![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooneg | Structured version Visualization version GIF version |
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
iooneg | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltneg 11718 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴)) | |
2 | 1 | 3adant2 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 ↔ -𝐶 < -𝐴)) |
3 | ltneg 11718 | . . . . . 6 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶)) | |
4 | 3 | ancoms 457 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶)) |
5 | 4 | 3adant1 1128 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 < 𝐵 ↔ -𝐵 < -𝐶)) |
6 | 2, 5 | anbi12d 629 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (-𝐶 < -𝐴 ∧ -𝐵 < -𝐶))) |
7 | 6 | biancomd 462 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
8 | rexr 11264 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
9 | rexr 11264 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
10 | rexr 11264 | . . 3 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
11 | elioo5 13385 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
12 | 8, 9, 10, 11 | syl3an 1158 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
13 | renegcl 11527 | . . . 4 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
14 | renegcl 11527 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
15 | renegcl 11527 | . . . 4 ⊢ (𝐶 ∈ ℝ → -𝐶 ∈ ℝ) | |
16 | rexr 11264 | . . . . 5 ⊢ (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*) | |
17 | rexr 11264 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝐴 ∈ ℝ*) | |
18 | rexr 11264 | . . . . 5 ⊢ (-𝐶 ∈ ℝ → -𝐶 ∈ ℝ*) | |
19 | elioo5 13385 | . . . . 5 ⊢ ((-𝐵 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐶 ∈ ℝ*) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) | |
20 | 16, 17, 18, 19 | syl3an 1158 | . . . 4 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ ∧ -𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
21 | 13, 14, 15, 20 | syl3an 1158 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
22 | 21 | 3com12 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵(,)-𝐴) ↔ (-𝐵 < -𝐶 ∧ -𝐶 < -𝐴))) |
23 | 7, 12, 22 | 3bitr4d 310 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴(,)𝐵) ↔ -𝐶 ∈ (-𝐵(,)-𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 ℝ*cxr 11251 < clt 11252 -cneg 11449 (,)cioo 13328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-ioo 13332 |
This theorem is referenced by: lhop2 25767 asinsin 26633 atanlogsub 26657 atanbnd 26667 |
Copyright terms: Public domain | W3C validator |