| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfzp1 | Structured version Visualization version GIF version | ||
| Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| hashfzp1 | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 14274 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 2 | eluzelre 12743 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 3 | 2 | ltp1d 12052 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 < (𝐵 + 1)) |
| 4 | eluzelz 12742 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 5 | peano2z 12513 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 6 | 5 | ancri 549 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 7 | fzn 13440 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) | |
| 8 | 4, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) |
| 9 | 3, 8 | mpbid 232 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 + 1)...𝐵) = ∅) |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅)) |
| 11 | 4 | zcnd 12578 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 12 | 11 | subidd 11460 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐵) = 0) |
| 13 | 1, 10, 12 | 3eqtr4a 2792 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵)) |
| 14 | oveq1 7353 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1)) | |
| 15 | 14 | fvoveq1d 7368 | . . . 4 ⊢ (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵))) |
| 16 | oveq2 7354 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
| 17 | 15, 16 | eqeq12d 2747 | . . 3 ⊢ (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵))) |
| 18 | 13, 17 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
| 19 | uzp1 12773 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 20 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 21 | 20 | eqcoms 2739 | . . . . . . . 8 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 22 | ax-1 6 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 23 | 21, 22 | jaoi 857 | . . . . . . 7 ⊢ ((𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 24 | 19, 23 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 25 | 24 | impcom 407 | . . . . 5 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) |
| 26 | hashfz 14334 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) |
| 28 | eluzel2 12737 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 29 | 28 | zcnd 12578 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 30 | 1cnd 11107 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 31 | 11, 29, 30 | nppcan2d 11498 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
| 32 | 31 | adantl 481 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
| 33 | 27, 32 | eqtrd 2766 | . . 3 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| 34 | 33 | ex 412 | . 2 ⊢ (¬ 𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: 2lgslem1 27332 sticksstones12a 42249 |
| Copyright terms: Public domain | W3C validator |