MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znleval Structured version   Visualization version   GIF version

Theorem znleval 21574
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
znleval (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))

Proof of Theorem znleval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
2 znle2.f . . . . . . 7 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
3 znle2.w . . . . . . 7 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4 znle2.l . . . . . . 7 = (le‘𝑌)
51, 2, 3, 4znle2 21573 . . . . . 6 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
6 relco 6125 . . . . . . . 8 Rel ((𝐹 ∘ ≤ ) ∘ 𝐹)
7 relssdmrn 6287 . . . . . . . 8 (Rel ((𝐹 ∘ ≤ ) ∘ 𝐹) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)))
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹))
9 dmcoss 5984 . . . . . . . . 9 dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ dom 𝐹
10 df-rn 5695 . . . . . . . . . 10 ran 𝐹 = dom 𝐹
11 znleval.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑌)
121, 11, 2, 3znf1o 21571 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
13 f1ofo 6854 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑊onto𝑋)
14 forn 6822 . . . . . . . . . . 11 (𝐹:𝑊onto𝑋 → ran 𝐹 = 𝑋)
1512, 13, 143syl 18 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋)
1610, 15eqtr3id 2790 . . . . . . . . 9 (𝑁 ∈ ℕ0 → dom 𝐹 = 𝑋)
179, 16sseqtrid 4025 . . . . . . . 8 (𝑁 ∈ ℕ0 → dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
18 rncoss 5985 . . . . . . . . 9 ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ ran (𝐹 ∘ ≤ )
19 rncoss 5985 . . . . . . . . . 10 ran (𝐹 ∘ ≤ ) ⊆ ran 𝐹
2019, 15sseqtrid 4025 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ran (𝐹 ∘ ≤ ) ⊆ 𝑋)
2118, 20sstrid 3994 . . . . . . . 8 (𝑁 ∈ ℕ0 → ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
22 xpss12 5699 . . . . . . . 8 ((dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋 ∧ ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋) → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
2317, 21, 22syl2anc 584 . . . . . . 7 (𝑁 ∈ ℕ0 → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
248, 23sstrid 3994 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (𝑋 × 𝑋))
255, 24eqsstrd 4017 . . . . 5 (𝑁 ∈ ℕ0 ⊆ (𝑋 × 𝑋))
2625ssbrd 5185 . . . 4 (𝑁 ∈ ℕ0 → (𝐴 𝐵𝐴(𝑋 × 𝑋)𝐵))
27 brxp 5733 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ (𝐴𝑋𝐵𝑋))
2826, 27imbitrdi 251 . . 3 (𝑁 ∈ ℕ0 → (𝐴 𝐵 → (𝐴𝑋𝐵𝑋)))
2928pm4.71rd 562 . 2 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵)))
305adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → = ((𝐹 ∘ ≤ ) ∘ 𝐹))
3130breqd 5153 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵))
32 brcog 5876 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
3332adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
34 eqcom 2743 . . . . . . . . 9 (𝑥 = (𝐹𝐴) ↔ (𝐹𝐴) = 𝑥)
3512adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑊1-1-onto𝑋)
36 f1ocnv 6859 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
37 f1ofn 6848 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑊𝐹 Fn 𝑋)
3835, 36, 373syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹 Fn 𝑋)
39 simprl 770 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
40 fnbrfvb 6958 . . . . . . . . . 10 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4138, 39, 40syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4234, 41bitr2id 284 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐹𝑥𝑥 = (𝐹𝐴)))
4342anbi1d 631 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4443exbidv 1920 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4533, 44bitrd 279 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
46 fvex 6918 . . . . . . 7 (𝐹𝐴) ∈ V
47 breq1 5145 . . . . . . 7 (𝑥 = (𝐹𝐴) → (𝑥(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
4846, 47ceqsexv 3531 . . . . . 6 (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵)
49 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
50 brcog 5876 . . . . . . . 8 (((𝐹𝐴) ∈ V ∧ 𝐵𝑋) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
5146, 49, 50sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
52 fvex 6918 . . . . . . . . 9 (𝐹𝐵) ∈ V
53 breq2 5146 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ((𝐹𝐴) ≤ 𝑥 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
5452, 53ceqsexv 3531 . . . . . . . 8 (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝐹𝐴) ≤ (𝐹𝐵))
55 eqcom 2743 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑥)
56 fnbrfvb 6958 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝐵𝑋) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5738, 49, 56syl2anc 584 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5855, 57bitrid 283 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝐵𝐹𝑥))
59 vex 3483 . . . . . . . . . . . . 13 𝑥 ∈ V
60 brcnvg 5889 . . . . . . . . . . . . 13 ((𝐵𝑋𝑥 ∈ V) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6149, 59, 60sylancl 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6258, 61bitrd 279 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝑥𝐹𝐵))
6362anbi1d 631 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝑥𝐹𝐵 ∧ (𝐹𝐴) ≤ 𝑥)))
6463biancomd 463 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6564exbidv 1920 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6654, 65bitr3id 285 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐵) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6751, 66bitr4d 282 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6848, 67bitrid 283 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6931, 45, 683bitrd 305 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7069pm5.32da 579 . . 3 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
71 df-3an 1088 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵)) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵)))
7270, 71bitr4di 289 . 2 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
7329, 72bitrd 279 1 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  Vcvv 3479  wss 3950  ifcif 4524   class class class wbr 5142   × cxp 5682  ccnv 5683  dom cdm 5684  ran crn 5685  cres 5686  ccom 5688  Rel wrel 5689   Fn wfn 6555  ontowfo 6558  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  0cc0 11156  cle 11297  0cn0 12528  cz 12615  ..^cfzo 13695  Basecbs 17248  lecple 17305  ℤRHomczrh 21511  ℤ/nczn 21514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-dvds 16292  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-nsg 19143  df-eqg 19144  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-cnfld 21366  df-zring 21459  df-zrh 21515  df-zn 21518
This theorem is referenced by:  znleval2  21575
  Copyright terms: Public domain W3C validator