MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsuble0b Structured version   Visualization version   GIF version

Theorem mulsuble0b 11224
Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulsuble0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴𝐵) · (𝐶𝐵)) ≤ 0 ↔ ((𝐴𝐵𝐵𝐶) ∨ (𝐶𝐵𝐵𝐴))))

Proof of Theorem mulsuble0b
StepHypRef Expression
1 resubcl 10665 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
213adant3 1168 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
3 resubcl 10665 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
43ancoms 452 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
543adant1 1166 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
6 mulle0b 11223 . . 3 (((𝐴𝐵) ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (((𝐴𝐵) · (𝐶𝐵)) ≤ 0 ↔ (((𝐴𝐵) ≤ 0 ∧ 0 ≤ (𝐶𝐵)) ∨ (0 ≤ (𝐴𝐵) ∧ (𝐶𝐵) ≤ 0))))
72, 5, 6syl2anc 581 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴𝐵) · (𝐶𝐵)) ≤ 0 ↔ (((𝐴𝐵) ≤ 0 ∧ 0 ≤ (𝐶𝐵)) ∨ (0 ≤ (𝐴𝐵) ∧ (𝐶𝐵) ≤ 0))))
8 suble0 10865 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵) ≤ 0 ↔ 𝐴𝐵))
983adant3 1168 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵) ≤ 0 ↔ 𝐴𝐵))
10 subge0 10864 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐶𝐵) ↔ 𝐵𝐶))
1110ancoms 452 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶𝐵) ↔ 𝐵𝐶))
12113adant1 1166 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶𝐵) ↔ 𝐵𝐶))
139, 12anbi12d 626 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴𝐵) ≤ 0 ∧ 0 ≤ (𝐶𝐵)) ↔ (𝐴𝐵𝐵𝐶)))
14 subge0 10864 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
15143adant3 1168 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
16 suble0 10865 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶𝐵) ≤ 0 ↔ 𝐶𝐵))
1716ancoms 452 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵) ≤ 0 ↔ 𝐶𝐵))
18173adant1 1166 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵) ≤ 0 ↔ 𝐶𝐵))
1915, 18anbi12d 626 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴𝐵) ∧ (𝐶𝐵) ≤ 0) ↔ (𝐵𝐴𝐶𝐵)))
20 ancom 454 . . . 4 ((𝐵𝐴𝐶𝐵) ↔ (𝐶𝐵𝐵𝐴))
2119, 20syl6bb 279 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴𝐵) ∧ (𝐶𝐵) ≤ 0) ↔ (𝐶𝐵𝐵𝐴)))
2213, 21orbi12d 949 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((((𝐴𝐵) ≤ 0 ∧ 0 ≤ (𝐶𝐵)) ∨ (0 ≤ (𝐴𝐵) ∧ (𝐶𝐵) ≤ 0)) ↔ ((𝐴𝐵𝐵𝐶) ∨ (𝐶𝐵𝐵𝐴))))
237, 22bitrd 271 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴𝐵) · (𝐶𝐵)) ≤ 0 ↔ ((𝐴𝐵𝐵𝐶) ∨ (𝐶𝐵𝐵𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 880  w3a 1113  wcel 2166   class class class wbr 4872  (class class class)co 6904  cr 10250  0cc0 10251   · cmul 10256  cle 10391  cmin 10584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-po 5262  df-so 5263  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009
This theorem is referenced by:  brbtwn2  26203
  Copyright terms: Public domain W3C validator