MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znleval Structured version   Visualization version   GIF version

Theorem znleval 20524
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
znleval (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))

Proof of Theorem znleval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
2 znle2.f . . . . . . 7 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
3 znle2.w . . . . . . 7 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4 znle2.l . . . . . . 7 = (le‘𝑌)
51, 2, 3, 4znle2 20523 . . . . . 6 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
6 relco 6113 . . . . . . . 8 Rel ((𝐹 ∘ ≤ ) ∘ 𝐹)
7 relssdmrn 6137 . . . . . . . 8 (Rel ((𝐹 ∘ ≤ ) ∘ 𝐹) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)))
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹))
9 dmcoss 5845 . . . . . . . . 9 dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ dom 𝐹
10 df-rn 5567 . . . . . . . . . 10 ran 𝐹 = dom 𝐹
11 znleval.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑌)
121, 11, 2, 3znf1o 20521 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
13 f1ofo 6673 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑊onto𝑋)
14 forn 6641 . . . . . . . . . . 11 (𝐹:𝑊onto𝑋 → ran 𝐹 = 𝑋)
1512, 13, 143syl 18 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋)
1610, 15eqtr3id 2792 . . . . . . . . 9 (𝑁 ∈ ℕ0 → dom 𝐹 = 𝑋)
179, 16sseqtrid 3958 . . . . . . . 8 (𝑁 ∈ ℕ0 → dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
18 rncoss 5846 . . . . . . . . 9 ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ ran (𝐹 ∘ ≤ )
19 rncoss 5846 . . . . . . . . . 10 ran (𝐹 ∘ ≤ ) ⊆ ran 𝐹
2019, 15sseqtrid 3958 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ran (𝐹 ∘ ≤ ) ⊆ 𝑋)
2118, 20sstrid 3917 . . . . . . . 8 (𝑁 ∈ ℕ0 → ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
22 xpss12 5571 . . . . . . . 8 ((dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋 ∧ ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋) → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
2317, 21, 22syl2anc 587 . . . . . . 7 (𝑁 ∈ ℕ0 → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
248, 23sstrid 3917 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (𝑋 × 𝑋))
255, 24eqsstrd 3944 . . . . 5 (𝑁 ∈ ℕ0 ⊆ (𝑋 × 𝑋))
2625ssbrd 5101 . . . 4 (𝑁 ∈ ℕ0 → (𝐴 𝐵𝐴(𝑋 × 𝑋)𝐵))
27 brxp 5603 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ (𝐴𝑋𝐵𝑋))
2826, 27syl6ib 254 . . 3 (𝑁 ∈ ℕ0 → (𝐴 𝐵 → (𝐴𝑋𝐵𝑋)))
2928pm4.71rd 566 . 2 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵)))
305adantr 484 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → = ((𝐹 ∘ ≤ ) ∘ 𝐹))
3130breqd 5069 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵))
32 brcog 5740 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
3332adantl 485 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
34 eqcom 2744 . . . . . . . . 9 (𝑥 = (𝐹𝐴) ↔ (𝐹𝐴) = 𝑥)
3512adantr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑊1-1-onto𝑋)
36 f1ocnv 6678 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
37 f1ofn 6667 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑊𝐹 Fn 𝑋)
3835, 36, 373syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹 Fn 𝑋)
39 simprl 771 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
40 fnbrfvb 6770 . . . . . . . . . 10 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4138, 39, 40syl2anc 587 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4234, 41bitr2id 287 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐹𝑥𝑥 = (𝐹𝐴)))
4342anbi1d 633 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4443exbidv 1929 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4533, 44bitrd 282 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
46 fvex 6735 . . . . . . 7 (𝐹𝐴) ∈ V
47 breq1 5061 . . . . . . 7 (𝑥 = (𝐹𝐴) → (𝑥(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
4846, 47ceqsexv 3460 . . . . . 6 (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵)
49 simprr 773 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
50 brcog 5740 . . . . . . . 8 (((𝐹𝐴) ∈ V ∧ 𝐵𝑋) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
5146, 49, 50sylancr 590 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
52 fvex 6735 . . . . . . . . 9 (𝐹𝐵) ∈ V
53 breq2 5062 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ((𝐹𝐴) ≤ 𝑥 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
5452, 53ceqsexv 3460 . . . . . . . 8 (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝐹𝐴) ≤ (𝐹𝐵))
55 eqcom 2744 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑥)
56 fnbrfvb 6770 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝐵𝑋) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5738, 49, 56syl2anc 587 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5855, 57syl5bb 286 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝐵𝐹𝑥))
59 vex 3417 . . . . . . . . . . . . 13 𝑥 ∈ V
60 brcnvg 5753 . . . . . . . . . . . . 13 ((𝐵𝑋𝑥 ∈ V) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6149, 59, 60sylancl 589 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6258, 61bitrd 282 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝑥𝐹𝐵))
6362anbi1d 633 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝑥𝐹𝐵 ∧ (𝐹𝐴) ≤ 𝑥)))
6463biancomd 467 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6564exbidv 1929 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6654, 65bitr3id 288 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐵) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6751, 66bitr4d 285 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6848, 67syl5bb 286 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6931, 45, 683bitrd 308 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7069pm5.32da 582 . . 3 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
71 df-3an 1091 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵)) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵)))
7270, 71bitr4di 292 . 2 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
7329, 72bitrd 282 1 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  Vcvv 3413  wss 3871  ifcif 4444   class class class wbr 5058   × cxp 5554  ccnv 5555  dom cdm 5556  ran crn 5557  cres 5558  ccom 5560  Rel wrel 5561   Fn wfn 6380  ontowfo 6383  1-1-ontowf1o 6384  cfv 6385  (class class class)co 7218  0cc0 10734  cle 10873  0cn0 12095  cz 12181  ..^cfzo 13243  Basecbs 16765  lecple 16814  ℤRHomczrh 20471  ℤ/nczn 20474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528  ax-cnex 10790  ax-resscn 10791  ax-1cn 10792  ax-icn 10793  ax-addcl 10794  ax-addrcl 10795  ax-mulcl 10796  ax-mulrcl 10797  ax-mulcom 10798  ax-addass 10799  ax-mulass 10800  ax-distr 10801  ax-i2m1 10802  ax-1ne0 10803  ax-1rid 10804  ax-rnegex 10805  ax-rrecex 10806  ax-cnre 10807  ax-pre-lttri 10808  ax-pre-lttrn 10809  ax-pre-ltadd 10810  ax-pre-mulgt0 10811  ax-pre-sup 10812  ax-addf 10813  ax-mulf 10814
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-pss 3890  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-tp 4551  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-br 5059  df-opab 5121  df-mpt 5141  df-tr 5167  df-id 5460  df-eprel 5465  df-po 5473  df-so 5474  df-fr 5514  df-we 5516  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-pred 6165  df-ord 6221  df-on 6222  df-lim 6223  df-suc 6224  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-riota 7175  df-ov 7221  df-oprab 7222  df-mpo 7223  df-om 7650  df-1st 7766  df-2nd 7767  df-tpos 7973  df-wrecs 8052  df-recs 8113  df-rdg 8151  df-1o 8207  df-er 8396  df-ec 8398  df-qs 8402  df-map 8515  df-en 8632  df-dom 8633  df-sdom 8634  df-fin 8635  df-sup 9063  df-inf 9064  df-pnf 10874  df-mnf 10875  df-xr 10876  df-ltxr 10877  df-le 10878  df-sub 11069  df-neg 11070  df-div 11495  df-nn 11836  df-2 11898  df-3 11899  df-4 11900  df-5 11901  df-6 11902  df-7 11903  df-8 11904  df-9 11905  df-n0 12096  df-z 12182  df-dec 12299  df-uz 12444  df-rp 12592  df-fz 13101  df-fzo 13244  df-fl 13372  df-mod 13448  df-seq 13580  df-dvds 15821  df-struct 16705  df-sets 16722  df-slot 16740  df-ndx 16750  df-base 16766  df-ress 16790  df-plusg 16820  df-mulr 16821  df-starv 16822  df-sca 16823  df-vsca 16824  df-ip 16825  df-tset 16826  df-ple 16827  df-ds 16829  df-unif 16830  df-0g 16951  df-imas 17018  df-qus 17019  df-mgm 18119  df-sgrp 18168  df-mnd 18179  df-mhm 18223  df-grp 18373  df-minusg 18374  df-sbg 18375  df-mulg 18494  df-subg 18545  df-nsg 18546  df-eqg 18547  df-ghm 18625  df-cmn 19177  df-abl 19178  df-mgp 19510  df-ur 19522  df-ring 19569  df-cring 19570  df-oppr 19646  df-dvdsr 19664  df-rnghom 19740  df-subrg 19803  df-lmod 19906  df-lss 19974  df-lsp 20014  df-sra 20214  df-rgmod 20215  df-lidl 20216  df-rsp 20217  df-2idl 20275  df-cnfld 20369  df-zring 20441  df-zrh 20475  df-zn 20478
This theorem is referenced by:  znleval2  20525
  Copyright terms: Public domain W3C validator