Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulsuble0b | Structured version Visualization version GIF version |
Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.) |
Ref | Expression |
---|---|
mulsuble0b | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 11283 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
2 | 1 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
3 | resubcl 11283 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
4 | 3 | ancoms 459 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
5 | 4 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
6 | mulle0b 11844 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐶 − 𝐵) ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) | |
7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) |
8 | suble0 11487 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | |
9 | 8 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
10 | subge0 11486 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) | |
11 | 10 | ancoms 459 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
12 | 11 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
13 | 9, 12 | anbi12d 631 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
14 | subge0 11486 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
15 | 14 | 3adant3 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
16 | suble0 11487 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) | |
17 | 16 | ancoms 459 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
18 | 17 | 3adant1 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
19 | 15, 18 | anbi12d 631 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐵))) |
20 | 19 | biancomd 464 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
21 | 13, 20 | orbi12d 916 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)) ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
22 | 7, 21 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∈ wcel 2110 class class class wbr 5079 (class class class)co 7269 ℝcr 10869 0cc0 10870 · cmul 10875 ≤ cle 11009 − cmin 11203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 |
This theorem is referenced by: brbtwn2 27269 |
Copyright terms: Public domain | W3C validator |