Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sincosq1sgn | Structured version Visualization version GIF version |
Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.) |
Ref | Expression |
---|---|
sincosq1sgn | ⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11101 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | halfpire 25701 | . . . 4 ⊢ (π / 2) ∈ ℝ | |
3 | 2 | rexri 11112 | . . 3 ⊢ (π / 2) ∈ ℝ* |
4 | elioo2 13199 | . . 3 ⊢ ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)))) | |
5 | 1, 3, 4 | mp2an 689 | . 2 ⊢ (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2))) |
6 | sincosq1lem 25734 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (sin‘𝐴)) | |
7 | resubcl 11364 | . . . . . . . 8 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ) | |
8 | 2, 7 | mpan 687 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → ((π / 2) − 𝐴) ∈ ℝ) |
9 | sincosq1lem 25734 | . . . . . . 7 ⊢ ((((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴))) | |
10 | 8, 9 | syl3an1 1162 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴))) |
11 | 10 | 3expib 1121 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))) |
12 | 0re 11056 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
13 | ltsub13 11535 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0))) | |
14 | 12, 2, 13 | mp3an12 1450 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0))) |
15 | 2 | recni 11068 | . . . . . . . . . 10 ⊢ (π / 2) ∈ ℂ |
16 | 15 | subid1i 11372 | . . . . . . . . 9 ⊢ ((π / 2) − 0) = (π / 2) |
17 | 16 | breq2i 5094 | . . . . . . . 8 ⊢ (𝐴 < ((π / 2) − 0) ↔ 𝐴 < (π / 2)) |
18 | 14, 17 | bitrdi 286 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < (π / 2))) |
19 | ltsub23 11534 | . . . . . . . . 9 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴)) | |
20 | 2, 2, 19 | mp3an13 1451 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴)) |
21 | 15 | subidi 11371 | . . . . . . . . 9 ⊢ ((π / 2) − (π / 2)) = 0 |
22 | 21 | breq1i 5093 | . . . . . . . 8 ⊢ (((π / 2) − (π / 2)) < 𝐴 ↔ 0 < 𝐴) |
23 | 20, 22 | bitrdi 286 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ 0 < 𝐴)) |
24 | 18, 23 | anbi12d 631 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (𝐴 < (π / 2) ∧ 0 < 𝐴))) |
25 | 24 | biancomd 464 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (0 < 𝐴 ∧ 𝐴 < (π / 2)))) |
26 | recn 11040 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
27 | sinhalfpim 25730 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) |
29 | 28 | breq2d 5098 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 < (sin‘((π / 2) − 𝐴)) ↔ 0 < (cos‘𝐴))) |
30 | 11, 25, 29 | 3imtr3d 292 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴))) |
31 | 30 | 3impib 1115 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → 0 < (cos‘𝐴)) |
32 | 6, 31 | jca 512 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 < (π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) |
33 | 5, 32 | sylbi 216 | 1 ⊢ (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5086 ‘cfv 6465 (class class class)co 7316 ℂcc 10948 ℝcr 10949 0cc0 10950 ℝ*cxr 11087 < clt 11088 − cmin 11284 / cdiv 11711 2c2 12107 (,)cioo 13158 sincsin 15849 cosccos 15850 πcpi 15852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 ax-addf 11029 ax-mulf 11030 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-er 8547 df-map 8666 df-pm 8667 df-ixp 8735 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-fi 9246 df-sup 9277 df-inf 9278 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-q 12768 df-rp 12810 df-xneg 12927 df-xadd 12928 df-xmul 12929 df-ioo 13162 df-ioc 13163 df-ico 13164 df-icc 13165 df-fz 13319 df-fzo 13462 df-fl 13591 df-seq 13801 df-exp 13862 df-fac 14067 df-bc 14096 df-hash 14124 df-shft 14854 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-limsup 15256 df-clim 15273 df-rlim 15274 df-sum 15474 df-ef 15853 df-sin 15855 df-cos 15856 df-pi 15858 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-starv 17051 df-sca 17052 df-vsca 17053 df-ip 17054 df-tset 17055 df-ple 17056 df-ds 17058 df-unif 17059 df-hom 17060 df-cco 17061 df-rest 17207 df-topn 17208 df-0g 17226 df-gsum 17227 df-topgen 17228 df-pt 17229 df-prds 17232 df-xrs 17287 df-qtop 17292 df-imas 17293 df-xps 17295 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-mulg 18774 df-cntz 18996 df-cmn 19460 df-psmet 20669 df-xmet 20670 df-met 20671 df-bl 20672 df-mopn 20673 df-fbas 20674 df-fg 20675 df-cnfld 20678 df-top 22123 df-topon 22140 df-topsp 22162 df-bases 22176 df-cld 22250 df-ntr 22251 df-cls 22252 df-nei 22329 df-lp 22367 df-perf 22368 df-cn 22458 df-cnp 22459 df-haus 22546 df-tx 22793 df-hmeo 22986 df-fil 23077 df-fm 23169 df-flim 23170 df-flf 23171 df-xms 23553 df-ms 23554 df-tms 23555 df-cncf 24121 df-limc 25110 df-dv 25111 |
This theorem is referenced by: sincosq2sgn 25736 coseq00topi 25739 tanrpcl 25741 tangtx 25742 tanabsge 25743 sincos6thpi 25752 tanord1 25773 basellem3 26312 basellem4 26313 basellem8 26317 |
Copyright terms: Public domain | W3C validator |