| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo00 | Structured version Visualization version GIF version | ||
| Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| fo00 | ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 6822 | . . . . . 6 ⊢ (𝐹:∅–onto→𝐴 → 𝐹 Fn ∅) | |
| 2 | fn0 6699 | . . . . . . 7 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 3 | f10 6881 | . . . . . . . 8 ⊢ ∅:∅–1-1→𝐴 | |
| 4 | f1eq1 6799 | . . . . . . . 8 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . . 7 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐴) |
| 6 | 2, 5 | sylbi 217 | . . . . . 6 ⊢ (𝐹 Fn ∅ → 𝐹:∅–1-1→𝐴) |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1→𝐴) |
| 8 | 7 | ancri 549 | . . . 4 ⊢ (𝐹:∅–onto→𝐴 → (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) |
| 9 | df-f1o 6568 | . . . 4 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1-onto→𝐴) |
| 11 | f1ofo 6855 | . . 3 ⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) | |
| 12 | 10, 11 | impbii 209 | . 2 ⊢ (𝐹:∅–onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴) |
| 13 | f1o00 6883 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
| 14 | 12, 13 | bitri 275 | 1 ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∅c0 4333 Fn wfn 6556 –1-1→wf1 6558 –onto→wfo 6559 –1-1-onto→wf1o 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 |
| This theorem is referenced by: fsumf1o 15759 fprodf1o 15982 0ramcl 17061 fullthinc 49099 |
| Copyright terms: Public domain | W3C validator |