MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddcom Structured version   Visualization version   GIF version

Theorem naddcom 8597
Description: Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))

Proof of Theorem naddcom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
2 oveq2 7354 . . 3 (𝑎 = 𝑐 → (𝑏 +no 𝑎) = (𝑏 +no 𝑐))
31, 2eqeq12d 2747 . 2 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = (𝑏 +no 𝑎) ↔ (𝑐 +no 𝑏) = (𝑏 +no 𝑐)))
4 oveq2 7354 . . 3 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
5 oveq1 7353 . . 3 (𝑏 = 𝑑 → (𝑏 +no 𝑐) = (𝑑 +no 𝑐))
64, 5eqeq12d 2747 . 2 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = (𝑏 +no 𝑐) ↔ (𝑐 +no 𝑑) = (𝑑 +no 𝑐)))
7 oveq1 7353 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
8 oveq2 7354 . . 3 (𝑎 = 𝑐 → (𝑑 +no 𝑎) = (𝑑 +no 𝑐))
97, 8eqeq12d 2747 . 2 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = (𝑑 +no 𝑎) ↔ (𝑐 +no 𝑑) = (𝑑 +no 𝑐)))
10 oveq1 7353 . . 3 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
11 oveq2 7354 . . 3 (𝑎 = 𝐴 → (𝑏 +no 𝑎) = (𝑏 +no 𝐴))
1210, 11eqeq12d 2747 . 2 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = (𝑏 +no 𝑎) ↔ (𝐴 +no 𝑏) = (𝑏 +no 𝐴)))
13 oveq2 7354 . . 3 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
14 oveq1 7353 . . 3 (𝑏 = 𝐵 → (𝑏 +no 𝐴) = (𝐵 +no 𝐴))
1513, 14eqeq12d 2747 . 2 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = (𝑏 +no 𝐴) ↔ (𝐴 +no 𝐵) = (𝐵 +no 𝐴)))
16 eleq1 2819 . . . . . . . . . . . 12 ((𝑎 +no 𝑑) = (𝑑 +no 𝑎) → ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥))
1716ralimi 3069 . . . . . . . . . . 11 (∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎) → ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥))
18 ralbi 3087 . . . . . . . . . . 11 (∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
1917, 18syl 17 . . . . . . . . . 10 (∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
20193ad2ant3 1135 . . . . . . . . 9 ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
2120adantl 481 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
22 eleq1 2819 . . . . . . . . . . . 12 ((𝑐 +no 𝑏) = (𝑏 +no 𝑐) → ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥))
2322ralimi 3069 . . . . . . . . . . 11 (∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) → ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥))
24 ralbi 3087 . . . . . . . . . . 11 (∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2523, 24syl 17 . . . . . . . . . 10 (∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
26253ad2ant2 1134 . . . . . . . . 9 ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2726adantl 481 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2821, 27anbi12d 632 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → ((∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥) ↔ (∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥)))
2928biancomd 463 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → ((∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥) ↔ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)))
3029rabbidv 3402 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3130inteqd 4900 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
32 naddov2 8594 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)})
3332adantr 480 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)})
34 naddov2 8594 . . . . . 6 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3534ancoms 458 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3635adantr 480 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3731, 33, 363eqtr4d 2776 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑎 +no 𝑏) = (𝑏 +no 𝑎))
3837ex 412 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (𝑎 +no 𝑏) = (𝑏 +no 𝑎)))
393, 6, 9, 12, 15, 38on2ind 8584 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395   cint 4895  Oncon0 6306  (class class class)co 7346   +no cnadd 8580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-nadd 8581
This theorem is referenced by:  naddlid  8599  naddel2  8603  naddss2  8605  naddword2  8607  nadd32  8612  nadd42  8614  addsproplem2  27913  addsbday  27960  nadd2rabex  43427  nadd1rabtr  43429  nadd1rabex  43431  naddwordnexlem4  43442
  Copyright terms: Public domain W3C validator