Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idmgmhm Structured version   Visualization version   GIF version

Theorem idmgmhm 43887
Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020.)
Hypothesis
Ref Expression
idmgmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idmgmhm (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀))

Proof of Theorem idmgmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑀 ∈ Mgm → 𝑀 ∈ Mgm)
21ancri 550 . 2 (𝑀 ∈ Mgm → (𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm))
3 f1oi 6649 . . . 4 ( I ↾ 𝐵):𝐵1-1-onto𝐵
4 f1of 6612 . . . 4 (( I ↾ 𝐵):𝐵1-1-onto𝐵 → ( I ↾ 𝐵):𝐵𝐵)
53, 4mp1i 13 . . 3 (𝑀 ∈ Mgm → ( I ↾ 𝐵):𝐵𝐵)
6 idmgmhm.b . . . . . . . 8 𝐵 = (Base‘𝑀)
7 eqid 2826 . . . . . . . 8 (+g𝑀) = (+g𝑀)
86, 7mgmcl 17845 . . . . . . 7 ((𝑀 ∈ Mgm ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
983expb 1114 . . . . . 6 ((𝑀 ∈ Mgm ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
10 fvresi 6931 . . . . . 6 ((𝑎(+g𝑀)𝑏) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
119, 10syl 17 . . . . 5 ((𝑀 ∈ Mgm ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = (𝑎(+g𝑀)𝑏))
12 fvresi 6931 . . . . . . 7 (𝑎𝐵 → (( I ↾ 𝐵)‘𝑎) = 𝑎)
13 fvresi 6931 . . . . . . 7 (𝑏𝐵 → (( I ↾ 𝐵)‘𝑏) = 𝑏)
1412, 13oveqan12d 7167 . . . . . 6 ((𝑎𝐵𝑏𝐵) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1514adantl 482 . . . . 5 ((𝑀 ∈ Mgm ∧ (𝑎𝐵𝑏𝐵)) → ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)) = (𝑎(+g𝑀)𝑏))
1611, 15eqtr4d 2864 . . . 4 ((𝑀 ∈ Mgm ∧ (𝑎𝐵𝑏𝐵)) → (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
1716ralrimivva 3196 . . 3 (𝑀 ∈ Mgm → ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))
185, 17jca 512 . 2 (𝑀 ∈ Mgm → (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏))))
196, 6, 7, 7ismgmhm 43882 . 2 (( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀) ↔ ((𝑀 ∈ Mgm ∧ 𝑀 ∈ Mgm) ∧ (( I ↾ 𝐵):𝐵𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (( I ↾ 𝐵)‘(𝑎(+g𝑀)𝑏)) = ((( I ↾ 𝐵)‘𝑎)(+g𝑀)(( I ↾ 𝐵)‘𝑏)))))
202, 18, 19sylanbrc 583 1 (𝑀 ∈ Mgm → ( I ↾ 𝐵) ∈ (𝑀 MgmHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143   I cid 5458  cres 5556  wf 6348  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  Basecbs 16473  +gcplusg 16555  Mgmcmgm 17840   MgmHom cmgmhm 43876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8398  df-mgm 17842  df-mgmhm 43878
This theorem is referenced by:  idrnghm  44011
  Copyright terms: Public domain W3C validator