MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Structured version   Visualization version   GIF version

Theorem restopn2 23085
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 4887 . . . . 5 (𝐵 ∈ (𝐽t 𝐴) → 𝐵 (𝐽t 𝐴))
2 elssuni 4887 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
3 eqid 2730 . . . . . . . 8 𝐽 = 𝐽
43restuni 23070 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
52, 4sylan2 593 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 = (𝐽t 𝐴))
65sseq2d 3965 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵𝐴𝐵 (𝐽t 𝐴)))
71, 6imbitrrid 246 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) → 𝐵𝐴))
87pm4.71rd 562 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
9 simpll 766 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐽 ∈ Top)
10 simplr 768 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐽)
11 ssidd 3956 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐴)
12 simpr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐵𝐴)
13 restopnb 23083 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ (𝐴𝐽𝐴𝐴𝐵𝐴)) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
149, 10, 10, 11, 12, 13syl23anc 1379 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
1514pm5.32da 579 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐵𝐴𝐵𝐽) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
168, 15bitr4d 282 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵𝐽)))
1716biancomd 463 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wss 3900   cuni 4857  (class class class)co 7341  t crest 17316  Topctop 22801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-en 8865  df-fin 8868  df-fi 9290  df-rest 17318  df-topgen 17339  df-top 22802  df-topon 22819  df-bases 22854
This theorem is referenced by:  restdis  23086  perfopn  23093  llyrest  23393  nllyrest  23394  llyidm  23396  nllyidm  23397  lly1stc  23404  qtoprest  23625  xrtgioo  24715  lhop  25941  efopnlem2  26586  cvmopnlem  35290  cvmlift2lem9a  35315  cvmlift2lem9  35323  cvmlift3lem6  35336  restopn3  45167  restopnssd  45168  iscnrm3rlem6  48955
  Copyright terms: Public domain W3C validator