Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcom Structured version   Visualization version   GIF version

Theorem naddcom 33835
Description: Natural addition commutes. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))

Proof of Theorem naddcom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
2 oveq2 7283 . . 3 (𝑎 = 𝑐 → (𝑏 +no 𝑎) = (𝑏 +no 𝑐))
31, 2eqeq12d 2754 . 2 (𝑎 = 𝑐 → ((𝑎 +no 𝑏) = (𝑏 +no 𝑎) ↔ (𝑐 +no 𝑏) = (𝑏 +no 𝑐)))
4 oveq2 7283 . . 3 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
5 oveq1 7282 . . 3 (𝑏 = 𝑑 → (𝑏 +no 𝑐) = (𝑑 +no 𝑐))
64, 5eqeq12d 2754 . 2 (𝑏 = 𝑑 → ((𝑐 +no 𝑏) = (𝑏 +no 𝑐) ↔ (𝑐 +no 𝑑) = (𝑑 +no 𝑐)))
7 oveq1 7282 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
8 oveq2 7283 . . 3 (𝑎 = 𝑐 → (𝑑 +no 𝑎) = (𝑑 +no 𝑐))
97, 8eqeq12d 2754 . 2 (𝑎 = 𝑐 → ((𝑎 +no 𝑑) = (𝑑 +no 𝑎) ↔ (𝑐 +no 𝑑) = (𝑑 +no 𝑐)))
10 oveq1 7282 . . 3 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
11 oveq2 7283 . . 3 (𝑎 = 𝐴 → (𝑏 +no 𝑎) = (𝑏 +no 𝐴))
1210, 11eqeq12d 2754 . 2 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) = (𝑏 +no 𝑎) ↔ (𝐴 +no 𝑏) = (𝑏 +no 𝐴)))
13 oveq2 7283 . . 3 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
14 oveq1 7282 . . 3 (𝑏 = 𝐵 → (𝑏 +no 𝐴) = (𝐵 +no 𝐴))
1513, 14eqeq12d 2754 . 2 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) = (𝑏 +no 𝐴) ↔ (𝐴 +no 𝐵) = (𝐵 +no 𝐴)))
16 eleq1 2826 . . . . . . . . . . . 12 ((𝑎 +no 𝑑) = (𝑑 +no 𝑎) → ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥))
1716ralimi 3087 . . . . . . . . . . 11 (∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎) → ∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥))
18 ralbi 3089 . . . . . . . . . . 11 (∀𝑑𝑏 ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑑 +no 𝑎) ∈ 𝑥) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
1917, 18syl 17 . . . . . . . . . 10 (∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
20193ad2ant3 1134 . . . . . . . . 9 ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
2120adantl 482 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥))
22 eleq1 2826 . . . . . . . . . . . 12 ((𝑐 +no 𝑏) = (𝑏 +no 𝑐) → ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥))
2322ralimi 3087 . . . . . . . . . . 11 (∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) → ∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥))
24 ralbi 3089 . . . . . . . . . . 11 (∀𝑐𝑎 ((𝑐 +no 𝑏) ∈ 𝑥 ↔ (𝑏 +no 𝑐) ∈ 𝑥) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2523, 24syl 17 . . . . . . . . . 10 (∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
26253ad2ant2 1133 . . . . . . . . 9 ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2726adantl 482 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥 ↔ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥))
2821, 27anbi12d 631 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → ((∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥) ↔ (∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥)))
2928biancomd 464 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → ((∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥) ↔ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)))
3029rabbidv 3414 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3130inteqd 4884 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
32 naddov2 33834 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)})
3332adantr 481 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑎 +no 𝑏) = {𝑥 ∈ On ∣ (∀𝑑𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) ∈ 𝑥)})
34 naddov2 33834 . . . . . 6 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3534ancoms 459 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3635adantr 481 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑏 +no 𝑎) = {𝑥 ∈ On ∣ (∀𝑐𝑎 (𝑏 +no 𝑐) ∈ 𝑥 ∧ ∀𝑑𝑏 (𝑑 +no 𝑎) ∈ 𝑥)})
3731, 33, 363eqtr4d 2788 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎))) → (𝑎 +no 𝑏) = (𝑏 +no 𝑎))
3837ex 413 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 (𝑐 +no 𝑑) = (𝑑 +no 𝑐) ∧ ∀𝑐𝑎 (𝑐 +no 𝑏) = (𝑏 +no 𝑐) ∧ ∀𝑑𝑏 (𝑎 +no 𝑑) = (𝑑 +no 𝑎)) → (𝑎 +no 𝑏) = (𝑏 +no 𝑎)))
393, 6, 9, 12, 15, 38on2ind 33828 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = (𝐵 +no 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068   cint 4879  Oncon0 6266  (class class class)co 7275   +no cnadd 33824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-frecs 8097  df-nadd 33825
This theorem is referenced by:  naddel2  33840  naddss2  33842
  Copyright terms: Public domain W3C validator