MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzp1 Structured version   Visualization version   GIF version

Theorem hashfzp1 14467
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzp1
StepHypRef Expression
1 hash0 14403 . . . 4 (♯‘∅) = 0
2 eluzelre 12887 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
32ltp1d 12196 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 < (𝐵 + 1))
4 eluzelz 12886 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
5 peano2z 12656 . . . . . . . 8 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
65ancri 549 . . . . . . 7 (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ))
7 fzn 13577 . . . . . . 7 (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
84, 6, 73syl 18 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
93, 8mpbid 232 . . . . 5 (𝐵 ∈ (ℤ𝐴) → ((𝐵 + 1)...𝐵) = ∅)
109fveq2d 6911 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅))
114zcnd 12721 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1211subidd 11606 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐵) = 0)
131, 10, 123eqtr4a 2801 . . 3 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵))
14 oveq1 7438 . . . . 5 (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1))
1514fvoveq1d 7453 . . . 4 (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵)))
16 oveq2 7439 . . . 4 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1715, 16eqeq12d 2751 . . 3 (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵)))
1813, 17imbitrrid 246 . 2 (𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
19 uzp1 12917 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))))
20 pm2.24 124 . . . . . . . . 9 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2120eqcoms 2743 . . . . . . . 8 (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
22 ax-1 6 . . . . . . . 8 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2321, 22jaoi 857 . . . . . . 7 ((𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2419, 23syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2524impcom 407 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ‘(𝐴 + 1)))
26 hashfz 14463 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
2725, 26syl 17 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
28 eluzel2 12881 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2928zcnd 12721 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
30 1cnd 11254 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
3111, 29, 30nppcan2d 11644 . . . . 5 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3231adantl 481 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3327, 32eqtrd 2775 . . 3 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
3433ex 412 . 2 𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
3518, 34pm2.61i 182 1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cmin 11490  cz 12611  cuz 12876  ...cfz 13544  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  2lgslem1  27453  sticksstones12a  42139
  Copyright terms: Public domain W3C validator