| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsuble0b | Structured version Visualization version GIF version | ||
| Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.) |
| Ref | Expression |
|---|---|
| mulsuble0b | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl 11428 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
| 2 | 1 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) |
| 3 | resubcl 11428 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) | |
| 4 | 3 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 6 | mulle0b 11996 | . . 3 ⊢ (((𝐴 − 𝐵) ∈ ℝ ∧ (𝐶 − 𝐵) ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) | |
| 7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)))) |
| 8 | suble0 11634 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) | |
| 9 | 8 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) ≤ 0 ↔ 𝐴 ≤ 𝐵)) |
| 10 | subge0 11633 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) | |
| 11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
| 12 | 11 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐶 − 𝐵) ↔ 𝐵 ≤ 𝐶)) |
| 13 | 9, 12 | anbi12d 632 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶))) |
| 14 | subge0 11633 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
| 15 | 14 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
| 16 | suble0 11634 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) | |
| 17 | 16 | ancoms 458 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
| 18 | 17 | 3adant1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 − 𝐵) ≤ 0 ↔ 𝐶 ≤ 𝐵)) |
| 19 | 15, 18 | anbi12d 632 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐵 ≤ 𝐴 ∧ 𝐶 ≤ 𝐵))) |
| 20 | 19 | biancomd 463 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0) ↔ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| 21 | 13, 20 | orbi12d 918 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((((𝐴 − 𝐵) ≤ 0 ∧ 0 ≤ (𝐶 − 𝐵)) ∨ (0 ≤ (𝐴 − 𝐵) ∧ (𝐶 − 𝐵) ≤ 0)) ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
| 22 | 7, 21 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 − 𝐵) · (𝐶 − 𝐵)) ≤ 0 ↔ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) ∨ (𝐶 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 0cc0 11009 · cmul 11014 ≤ cle 11150 − cmin 11347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 |
| This theorem is referenced by: brbtwn2 28850 |
| Copyright terms: Public domain | W3C validator |