| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfzp1 | Structured version Visualization version GIF version | ||
| Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| hashfzp1 | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 14339 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 2 | eluzelre 12811 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 3 | 2 | ltp1d 12120 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 < (𝐵 + 1)) |
| 4 | eluzelz 12810 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 5 | peano2z 12581 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 6 | 5 | ancri 549 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 7 | fzn 13508 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) | |
| 8 | 4, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) |
| 9 | 3, 8 | mpbid 232 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 + 1)...𝐵) = ∅) |
| 10 | 9 | fveq2d 6865 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅)) |
| 11 | 4 | zcnd 12646 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 12 | 11 | subidd 11528 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐵) = 0) |
| 13 | 1, 10, 12 | 3eqtr4a 2791 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵)) |
| 14 | oveq1 7397 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1)) | |
| 15 | 14 | fvoveq1d 7412 | . . . 4 ⊢ (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵))) |
| 16 | oveq2 7398 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
| 17 | 15, 16 | eqeq12d 2746 | . . 3 ⊢ (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵))) |
| 18 | 13, 17 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
| 19 | uzp1 12841 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 20 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 21 | 20 | eqcoms 2738 | . . . . . . . 8 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 22 | ax-1 6 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 23 | 21, 22 | jaoi 857 | . . . . . . 7 ⊢ ((𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 24 | 19, 23 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 25 | 24 | impcom 407 | . . . . 5 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) |
| 26 | hashfz 14399 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) |
| 28 | eluzel2 12805 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 29 | 28 | zcnd 12646 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 30 | 1cnd 11176 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 31 | 11, 29, 30 | nppcan2d 11566 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
| 32 | 31 | adantl 481 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
| 33 | 27, 32 | eqtrd 2765 | . . 3 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| 34 | 33 | ex 412 | . 2 ⊢ (¬ 𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 − cmin 11412 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: 2lgslem1 27312 sticksstones12a 42152 |
| Copyright terms: Public domain | W3C validator |