MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znleval Structured version   Visualization version   GIF version

Theorem znleval 21573
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
znleval (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))

Proof of Theorem znleval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
2 znle2.f . . . . . . 7 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
3 znle2.w . . . . . . 7 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4 znle2.l . . . . . . 7 = (le‘𝑌)
51, 2, 3, 4znle2 21572 . . . . . 6 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
6 relco 6126 . . . . . . . 8 Rel ((𝐹 ∘ ≤ ) ∘ 𝐹)
7 relssdmrn 6288 . . . . . . . 8 (Rel ((𝐹 ∘ ≤ ) ∘ 𝐹) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)))
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹))
9 dmcoss 5985 . . . . . . . . 9 dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ dom 𝐹
10 df-rn 5696 . . . . . . . . . 10 ran 𝐹 = dom 𝐹
11 znleval.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑌)
121, 11, 2, 3znf1o 21570 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
13 f1ofo 6855 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑊onto𝑋)
14 forn 6823 . . . . . . . . . . 11 (𝐹:𝑊onto𝑋 → ran 𝐹 = 𝑋)
1512, 13, 143syl 18 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋)
1610, 15eqtr3id 2791 . . . . . . . . 9 (𝑁 ∈ ℕ0 → dom 𝐹 = 𝑋)
179, 16sseqtrid 4026 . . . . . . . 8 (𝑁 ∈ ℕ0 → dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
18 rncoss 5986 . . . . . . . . 9 ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ ran (𝐹 ∘ ≤ )
19 rncoss 5986 . . . . . . . . . 10 ran (𝐹 ∘ ≤ ) ⊆ ran 𝐹
2019, 15sseqtrid 4026 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ran (𝐹 ∘ ≤ ) ⊆ 𝑋)
2118, 20sstrid 3995 . . . . . . . 8 (𝑁 ∈ ℕ0 → ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
22 xpss12 5700 . . . . . . . 8 ((dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋 ∧ ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋) → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
2317, 21, 22syl2anc 584 . . . . . . 7 (𝑁 ∈ ℕ0 → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
248, 23sstrid 3995 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (𝑋 × 𝑋))
255, 24eqsstrd 4018 . . . . 5 (𝑁 ∈ ℕ0 ⊆ (𝑋 × 𝑋))
2625ssbrd 5186 . . . 4 (𝑁 ∈ ℕ0 → (𝐴 𝐵𝐴(𝑋 × 𝑋)𝐵))
27 brxp 5734 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ (𝐴𝑋𝐵𝑋))
2826, 27imbitrdi 251 . . 3 (𝑁 ∈ ℕ0 → (𝐴 𝐵 → (𝐴𝑋𝐵𝑋)))
2928pm4.71rd 562 . 2 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵)))
305adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → = ((𝐹 ∘ ≤ ) ∘ 𝐹))
3130breqd 5154 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵))
32 brcog 5877 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
3332adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
34 eqcom 2744 . . . . . . . . 9 (𝑥 = (𝐹𝐴) ↔ (𝐹𝐴) = 𝑥)
3512adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑊1-1-onto𝑋)
36 f1ocnv 6860 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
37 f1ofn 6849 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑊𝐹 Fn 𝑋)
3835, 36, 373syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹 Fn 𝑋)
39 simprl 771 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
40 fnbrfvb 6959 . . . . . . . . . 10 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4138, 39, 40syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4234, 41bitr2id 284 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐹𝑥𝑥 = (𝐹𝐴)))
4342anbi1d 631 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4443exbidv 1921 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4533, 44bitrd 279 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
46 fvex 6919 . . . . . . 7 (𝐹𝐴) ∈ V
47 breq1 5146 . . . . . . 7 (𝑥 = (𝐹𝐴) → (𝑥(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
4846, 47ceqsexv 3532 . . . . . 6 (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵)
49 simprr 773 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
50 brcog 5877 . . . . . . . 8 (((𝐹𝐴) ∈ V ∧ 𝐵𝑋) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
5146, 49, 50sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
52 fvex 6919 . . . . . . . . 9 (𝐹𝐵) ∈ V
53 breq2 5147 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ((𝐹𝐴) ≤ 𝑥 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
5452, 53ceqsexv 3532 . . . . . . . 8 (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝐹𝐴) ≤ (𝐹𝐵))
55 eqcom 2744 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑥)
56 fnbrfvb 6959 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝐵𝑋) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5738, 49, 56syl2anc 584 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5855, 57bitrid 283 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝐵𝐹𝑥))
59 vex 3484 . . . . . . . . . . . . 13 𝑥 ∈ V
60 brcnvg 5890 . . . . . . . . . . . . 13 ((𝐵𝑋𝑥 ∈ V) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6149, 59, 60sylancl 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6258, 61bitrd 279 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝑥𝐹𝐵))
6362anbi1d 631 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝑥𝐹𝐵 ∧ (𝐹𝐴) ≤ 𝑥)))
6463biancomd 463 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6564exbidv 1921 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6654, 65bitr3id 285 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐵) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6751, 66bitr4d 282 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6848, 67bitrid 283 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6931, 45, 683bitrd 305 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7069pm5.32da 579 . . 3 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
71 df-3an 1089 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵)) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵)))
7270, 71bitr4di 289 . 2 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
7329, 72bitrd 279 1 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480  wss 3951  ifcif 4525   class class class wbr 5143   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  ccom 5689  Rel wrel 5690   Fn wfn 6556  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  cle 11296  0cn0 12526  cz 12613  ..^cfzo 13694  Basecbs 17247  lecple 17304  ℤRHomczrh 21510  ℤ/nczn 21513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-nsg 19142  df-eqg 19143  df-ghm 19231  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-2idl 21260  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-zn 21517
This theorem is referenced by:  znleval2  21574
  Copyright terms: Public domain W3C validator