| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fo00 | Structured version Visualization version GIF version | ||
| Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| fo00 | ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 6774 | . . . . . 6 ⊢ (𝐹:∅–onto→𝐴 → 𝐹 Fn ∅) | |
| 2 | fn0 6649 | . . . . . . 7 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 3 | f10 6833 | . . . . . . . 8 ⊢ ∅:∅–1-1→𝐴 | |
| 4 | f1eq1 6751 | . . . . . . . 8 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . . 7 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐴) |
| 6 | 2, 5 | sylbi 217 | . . . . . 6 ⊢ (𝐹 Fn ∅ → 𝐹:∅–1-1→𝐴) |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1→𝐴) |
| 8 | 7 | ancri 549 | . . . 4 ⊢ (𝐹:∅–onto→𝐴 → (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) |
| 9 | df-f1o 6518 | . . . 4 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) | |
| 10 | 8, 9 | sylibr 234 | . . 3 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1-onto→𝐴) |
| 11 | f1ofo 6807 | . . 3 ⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) | |
| 12 | 10, 11 | impbii 209 | . 2 ⊢ (𝐹:∅–onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴) |
| 13 | f1o00 6835 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
| 14 | 12, 13 | bitri 275 | 1 ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∅c0 4296 Fn wfn 6506 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: fsumf1o 15689 fprodf1o 15912 0ramcl 16994 fullthinc 49439 |
| Copyright terms: Public domain | W3C validator |