MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo00 Structured version   Visualization version   GIF version

Theorem fo00 6884
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
fo00 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem fo00
StepHypRef Expression
1 fofn 6822 . . . . . 6 (𝐹:∅–onto𝐴𝐹 Fn ∅)
2 fn0 6699 . . . . . . 7 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
3 f10 6881 . . . . . . . 8 ∅:∅–1-1𝐴
4 f1eq1 6799 . . . . . . . 8 (𝐹 = ∅ → (𝐹:∅–1-1𝐴 ↔ ∅:∅–1-1𝐴))
53, 4mpbiri 258 . . . . . . 7 (𝐹 = ∅ → 𝐹:∅–1-1𝐴)
62, 5sylbi 217 . . . . . 6 (𝐹 Fn ∅ → 𝐹:∅–1-1𝐴)
71, 6syl 17 . . . . 5 (𝐹:∅–onto𝐴𝐹:∅–1-1𝐴)
87ancri 549 . . . 4 (𝐹:∅–onto𝐴 → (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
9 df-f1o 6568 . . . 4 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹:∅–1-1𝐴𝐹:∅–onto𝐴))
108, 9sylibr 234 . . 3 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
11 f1ofo 6855 . . 3 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
1210, 11impbii 209 . 2 (𝐹:∅–onto𝐴𝐹:∅–1-1-onto𝐴)
13 f1o00 6883 . 2 (𝐹:∅–1-1-onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
1412, 13bitri 275 1 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  c0 4333   Fn wfn 6556  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568
This theorem is referenced by:  fsumf1o  15759  fprodf1o  15982  0ramcl  17061  fullthinc  49099
  Copyright terms: Public domain W3C validator