MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddcom Structured version   Visualization version   GIF version

Theorem naddcom 8646
Description: Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))

Proof of Theorem naddcom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
2 oveq2 7395 . . 3 (𝑎 = 𝑐 → (𝑏 +no 𝑎) = (𝑏 +no 𝑐))
31, 2eqeq12d 2745 . 2 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = (𝑏 +no 𝑎) ↔ (𝑐 +no 𝑏) = (𝑏 +no 𝑐)))
4 oveq2 7395 . . 3 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
5 oveq1 7394 . . 3 (𝑏 = 𝑑 → (𝑏 +no 𝑐) = (𝑑 +no 𝑐))
64, 5eqeq12d 2745 . 2 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = (𝑏 +no 𝑐) ↔ (𝑐 +no 𝑑) = (𝑑 +no 𝑐)))
7 oveq1 7394 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
8 oveq2 7395 . . 3 (𝑎 = 𝑐 → (𝑑 +no 𝑎) = (𝑑 +no 𝑐))
97, 8eqeq12d 2745 . 2 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = (𝑑 +no 𝑎) ↔ (𝑐 +no 𝑑) = (𝑑 +no 𝑐)))
10 oveq1 7394 . . 3 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
11 oveq2 7395 . . 3 (𝑎 = 𝐴 → (𝑏 +no 𝑎) = (𝑏 +no 𝐴))
1210, 11eqeq12d 2745 . 2 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = (𝑏 +no 𝑎) ↔ (𝐴 +no 𝑏) = (𝑏 +no 𝐴)))
13 oveq2 7395 . . 3 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
14 oveq1 7394 . . 3 (𝑏 = 𝐵 → (𝑏 +no 𝐴) = (𝐵 +no 𝐴))
1513, 14eqeq12d 2745 . 2 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = (𝑏 +no 𝐴) ↔ (𝐴 +no 𝐵) = (𝐵 +no 𝐴)))
16 eleq1 2816 . . . . . . . . . . . 12 ((𝑎 +no 𝑑) = (𝑑 +no 𝑎) → ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥))
1716ralimi 3066 . . . . . . . . . . 11 (∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎) → ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥))
18 ralbi 3085 . . . . . . . . . . 11 (∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
1917, 18syl 17 . . . . . . . . . 10 (∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
20193ad2ant3 1135 . . . . . . . . 9 ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
2120adantl 481 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
22 eleq1 2816 . . . . . . . . . . . 12 ((𝑐 +no 𝑏) = (𝑏 +no 𝑐) → ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥))
2322ralimi 3066 . . . . . . . . . . 11 (∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) → ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥))
24 ralbi 3085 . . . . . . . . . . 11 (∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2523, 24syl 17 . . . . . . . . . 10 (∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
26253ad2ant2 1134 . . . . . . . . 9 ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2726adantl 481 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2821, 27anbi12d 632 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → ((∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥) ↔ (∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥)))
2928biancomd 463 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → ((∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥) ↔ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)))
3029rabbidv 3413 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3130inteqd 4915 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
32 naddov2 8643 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)})
3332adantr 480 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)})
34 naddov2 8643 . . . . . 6 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3534ancoms 458 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3635adantr 480 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3731, 33, 363eqtr4d 2774 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑎 +no 𝑏) = (𝑏 +no 𝑎))
3837ex 412 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (𝑎 +no 𝑏) = (𝑏 +no 𝑎)))
393, 6, 9, 12, 15, 38on2ind 8633 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405   cint 4910  Oncon0 6332  (class class class)co 7387   +no cnadd 8629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-nadd 8630
This theorem is referenced by:  naddlid  8648  naddel2  8652  naddss2  8654  naddword2  8656  nadd32  8661  nadd42  8663  addsproplem2  27877  addsbday  27924  nadd2rabex  43375  nadd1rabtr  43377  nadd1rabex  43379  naddwordnexlem4  43390
  Copyright terms: Public domain W3C validator