Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fo00 | Structured version Visualization version GIF version |
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
fo00 | ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn 6686 | . . . . . 6 ⊢ (𝐹:∅–onto→𝐴 → 𝐹 Fn ∅) | |
2 | fn0 6560 | . . . . . . 7 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
3 | f10 6744 | . . . . . . . 8 ⊢ ∅:∅–1-1→𝐴 | |
4 | f1eq1 6661 | . . . . . . . 8 ⊢ (𝐹 = ∅ → (𝐹:∅–1-1→𝐴 ↔ ∅:∅–1-1→𝐴)) | |
5 | 3, 4 | mpbiri 257 | . . . . . . 7 ⊢ (𝐹 = ∅ → 𝐹:∅–1-1→𝐴) |
6 | 2, 5 | sylbi 216 | . . . . . 6 ⊢ (𝐹 Fn ∅ → 𝐹:∅–1-1→𝐴) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1→𝐴) |
8 | 7 | ancri 549 | . . . 4 ⊢ (𝐹:∅–onto→𝐴 → (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) |
9 | df-f1o 6437 | . . . 4 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹:∅–1-1→𝐴 ∧ 𝐹:∅–onto→𝐴)) | |
10 | 8, 9 | sylibr 233 | . . 3 ⊢ (𝐹:∅–onto→𝐴 → 𝐹:∅–1-1-onto→𝐴) |
11 | f1ofo 6719 | . . 3 ⊢ (𝐹:∅–1-1-onto→𝐴 → 𝐹:∅–onto→𝐴) | |
12 | 10, 11 | impbii 208 | . 2 ⊢ (𝐹:∅–onto→𝐴 ↔ 𝐹:∅–1-1-onto→𝐴) |
13 | f1o00 6746 | . 2 ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
14 | 12, 13 | bitri 274 | 1 ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1541 ∅c0 4261 Fn wfn 6425 –1-1→wf1 6427 –onto→wfo 6428 –1-1-onto→wf1o 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 |
This theorem is referenced by: fsumf1o 15416 fprodf1o 15637 0ramcl 16705 fullthinc 46279 |
Copyright terms: Public domain | W3C validator |