| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfzp1 | Structured version Visualization version GIF version | ||
| Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| hashfzp1 | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 14308 | . . . 4 ⊢ (♯‘∅) = 0 | |
| 2 | eluzelre 12780 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℝ) | |
| 3 | 2 | ltp1d 12089 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 < (𝐵 + 1)) |
| 4 | eluzelz 12779 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 5 | peano2z 12550 | . . . . . . . 8 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 6 | 5 | ancri 549 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ)) |
| 7 | fzn 13477 | . . . . . . 7 ⊢ (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) | |
| 8 | 4, 6, 7 | 3syl 18 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅)) |
| 9 | 3, 8 | mpbid 232 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 + 1)...𝐵) = ∅) |
| 10 | 9 | fveq2d 6844 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅)) |
| 11 | 4 | zcnd 12615 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 12 | 11 | subidd 11497 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐵) = 0) |
| 13 | 1, 10, 12 | 3eqtr4a 2790 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵)) |
| 14 | oveq1 7376 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1)) | |
| 15 | 14 | fvoveq1d 7391 | . . . 4 ⊢ (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵))) |
| 16 | oveq2 7377 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
| 17 | 15, 16 | eqeq12d 2745 | . . 3 ⊢ (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵 − 𝐵))) |
| 18 | 13, 17 | imbitrrid 246 | . 2 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
| 19 | uzp1 12810 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 20 | pm2.24 124 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 21 | 20 | eqcoms 2737 | . . . . . . . 8 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 22 | ax-1 6 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) | |
| 23 | 21, 22 | jaoi 857 | . . . . . . 7 ⊢ ((𝐵 = 𝐴 ∨ 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 24 | 19, 23 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (¬ 𝐴 = 𝐵 → 𝐵 ∈ (ℤ≥‘(𝐴 + 1)))) |
| 25 | 24 | impcom 407 | . . . . 5 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐵 ∈ (ℤ≥‘(𝐴 + 1))) |
| 26 | hashfz 14368 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1)) |
| 28 | eluzel2 12774 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 29 | 28 | zcnd 12615 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 30 | 1cnd 11145 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 31 | 11, 29, 30 | nppcan2d 11535 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
| 32 | 31 | adantl 481 | . . . 4 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵 − 𝐴)) |
| 33 | 27, 32 | eqtrd 2764 | . . 3 ⊢ ((¬ 𝐴 = 𝐵 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| 34 | 33 | ex 412 | . 2 ⊢ (¬ 𝐴 = 𝐵 → (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴))) |
| 35 | 18, 34 | pm2.61i 182 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 − cmin 11381 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: 2lgslem1 27338 sticksstones12a 42138 |
| Copyright terms: Public domain | W3C validator |