) = (9 − 1)
21 zlem1lt 12302 . . . . . . . 8 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 ≤ 𝑁 ↔ (9 − 1) < 𝑁))
2221biimp3a 1467 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (9 − 1) < 𝑁)
2320, 22eqbrtrid 5105 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 + 3) < 𝑁)
24 5re 11990 . . . . . . . . . 10 5 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 5 ∈ ℝ)
26 3re 11983 . . . . . . . . . 10 3 ∈ ℝ
2726a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 3 ∈ ℝ)
28 zre 12253 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2925, 27, 283jca 1126 . . . . . . . 8 (𝑁 ∈ ℤ → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
30293ad2ant2 1132 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31 ltaddsub 11379 . . . . . . 7 ((5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3230, 31syl 17 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3323, 32mpbid 231 . . . . 5 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → 5 < (𝑁 − 3))
3412, 33sylbi 216 . . . 4 (𝑁 ∈ (ℤ‘9) → 5 < (𝑁 − 3))
3534adantr 480 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → 5 < (𝑁 − 3))
36 simpr 484 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 − 3) ∈ GoldbachOddW )
37 oveq1 7262 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
3837eqeq2d 2749 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
3938adantl 481 . . . . 5 ((((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
40 eluzelcn 12523 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ ℂ)
41 3cn 11984 . . . . . . . . . 10 3 ∈ ℂ
4241a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℂ)
4340, 42jca 511 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4443adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4544adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
46 npcan 11160 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4746eqcomd 2744 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
4845, 47syl 17 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → 𝑁 = ((𝑁 − 3) + 3))
4936, 39, 48rspcedvd 3555 . . . 4 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))
5049ex 412 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOddW → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5135, 50embantd 59 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5211, 51syldc 48 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  3c3 11959  5c5 11961  8c8 11964  9c9 11965  cz 12249  cuz 12511   Even ceven 44964   Odd codd 44965   GoldbachOddW cgbow 45086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-even 44966  df-odd 44967
This theorem is referenced by:  nnsum4primeseven  45140
  Copyright terms: Public domain W3C validator