MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq1sgn Structured version   Visualization version   GIF version

Theorem sincosq1sgn 25683
Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq1sgn (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))

Proof of Theorem sincosq1sgn
StepHypRef Expression
1 0xr 11050 . . 3 0 ∈ ℝ*
2 halfpire 25649 . . . 4 (π / 2) ∈ ℝ
32rexri 11061 . . 3 (π / 2) ∈ ℝ*
4 elioo2 13148 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
51, 3, 4mp2an 688 . 2 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
6 sincosq1lem 25682 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))
7 resubcl 11313 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
82, 7mpan 686 . . . . . . 7 (𝐴 ∈ ℝ → ((π / 2) − 𝐴) ∈ ℝ)
9 sincosq1lem 25682 . . . . . . 7 ((((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))
108, 9syl3an1 1161 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))
11103expib 1120 . . . . 5 (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴))))
12 0re 11005 . . . . . . . . 9 0 ∈ ℝ
13 ltsub13 11484 . . . . . . . . 9 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0)))
1412, 2, 13mp3an12 1449 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0)))
152recni 11017 . . . . . . . . . 10 (π / 2) ∈ ℂ
1615subid1i 11321 . . . . . . . . 9 ((π / 2) − 0) = (π / 2)
1716breq2i 5085 . . . . . . . 8 (𝐴 < ((π / 2) − 0) ↔ 𝐴 < (π / 2))
1814, 17bitrdi 286 . . . . . . 7 (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < (π / 2)))
19 ltsub23 11483 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴))
202, 2, 19mp3an13 1450 . . . . . . . 8 (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴))
2115subidi 11320 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
2221breq1i 5084 . . . . . . . 8 (((π / 2) − (π / 2)) < 𝐴 ↔ 0 < 𝐴)
2320, 22bitrdi 286 . . . . . . 7 (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ 0 < 𝐴))
2418, 23anbi12d 630 . . . . . 6 (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (𝐴 < (π / 2) ∧ 0 < 𝐴)))
2524biancomd 463 . . . . 5 (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (0 < 𝐴𝐴 < (π / 2))))
26 recn 10989 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
27 sinhalfpim 25678 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
2826, 27syl 17 . . . . . 6 (𝐴 ∈ ℝ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
2928breq2d 5089 . . . . 5 (𝐴 ∈ ℝ → (0 < (sin‘((π / 2) − 𝐴)) ↔ 0 < (cos‘𝐴)))
3011, 25, 293imtr3d 292 . . . 4 (𝐴 ∈ ℝ → ((0 < 𝐴𝐴 < (π / 2)) → 0 < (cos‘𝐴)))
31303impib 1114 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (cos‘𝐴))
326, 31jca 511 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
335, 32sylbi 216 1 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1537  wcel 2101   class class class wbr 5077  cfv 6447  (class class class)co 7295  cc 10897  cr 10898  0cc0 10899  *cxr 11036   < clt 11037  cmin 11233   / cdiv 11660  2c2 12056  (,)cioo 13107  sincsin 15801  cosccos 15802  πcpi 15804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-inf2 9427  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977  ax-addf 10978  ax-mulf 10979
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-2o 8318  df-er 8518  df-map 8637  df-pm 8638  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-fi 9198  df-sup 9229  df-inf 9230  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-q 12717  df-rp 12759  df-xneg 12876  df-xadd 12877  df-xmul 12878  df-ioo 13111  df-ioc 13112  df-ico 13113  df-icc 13114  df-fz 13268  df-fzo 13411  df-fl 13540  df-seq 13750  df-exp 13811  df-fac 14016  df-bc 14045  df-hash 14073  df-shft 14806  df-cj 14838  df-re 14839  df-im 14840  df-sqrt 14974  df-abs 14975  df-limsup 15208  df-clim 15225  df-rlim 15226  df-sum 15426  df-ef 15805  df-sin 15807  df-cos 15808  df-pi 15810  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-starv 17005  df-sca 17006  df-vsca 17007  df-ip 17008  df-tset 17009  df-ple 17010  df-ds 17012  df-unif 17013  df-hom 17014  df-cco 17015  df-rest 17161  df-topn 17162  df-0g 17180  df-gsum 17181  df-topgen 17182  df-pt 17183  df-prds 17186  df-xrs 17241  df-qtop 17246  df-imas 17247  df-xps 17249  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-submnd 18459  df-mulg 18729  df-cntz 18951  df-cmn 19416  df-psmet 20617  df-xmet 20618  df-met 20619  df-bl 20620  df-mopn 20621  df-fbas 20622  df-fg 20623  df-cnfld 20626  df-top 22071  df-topon 22088  df-topsp 22110  df-bases 22124  df-cld 22198  df-ntr 22199  df-cls 22200  df-nei 22277  df-lp 22315  df-perf 22316  df-cn 22406  df-cnp 22407  df-haus 22494  df-tx 22741  df-hmeo 22934  df-fil 23025  df-fm 23117  df-flim 23118  df-flf 23119  df-xms 23501  df-ms 23502  df-tms 23503  df-cncf 24069  df-limc 25058  df-dv 25059
This theorem is referenced by:  sincosq2sgn  25684  coseq00topi  25687  tanrpcl  25689  tangtx  25690  tanabsge  25691  sincos6thpi  25700  tanord1  25721  basellem3  26260  basellem4  26261  basellem8  26265
  Copyright terms: Public domain W3C validator