MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sincosq1sgn Structured version   Visualization version   GIF version

Theorem sincosq1sgn 25084
Description: The signs of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq1sgn (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))

Proof of Theorem sincosq1sgn
StepHypRef Expression
1 0xr 10688 . . 3 0 ∈ ℝ*
2 halfpire 25050 . . . 4 (π / 2) ∈ ℝ
32rexri 10699 . . 3 (π / 2) ∈ ℝ*
4 elioo2 12780 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2))))
51, 3, 4mp2an 690 . 2 (𝐴 ∈ (0(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)))
6 sincosq1lem 25083 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (sin‘𝐴))
7 resubcl 10950 . . . . . . . 8 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ)
82, 7mpan 688 . . . . . . 7 (𝐴 ∈ ℝ → ((π / 2) − 𝐴) ∈ ℝ)
9 sincosq1lem 25083 . . . . . . 7 ((((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))
108, 9syl3an1 1159 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴)))
11103expib 1118 . . . . 5 (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) → 0 < (sin‘((π / 2) − 𝐴))))
12 0re 10643 . . . . . . . . 9 0 ∈ ℝ
13 ltsub13 11121 . . . . . . . . 9 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0)))
1412, 2, 13mp3an12 1447 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < ((π / 2) − 0)))
152recni 10655 . . . . . . . . . 10 (π / 2) ∈ ℂ
1615subid1i 10958 . . . . . . . . 9 ((π / 2) − 0) = (π / 2)
1716breq2i 5074 . . . . . . . 8 (𝐴 < ((π / 2) − 0) ↔ 𝐴 < (π / 2))
1814, 17syl6bb 289 . . . . . . 7 (𝐴 ∈ ℝ → (0 < ((π / 2) − 𝐴) ↔ 𝐴 < (π / 2)))
19 ltsub23 11120 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴))
202, 2, 19mp3an13 1448 . . . . . . . 8 (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ ((π / 2) − (π / 2)) < 𝐴))
2115subidi 10957 . . . . . . . . 9 ((π / 2) − (π / 2)) = 0
2221breq1i 5073 . . . . . . . 8 (((π / 2) − (π / 2)) < 𝐴 ↔ 0 < 𝐴)
2320, 22syl6bb 289 . . . . . . 7 (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < (π / 2) ↔ 0 < 𝐴))
2418, 23anbi12d 632 . . . . . 6 (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (𝐴 < (π / 2) ∧ 0 < 𝐴)))
2524biancomd 466 . . . . 5 (𝐴 ∈ ℝ → ((0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < (π / 2)) ↔ (0 < 𝐴𝐴 < (π / 2))))
26 recn 10627 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
27 sinhalfpim 25079 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
2826, 27syl 17 . . . . . 6 (𝐴 ∈ ℝ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴))
2928breq2d 5078 . . . . 5 (𝐴 ∈ ℝ → (0 < (sin‘((π / 2) − 𝐴)) ↔ 0 < (cos‘𝐴)))
3011, 25, 293imtr3d 295 . . . 4 (𝐴 ∈ ℝ → ((0 < 𝐴𝐴 < (π / 2)) → 0 < (cos‘𝐴)))
31303impib 1112 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → 0 < (cos‘𝐴))
326, 31jca 514 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < (π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
335, 32sylbi 219 1 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  *cxr 10674   < clt 10675  cmin 10870   / cdiv 11297  2c2 11693  (,)cioo 12739  sincsin 15417  cosccos 15418  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  sincosq2sgn  25085  coseq00topi  25088  tanrpcl  25090  tangtx  25091  tanabsge  25092  sincos6thpi  25101  tanord1  25121  basellem3  25660  basellem4  25661  basellem8  25665
  Copyright terms: Public domain W3C validator