MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znleval Structured version   Visualization version   GIF version

Theorem znleval 21471
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
znleval (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))

Proof of Theorem znleval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
2 znle2.f . . . . . . 7 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
3 znle2.w . . . . . . 7 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4 znle2.l . . . . . . 7 = (le‘𝑌)
51, 2, 3, 4znle2 21470 . . . . . 6 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
6 relco 6082 . . . . . . . 8 Rel ((𝐹 ∘ ≤ ) ∘ 𝐹)
7 relssdmrn 6244 . . . . . . . 8 (Rel ((𝐹 ∘ ≤ ) ∘ 𝐹) → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)))
86, 7ax-mp 5 . . . . . . 7 ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹))
9 dmcoss 5941 . . . . . . . . 9 dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ dom 𝐹
10 df-rn 5652 . . . . . . . . . 10 ran 𝐹 = dom 𝐹
11 znleval.x . . . . . . . . . . . 12 𝑋 = (Base‘𝑌)
121, 11, 2, 3znf1o 21468 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
13 f1ofo 6810 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑊onto𝑋)
14 forn 6778 . . . . . . . . . . 11 (𝐹:𝑊onto𝑋 → ran 𝐹 = 𝑋)
1512, 13, 143syl 18 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋)
1610, 15eqtr3id 2779 . . . . . . . . 9 (𝑁 ∈ ℕ0 → dom 𝐹 = 𝑋)
179, 16sseqtrid 3992 . . . . . . . 8 (𝑁 ∈ ℕ0 → dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
18 rncoss 5942 . . . . . . . . 9 ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ ran (𝐹 ∘ ≤ )
19 rncoss 5942 . . . . . . . . . 10 ran (𝐹 ∘ ≤ ) ⊆ ran 𝐹
2019, 15sseqtrid 3992 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ran (𝐹 ∘ ≤ ) ⊆ 𝑋)
2118, 20sstrid 3961 . . . . . . . 8 (𝑁 ∈ ℕ0 → ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋)
22 xpss12 5656 . . . . . . . 8 ((dom ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋 ∧ ran ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ 𝑋) → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
2317, 21, 22syl2anc 584 . . . . . . 7 (𝑁 ∈ ℕ0 → (dom ((𝐹 ∘ ≤ ) ∘ 𝐹) × ran ((𝐹 ∘ ≤ ) ∘ 𝐹)) ⊆ (𝑋 × 𝑋))
248, 23sstrid 3961 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝐹 ∘ ≤ ) ∘ 𝐹) ⊆ (𝑋 × 𝑋))
255, 24eqsstrd 3984 . . . . 5 (𝑁 ∈ ℕ0 ⊆ (𝑋 × 𝑋))
2625ssbrd 5153 . . . 4 (𝑁 ∈ ℕ0 → (𝐴 𝐵𝐴(𝑋 × 𝑋)𝐵))
27 brxp 5690 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ (𝐴𝑋𝐵𝑋))
2826, 27imbitrdi 251 . . 3 (𝑁 ∈ ℕ0 → (𝐴 𝐵 → (𝐴𝑋𝐵𝑋)))
2928pm4.71rd 562 . 2 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵)))
305adantr 480 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → = ((𝐹 ∘ ≤ ) ∘ 𝐹))
3130breqd 5121 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵))
32 brcog 5833 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
3332adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵)))
34 eqcom 2737 . . . . . . . . 9 (𝑥 = (𝐹𝐴) ↔ (𝐹𝐴) = 𝑥)
3512adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹:𝑊1-1-onto𝑋)
36 f1ocnv 6815 . . . . . . . . . . 11 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
37 f1ofn 6804 . . . . . . . . . . 11 (𝐹:𝑋1-1-onto𝑊𝐹 Fn 𝑋)
3835, 36, 373syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐹 Fn 𝑋)
39 simprl 770 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
40 fnbrfvb 6914 . . . . . . . . . 10 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4138, 39, 40syl2anc 584 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) = 𝑥𝐴𝐹𝑥))
4234, 41bitr2id 284 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐹𝑥𝑥 = (𝐹𝐴)))
4342anbi1d 631 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4443exbidv 1921 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝐴𝐹𝑥𝑥(𝐹 ∘ ≤ )𝐵) ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
4533, 44bitrd 279 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴((𝐹 ∘ ≤ ) ∘ 𝐹)𝐵 ↔ ∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵)))
46 fvex 6874 . . . . . . 7 (𝐹𝐴) ∈ V
47 breq1 5113 . . . . . . 7 (𝑥 = (𝐹𝐴) → (𝑥(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵))
4846, 47ceqsexv 3501 . . . . . 6 (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴)(𝐹 ∘ ≤ )𝐵)
49 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
50 brcog 5833 . . . . . . . 8 (((𝐹𝐴) ∈ V ∧ 𝐵𝑋) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
5146, 49, 50sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
52 fvex 6874 . . . . . . . . 9 (𝐹𝐵) ∈ V
53 breq2 5114 . . . . . . . . 9 (𝑥 = (𝐹𝐵) → ((𝐹𝐴) ≤ 𝑥 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
5452, 53ceqsexv 3501 . . . . . . . 8 (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝐹𝐴) ≤ (𝐹𝐵))
55 eqcom 2737 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑥)
56 fnbrfvb 6914 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝐵𝑋) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5738, 49, 56syl2anc 584 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
5855, 57bitrid 283 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝐵𝐹𝑥))
59 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
60 brcnvg 5846 . . . . . . . . . . . . 13 ((𝐵𝑋𝑥 ∈ V) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6149, 59, 60sylancl 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝐹𝑥𝑥𝐹𝐵))
6258, 61bitrd 279 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝑥 = (𝐹𝐵) ↔ 𝑥𝐹𝐵))
6362anbi1d 631 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ (𝑥𝐹𝐵 ∧ (𝐹𝐴) ≤ 𝑥)))
6463biancomd 463 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6564exbidv 1921 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐵) ∧ (𝐹𝐴) ≤ 𝑥) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6654, 65bitr3id 285 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴) ≤ (𝐹𝐵) ↔ ∃𝑥((𝐹𝐴) ≤ 𝑥𝑥𝐹𝐵)))
6751, 66bitr4d 282 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)(𝐹 ∘ ≤ )𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6848, 67bitrid 283 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (∃𝑥(𝑥 = (𝐹𝐴) ∧ 𝑥(𝐹 ∘ ≤ )𝐵) ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
6931, 45, 683bitrd 305 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
7069pm5.32da 579 . . 3 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
71 df-3an 1088 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵)) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵)))
7270, 71bitr4di 289 . 2 (𝑁 ∈ ℕ0 → (((𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
7329, 72bitrd 279 1 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  wss 3917  ifcif 4491   class class class wbr 5110   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  ccom 5645  Rel wrel 5646   Fn wfn 6509  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  cle 11216  0cn0 12449  cz 12536  ..^cfzo 13622  Basecbs 17186  lecple 17234  ℤRHomczrh 21416  ℤ/nczn 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423
This theorem is referenced by:  znleval2  21472
  Copyright terms: Public domain W3C validator