MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo00 Structured version   Visualization version   GIF version

Theorem fo00 6752
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
fo00 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem fo00
StepHypRef Expression
1 fofn 6690 . . . . . 6 (𝐹:∅–onto𝐴𝐹 Fn ∅)
2 fn0 6564 . . . . . . 7 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
3 f10 6749 . . . . . . . 8 ∅:∅–1-1𝐴
4 f1eq1 6665 . . . . . . . 8 (𝐹 = ∅ → (𝐹:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
53, 4mpbiri 257 . . . . . . 7 (𝐹 = ∅ → 𝐹:∅–1-1𝐴)
62, 5sylbi 216 . . . . . 6 (𝐹 Fn ∅ → 𝐹:∅–1-1𝐴)
71, 6syl 17 . . . . 5 (𝐹:∅–onto𝐴𝐹:∅–1-1𝐴)
87ancri 550 . . . 4 (𝐹:∅–onto𝐴 → (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
9 df-f1o 6440 . . . 4 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
108, 9sylibr 233 . . 3 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
11 f1ofo 6723 . . 3 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
1210, 11impbii 208 . 2 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
13 f1o00 6751 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
1412, 13bitri 274 1 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  c0 4256   Fn wfn 6428  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  fsumf1o  15435  fprodf1o  15656  0ramcl  16724  fullthinc  46327
  Copyright terms: Public domain W3C validator