![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulsuble0b | Structured version Visualization version GIF version |
Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.) |
Ref | Expression |
---|---|
mulsuble0b | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 11571 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
2 | 1 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
3 | resubcl 11571 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
5 | 4 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
6 | mulle0b 12137 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐶 − 𝐵) ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) | |
7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) |
8 | suble0 11775 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | |
9 | 8 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
10 | subge0 11774 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) | |
11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
12 | 11 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
13 | 9, 12 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
14 | subge0 11774 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
15 | 14 | 3adant3 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
16 | suble0 11775 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) | |
17 | 16 | ancoms 458 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
18 | 17 | 3adant1 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
19 | 15, 18 | anbi12d 632 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐵))) |
20 | 19 | biancomd 463 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
21 | 13, 20 | orbi12d 918 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)) ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
22 | 7, 21 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 · cmul 11158 ≤ cle 11294 − cmin 11490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: brbtwn2 28935 |
Copyright terms: Public domain | W3C validator |