![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fo00 | Structured version Visualization version GIF version |
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
fo00 | ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 6804 | . . . . . 6 ⊢ (𝐹:∅–onto→𝐴 → 𝐹 Fn ∅) | |
2 | fn0 6678 | . . . . . . 7 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | f10 6863 | . . . . . . . 8 ⊢ ∅:∅–1-1→𝐴 | |
4 | f1eq1 6779 | . . . . . . . 8 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
5 | 3, 4 | mpbiri 257 | . . . . . . 7 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐴) |
6 | 2, 5 | sylbi 216 | . . . . . 6 ⊢ (𝐹 Fn ∅ → 𝐹:∅–1-1→𝐴) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1→𝐴) |
8 | 7 | ancri 550 | . . . 4 ⊢ (𝐹:∅–onto→𝐴 → (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) |
9 | df-f1o 6547 | . . . 4 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1-onto→𝐴) |
11 | f1ofo 6837 | . . 3 ⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) | |
12 | 10, 11 | impbii 208 | . 2 ⊢ (𝐹:∅–onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴) |
13 | f1o00 6865 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
14 | 12, 13 | bitri 274 | 1 ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∅c0 4321 Fn wfn 6535 –1-1→wf1 6537 –onto→wfo 6538 –1-1-onto→wf1o 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
This theorem is referenced by: fsumf1o 15665 fprodf1o 15886 0ramcl 16952 fullthinc 47619 |
Copyright terms: Public domain | W3C validator |