MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletri3 Structured version   Visualization version   GIF version

Theorem xrletri3 12191
Description: Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
xrletri3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem xrletri3
StepHypRef Expression
1 xrlttri3 12182 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
2 ancom 452 . . 3 ((¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
31, 2syl6bbr 278 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
4 xrlenlt 10306 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 xrlenlt 10306 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
65ancoms 455 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
74, 6anbi12d 610 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
83, 7bitr4d 271 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145   class class class wbr 4787  *cxr 10276   < clt 10277  cle 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-pre-lttri 10213  ax-pre-lttrn 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283
This theorem is referenced by:  xrletrid  12192  xrmaxeq  12216  xrmineq  12217  xleadd1a  12289  xsubge0  12297  xlemul1a  12324  supxrre  12363  ixxub  12402  hashle00  13391  limsupval2  14420  pc2dvds  15791  pc11  15792  pcadd2  15802  letsr  17436  psmetsym  22336  isxmet2d  22353  xmetsym  22373  xmetgt0  22384  prdsxmetlem  22394  xblss2  22428  nmo0  22760  nmoid  22767  xrsxmet  22833  ovolssnul  23476  ovolctb  23479  ovolunnul  23489  ovoliunnul  23496  ovolicc  23512  ovolre  23514  voliunlem3  23541  volsup  23545  uniioovol  23568  uniiccvol  23569  vitalilem5  23601  ismbfd  23628  itg2itg1  23724  itg2seq  23730  itg2eqa  23733  itg2mulc  23735  itg2split  23737  itg2mono  23741  deg1add  24084  deg1mul2  24095  deg1tm  24099  umgrislfupgrlem  26239  upgr2pthnlp  26864  xeqlelt  29879  xrstos  30020  xrge0omnd  30052  metideq  30277  metider  30278  esumpad2  30459  esumrnmpt2  30471  measle0  30612  inelcarsg  30714  carsggect  30721  carsgclctun  30724  omsmeas  30726  ovoliunnfl  33785  volsupnfl  33788  iccintsng  40269  liminfval2  40519
  Copyright terms: Public domain W3C validator