| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restopn2 | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| Ref | Expression |
|---|---|
| restopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4887 | . . . . 5 ⊢ (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
| 2 | elssuni 4887 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
| 3 | eqid 2730 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | restuni 23070 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 5 | 2, 4 | sylan2 593 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 6 | 5 | sseq2d 3965 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴))) |
| 7 | 1, 6 | imbitrrid 246 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ 𝐴)) |
| 8 | 7 | pm4.71rd 562 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
| 9 | simpll 766 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) | |
| 10 | simplr 768 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝐽) | |
| 11 | ssidd 3956 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝐴) | |
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 13 | restopnb 23083 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ (𝐴 ∈ 𝐽 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴)) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
| 14 | 9, 10, 10, 11, 12, 13 | syl23anc 1379 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
| 15 | 14 | pm5.32da 579 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
| 16 | 8, 15 | bitr4d 282 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽))) |
| 17 | 16 | biancomd 463 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ∪ cuni 4857 (class class class)co 7341 ↾t crest 17316 Topctop 22801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17318 df-topgen 17339 df-top 22802 df-topon 22819 df-bases 22854 |
| This theorem is referenced by: restdis 23086 perfopn 23093 llyrest 23393 nllyrest 23394 llyidm 23396 nllyidm 23397 lly1stc 23404 qtoprest 23625 xrtgioo 24715 lhop 25941 efopnlem2 26586 cvmopnlem 35290 cvmlift2lem9a 35315 cvmlift2lem9 35323 cvmlift3lem6 35336 restopn3 45167 restopnssd 45168 iscnrm3rlem6 48955 |
| Copyright terms: Public domain | W3C validator |