MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Structured version   Visualization version   GIF version

Theorem restopn2 21782
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 4830 . . . . 5 (𝐵 ∈ (𝐽t 𝐴) → 𝐵 (𝐽t 𝐴))
2 elssuni 4830 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
3 eqid 2798 . . . . . . . 8 𝐽 = 𝐽
43restuni 21767 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
52, 4sylan2 595 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 = (𝐽t 𝐴))
65sseq2d 3947 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵𝐴𝐵 (𝐽t 𝐴)))
71, 6syl5ibr 249 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) → 𝐵𝐴))
87pm4.71rd 566 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
9 simpll 766 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐽 ∈ Top)
10 simplr 768 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐽)
11 ssidd 3938 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐴)
12 simpr 488 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐵𝐴)
13 restopnb 21780 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ (𝐴𝐽𝐴𝐴𝐵𝐴)) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
149, 10, 10, 11, 12, 13syl23anc 1374 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
1514pm5.32da 582 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐵𝐴𝐵𝐽) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
168, 15bitr4d 285 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵𝐽)))
1716biancomd 467 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881   cuni 4800  (class class class)co 7135  t crest 16686  Topctop 21498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551
This theorem is referenced by:  restdis  21783  perfopn  21790  llyrest  22090  nllyrest  22091  llyidm  22093  nllyidm  22094  lly1stc  22101  qtoprest  22322  xrtgioo  23411  lhop  24619  efopnlem2  25248  cvmopnlem  32638  cvmlift2lem9a  32663  cvmlift2lem9  32671  cvmlift3lem6  32684
  Copyright terms: Public domain W3C validator