Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulsuble0b | Structured version Visualization version GIF version |
Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.) |
Ref | Expression |
---|---|
mulsuble0b | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubcl 11285 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
2 | 1 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
3 | resubcl 11285 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
4 | 3 | ancoms 459 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
5 | 4 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
6 | mulle0b 11846 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐶 − 𝐵) ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) | |
7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) |
8 | suble0 11489 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | |
9 | 8 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
10 | subge0 11488 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) | |
11 | 10 | ancoms 459 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
12 | 11 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
13 | 9, 12 | anbi12d 631 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
14 | subge0 11488 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
15 | 14 | 3adant3 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
16 | suble0 11489 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) | |
17 | 16 | ancoms 459 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
18 | 17 | 3adant1 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
19 | 15, 18 | anbi12d 631 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐵))) |
20 | 19 | biancomd 464 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
21 | 13, 20 | orbi12d 916 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)) ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
22 | 7, 21 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 · cmul 10876 ≤ cle 11010 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 |
This theorem is referenced by: brbtwn2 27273 |
Copyright terms: Public domain | W3C validator |