Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpop3 Structured version   Visualization version   GIF version

Theorem evengpop3 47799
Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.)
Assertion
Ref Expression
evengpop3 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpop3
StepHypRef Expression
1 3odd 47709 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘9) → 3 ∈ Odd )
32anim1i 615 . . . . 5 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 461 . . . 4 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 47705 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 5111 . . . . 5 (𝑚 = (𝑁 − 3) → (5 < 𝑚 ↔ 5 < (𝑁 − 3)))
8 eleq1 2816 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOddW ↔ (𝑁 − 3) ∈ GoldbachOddW ))
97, 8imbi12d 344 . . . 4 (𝑚 = (𝑁 − 3) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
109adantl 481 . . 3 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
116, 10rspcdv 3580 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
12 eluz2 12799 . . . . 5 (𝑁 ∈ (ℤ‘9) ↔ (9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁))
13 5p3e8 12338 . . . . . . . 8 (5 + 3) = 8
14 8p1e9 12331 . . . . . . . . 9 (8 + 1) = 9
15 9cn 12286 . . . . . . . . . 10 9 ∈ ℂ
16 ax-1cn 11126 . . . . . . . . . 10 1 ∈ ℂ
17 8cn 12283 . . . . . . . . . 10 8 ∈ ℂ
1815, 16, 17subadd2i 11510 . . . . . . . . 9 ((9 − 1) = 8 ↔ (8 + 1) = 9)
1914, 18mpbir 231 . . . . . . . 8 (9 − 1) = 8
2013, 19eqtr4i 2755 . . . . . . 7 (5 + 3) = (9 − 1)
21 zlem1lt 12585 . . . . . . . 8 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 ≤ 𝑁 ↔ (9 − 1) < 𝑁))
2221biimp3a 1471 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (9 − 1) < 𝑁)
2320, 22eqbrtrid 5142 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 + 3) < 𝑁)
24 5re 12273 . . . . . . . . . 10 5 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 5 ∈ ℝ)
26 3re 12266 . . . . . . . . . 10 3 ∈ ℝ
2726a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 3 ∈ ℝ)
28 zre 12533 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2925, 27, 283jca 1128 . . . . . . . 8 (𝑁 ∈ ℤ → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
30293ad2ant2 1134 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31 ltaddsub 11652 . . . . . . 7 ((5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3230, 31syl 17 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3323, 32mpbid 232 . . . . 5 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → 5 < (𝑁 − 3))
3412, 33sylbi 217 . . . 4 (𝑁 ∈ (ℤ‘9) → 5 < (𝑁 − 3))
3534adantr 480 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → 5 < (𝑁 − 3))
36 simpr 484 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 − 3) ∈ GoldbachOddW )
37 oveq1 7394 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
3837eqeq2d 2740 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
3938adantl 481 . . . . 5 ((((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
40 eluzelcn 12805 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ ℂ)
41 3cn 12267 . . . . . . . . . 10 3 ∈ ℂ
4241a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℂ)
4340, 42jca 511 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4443adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4544adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
46 npcan 11430 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4746eqcomd 2735 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
4845, 47syl 17 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → 𝑁 = ((𝑁 − 3) + 3))
4936, 39, 48rspcedvd 3590 . . . 4 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))
5049ex 412 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOddW → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5135, 50embantd 59 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5211, 51syldc 48 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  3c3 12242  5c5 12244  8c8 12247  9c9 12248  cz 12529  cuz 12793   Even ceven 47625   Odd codd 47626   GoldbachOddW cgbow 47747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-even 47627  df-odd 47628
This theorem is referenced by:  nnsum4primeseven  47801
  Copyright terms: Public domain W3C validator