![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrletri3 | Structured version Visualization version GIF version |
Description: Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.) |
Ref | Expression |
---|---|
xrletri3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri3 12182 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
2 | ancom 452 | . . 3 ⊢ ((¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵) ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | |
3 | 1, 2 | syl6bbr 278 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
4 | xrlenlt 10306 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | xrlenlt 10306 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
6 | 5 | ancoms 455 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
7 | 4, 6 | anbi12d 610 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
8 | 3, 7 | bitr4d 271 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ℝ*cxr 10276 < clt 10277 ≤ cle 10278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-cnex 10195 ax-resscn 10196 ax-pre-lttri 10213 ax-pre-lttrn 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-er 7897 df-en 8111 df-dom 8112 df-sdom 8113 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 |
This theorem is referenced by: xrletrid 12192 xrmaxeq 12216 xrmineq 12217 xleadd1a 12289 xsubge0 12297 xlemul1a 12324 supxrre 12363 ixxub 12402 hashle00 13391 limsupval2 14420 pc2dvds 15791 pc11 15792 pcadd2 15802 letsr 17436 psmetsym 22336 isxmet2d 22353 xmetsym 22373 xmetgt0 22384 prdsxmetlem 22394 xblss2 22428 nmo0 22760 nmoid 22767 xrsxmet 22833 ovolssnul 23476 ovolctb 23479 ovolunnul 23489 ovoliunnul 23496 ovolicc 23512 ovolre 23514 voliunlem3 23541 volsup 23545 uniioovol 23568 uniiccvol 23569 vitalilem5 23601 ismbfd 23628 itg2itg1 23724 itg2seq 23730 itg2eqa 23733 itg2mulc 23735 itg2split 23737 itg2mono 23741 deg1add 24084 deg1mul2 24095 deg1tm 24099 umgrislfupgrlem 26239 upgr2pthnlp 26864 xeqlelt 29879 xrstos 30020 xrge0omnd 30052 metideq 30277 metider 30278 esumpad2 30459 esumrnmpt2 30471 measle0 30612 inelcarsg 30714 carsggect 30721 carsgclctun 30724 omsmeas 30726 ovoliunnfl 33785 volsupnfl 33788 iccintsng 40269 liminfval2 40519 |
Copyright terms: Public domain | W3C validator |