MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Structured version   Visualization version   GIF version

Theorem restopn2 23113
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 4913 . . . . 5 (𝐵 ∈ (𝐽t 𝐴) → 𝐵 (𝐽t 𝐴))
2 elssuni 4913 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
3 eqid 2735 . . . . . . . 8 𝐽 = 𝐽
43restuni 23098 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
52, 4sylan2 593 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 = (𝐽t 𝐴))
65sseq2d 3991 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵𝐴𝐵 (𝐽t 𝐴)))
71, 6imbitrrid 246 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) → 𝐵𝐴))
87pm4.71rd 562 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
9 simpll 766 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐽 ∈ Top)
10 simplr 768 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐽)
11 ssidd 3982 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐴)
12 simpr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐵𝐴)
13 restopnb 23111 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ (𝐴𝐽𝐴𝐴𝐵𝐴)) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
149, 10, 10, 11, 12, 13syl23anc 1379 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
1514pm5.32da 579 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐵𝐴𝐵𝐽) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
168, 15bitr4d 282 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵𝐽)))
1716biancomd 463 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wss 3926   cuni 4883  (class class class)co 7403  t crest 17432  Topctop 22829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-en 8958  df-fin 8961  df-fi 9421  df-rest 17434  df-topgen 17455  df-top 22830  df-topon 22847  df-bases 22882
This theorem is referenced by:  restdis  23114  perfopn  23121  llyrest  23421  nllyrest  23422  llyidm  23424  nllyidm  23425  lly1stc  23432  qtoprest  23653  xrtgioo  24744  lhop  25971  efopnlem2  26616  cvmopnlem  35246  cvmlift2lem9a  35271  cvmlift2lem9  35279  cvmlift3lem6  35292  restopn3  45123  restopnssd  45124  iscnrm3rlem6  48867
  Copyright terms: Public domain W3C validator