![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restopn2 | Structured version Visualization version GIF version |
Description: If 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
restopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4961 | . . . . 5 ⊢ (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
2 | elssuni 4961 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽) | |
3 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | restuni 23191 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
5 | 2, 4 | sylan2 592 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
6 | 5 | sseq2d 4041 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ ∪ (𝐽 ↾t 𝐴))) |
7 | 1, 6 | imbitrrid 246 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) → 𝐵 ⊆ 𝐴)) |
8 | 7 | pm4.71rd 562 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
9 | simpll 766 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐽 ∈ Top) | |
10 | simplr 768 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝐽) | |
11 | ssidd 4032 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ⊆ 𝐴) | |
12 | simpr 484 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
13 | restopnb 23204 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ (𝐴 ∈ 𝐽 ∧ 𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐴)) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) | |
14 | 9, 10, 10, 11, 12, 13 | syl23anc 1377 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝐽 ↔ 𝐵 ∈ (𝐽 ↾t 𝐴))) |
15 | 14 | pm5.32da 578 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ (𝐽 ↾t 𝐴)))) |
16 | 8, 15 | bitr4d 282 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ 𝐽))) |
17 | 16 | biancomd 463 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐵 ∈ (𝐽 ↾t 𝐴) ↔ (𝐵 ∈ 𝐽 ∧ 𝐵 ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 (class class class)co 7448 ↾t crest 17480 Topctop 22920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-en 9004 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 |
This theorem is referenced by: restdis 23207 perfopn 23214 llyrest 23514 nllyrest 23515 llyidm 23517 nllyidm 23518 lly1stc 23525 qtoprest 23746 xrtgioo 24847 lhop 26075 efopnlem2 26717 cvmopnlem 35246 cvmlift2lem9a 35271 cvmlift2lem9 35279 cvmlift3lem6 35292 restopn3 45056 restopnssd 45057 iscnrm3rlem6 48625 |
Copyright terms: Public domain | W3C validator |