Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idmgmhm | Structured version Visualization version GIF version |
Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
idmgmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
idmgmhm | ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ Mgm) | |
2 | 1 | ancri 550 | . 2 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm)) |
3 | f1oi 6746 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
4 | f1of 6708 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵):𝐵⟶𝐵) |
6 | idmgmhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
7 | eqid 2738 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | 6, 7 | mgmcl 18339 | . . . . . . 7 ⊢ ((𝑀 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
9 | 8 | 3expb 1119 | . . . . . 6 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
10 | fvresi 7037 | . . . . . 6 ⊢ ((𝑎(+g‘𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
12 | fvresi 7037 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
13 | fvresi 7037 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
14 | 12, 13 | oveqan12d 7286 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
15 | 14 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
16 | 11, 15 | eqtr4d 2781 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
17 | 16 | ralrimivva 3115 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
18 | 5, 17 | jca 512 | . 2 ⊢ (𝑀 ∈ Mgm → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)))) |
19 | 6, 6, 7, 7 | ismgmhm 45315 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀) ↔ ((𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))))) |
20 | 2, 18, 19 | sylanbrc 583 | 1 ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 I cid 5483 ↾ cres 5586 ⟶wf 6422 –1-1-onto→wf1o 6425 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 +gcplusg 16972 Mgmcmgm 18334 MgmHom cmgmhm 45309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-map 8604 df-mgm 18336 df-mgmhm 45311 |
This theorem is referenced by: idrnghm 45444 |
Copyright terms: Public domain | W3C validator |