|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hashfzp1 | Structured version Visualization version GIF version | ||
| Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| hashfzp1 | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hash0 14407 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 2 | eluzelre 12890 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 3 | 2 | ltp1d 12199 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 < (𝐵 + 1)) | 
| 4 | eluzelz 12889 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 5 | peano2z 12660 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 6 | 5 | ancri 549 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ)) | 
| 7 | fzn 13581 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) | |
| 8 | 4, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) | 
| 9 | 3, 8 | mpbid 232 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 + 1)...𝐵) = ∅) | 
| 10 | 9 | fveq2d 6909 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅)) | 
| 11 | 4 | zcnd 12725 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) | 
| 12 | 11 | subidd 11609 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐵) = 0) | 
| 13 | 1, 10, 12 | 3eqtr4a 2802 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵)) | 
| 14 | oveq1 7439 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1)) | |
| 15 | 14 | fvoveq1d 7454 | . . . 4 ⊢ (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵))) | 
| 16 | oveq2 7440 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
| 17 | 15, 16 | eqeq12d 2752 | . . 3 ⊢ (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵))) | 
| 18 | 13, 17 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) | 
| 19 | uzp1 12920 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 20 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 21 | 20 | eqcoms 2744 | . . . . . . . 8 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | 
| 22 | ax-1 6 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 23 | 21, 22 | jaoi 857 | . . . . . . 7 ⊢ ((𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | 
| 24 | 19, 23 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | 
| 25 | 24 | impcom 407 | . . . . 5 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) | 
| 26 | hashfz 14467 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) | 
| 28 | eluzel2 12884 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 29 | 28 | zcnd 12725 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) | 
| 30 | 1cnd 11257 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 31 | 11, 29, 30 | nppcan2d 11647 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) | 
| 32 | 31 | adantl 481 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) | 
| 33 | 27, 32 | eqtrd 2776 | . . 3 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | 
| 34 | 33 | ex 412 | . 2 ⊢ (¬ 𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) | 
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∅c0 4332 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 − cmin 11493 ℤcz 12615 ℤ≥cuz 12879 ...cfz 13548 ♯chash 14370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 | 
| This theorem is referenced by: 2lgslem1 27439 sticksstones12a 42159 | 
| Copyright terms: Public domain | W3C validator |