| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsuble0b | Structured version Visualization version GIF version | ||
| Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.) |
| Ref | Expression |
|---|---|
| mulsuble0b | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl 11425 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| 3 | resubcl 11425 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 6 | mulle0b 11993 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐶 − 𝐵) ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) | |
| 7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) |
| 8 | suble0 11631 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | |
| 9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
| 10 | subge0 11630 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) | |
| 11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
| 13 | 9, 12 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
| 14 | subge0 11630 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
| 15 | 14 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
| 16 | suble0 11631 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) | |
| 17 | 16 | ancoms 458 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
| 18 | 17 | 3adant1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
| 19 | 15, 18 | anbi12d 632 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐵))) |
| 20 | 19 | biancomd 463 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 21 | 13, 20 | orbi12d 918 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)) ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
| 22 | 7, 21 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 · cmul 11011 ≤ cle 11147 − cmin 11344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 |
| This theorem is referenced by: brbtwn2 28883 |
| Copyright terms: Public domain | W3C validator |