MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Structured version   Visualization version   GIF version

Theorem restopn2 23102
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 4891 . . . . 5 (𝐵 ∈ (𝐽t 𝐴) → 𝐵 (𝐽t 𝐴))
2 elssuni 4891 . . . . . . 7 (𝐴𝐽𝐴 𝐽)
3 eqid 2733 . . . . . . . 8 𝐽 = 𝐽
43restuni 23087 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 = (𝐽t 𝐴))
52, 4sylan2 593 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴 = (𝐽t 𝐴))
65sseq2d 3964 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵𝐴𝐵 (𝐽t 𝐴)))
71, 6imbitrrid 246 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) → 𝐵𝐴))
87pm4.71rd 562 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
9 simpll 766 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐽 ∈ Top)
10 simplr 768 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐽)
11 ssidd 3955 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐴𝐴)
12 simpr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → 𝐵𝐴)
13 restopnb 23100 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ (𝐴𝐽𝐴𝐴𝐵𝐴)) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
149, 10, 10, 11, 12, 13syl23anc 1379 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝐽) ∧ 𝐵𝐴) → (𝐵𝐽𝐵 ∈ (𝐽t 𝐴)))
1514pm5.32da 579 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐵𝐴𝐵𝐽) ↔ (𝐵𝐴𝐵 ∈ (𝐽t 𝐴))))
168, 15bitr4d 282 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐴𝐵𝐽)))
1716biancomd 463 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3899   cuni 4860  (class class class)co 7355  t crest 17334  Topctop 22818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-en 8879  df-fin 8882  df-fi 9305  df-rest 17336  df-topgen 17357  df-top 22819  df-topon 22836  df-bases 22871
This theorem is referenced by:  restdis  23103  perfopn  23110  llyrest  23410  nllyrest  23411  llyidm  23413  nllyidm  23414  lly1stc  23421  qtoprest  23642  xrtgioo  24732  lhop  25958  efopnlem2  26603  cvmopnlem  35333  cvmlift2lem9a  35358  cvmlift2lem9  35366  cvmlift3lem6  35379  restopn3  45262  restopnssd  45263  iscnrm3rlem6  49059
  Copyright terms: Public domain W3C validator