![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idmgmhm | Structured version Visualization version GIF version |
Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
idmgmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
idmgmhm | ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ Mgm) | |
2 | 1 | ancri 548 | . 2 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm)) |
3 | f1oi 6873 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
4 | f1of 6835 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵):𝐵⟶𝐵) |
6 | idmgmhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
7 | eqid 2726 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | 6, 7 | mgmcl 18631 | . . . . . . 7 ⊢ ((𝑀 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
9 | 8 | 3expb 1117 | . . . . . 6 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
10 | fvresi 7179 | . . . . . 6 ⊢ ((𝑎(+g‘𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
12 | fvresi 7179 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
13 | fvresi 7179 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
14 | 12, 13 | oveqan12d 7435 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
15 | 14 | adantl 480 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
16 | 11, 15 | eqtr4d 2769 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
17 | 16 | ralrimivva 3191 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
18 | 5, 17 | jca 510 | . 2 ⊢ (𝑀 ∈ Mgm → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)))) |
19 | 6, 6, 7, 7 | ismgmhm 18684 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀) ↔ ((𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))))) |
20 | 2, 18, 19 | sylanbrc 581 | 1 ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 I cid 5571 ↾ cres 5676 ⟶wf 6542 –1-1-onto→wf1o 6545 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 +gcplusg 17261 Mgmcmgm 18626 MgmHom cmgmhm 18678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-map 8849 df-mgm 18628 df-mgmhm 18680 |
This theorem is referenced by: idrnghm 20436 |
Copyright terms: Public domain | W3C validator |