![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idmgmhm | Structured version Visualization version GIF version |
Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
idmgmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
idmgmhm | ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑀 ∈ Mgm → 𝑀 ∈ Mgm) | |
2 | 1 | ancri 548 | . 2 ⊢ (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm)) |
3 | f1oi 6880 | . . . 4 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
4 | f1of 6842 | . . . 4 ⊢ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 → ( I ↾ 𝐵):𝐵⟶𝐵) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵):𝐵⟶𝐵) |
6 | idmgmhm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
7 | eqid 2727 | . . . . . . . 8 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | 6, 7 | mgmcl 18608 | . . . . . . 7 ⊢ ((𝑀 ∈ Mgm ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
9 | 8 | 3expb 1117 | . . . . . 6 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
10 | fvresi 7186 | . . . . . 6 ⊢ ((𝑎(+g‘𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
12 | fvresi 7186 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎) | |
13 | fvresi 7186 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏) | |
14 | 12, 13 | oveqan12d 7443 | . . . . . 6 ⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
15 | 14 | adantl 480 | . . . . 5 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g‘𝑀)𝑏)) |
16 | 11, 15 | eqtr4d 2770 | . . . 4 ⊢ ((𝑀 ∈ Mgm ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
17 | 16 | ralrimivva 3196 | . . 3 ⊢ (𝑀 ∈ Mgm → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))) |
18 | 5, 17 | jca 510 | . 2 ⊢ (𝑀 ∈ Mgm → (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏)))) |
19 | 6, 6, 7, 7 | ismgmhm 18661 | . 2 ⊢ (( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀) ↔ ((𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (( I ↾ 𝐵):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( I ↾ 𝐵)‘(𝑎(+g‘𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g‘𝑀)(( I ↾ 𝐵)‘𝑏))))) |
20 | 2, 18, 19 | sylanbrc 581 | 1 ⊢ (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3057 I cid 5577 ↾ cres 5682 ⟶wf 6547 –1-1-onto→wf1o 6550 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 +gcplusg 17238 Mgmcmgm 18603 MgmHom cmgmhm 18655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-mgm 18605 df-mgmhm 18657 |
This theorem is referenced by: idrnghm 20402 |
Copyright terms: Public domain | W3C validator |