MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslss Structured version   Visualization version   GIF version

Theorem lsslss 20806
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x 𝑋 = (𝑊s 𝑈)
lsslss.s 𝑆 = (LSubSp‘𝑊)
lsslss.t 𝑇 = (LSubSp‘𝑋)
Assertion
Ref Expression
lsslss ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4 𝑋 = (𝑊s 𝑈)
2 lsslss.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lsslmod 20805 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
4 eqid 2726 . . . 4 (𝑋s 𝑉) = (𝑋s 𝑉)
5 eqid 2726 . . . 4 (Base‘𝑋) = (Base‘𝑋)
6 lsslss.t . . . 4 𝑇 = (LSubSp‘𝑋)
74, 5, 6islss3 20804 . . 3 (𝑋 ∈ LMod → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
83, 7syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
9 eqid 2726 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
109, 2lssss 20781 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1110adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
121, 9ressbas2 17189 . . . . 5 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
1311, 12syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
1413sseq2d 4009 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑈𝑉 ⊆ (Base‘𝑋)))
1514anbi1d 629 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
16 sstr2 3984 . . . . . . 7 (𝑉𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊)))
1711, 16mpan9 506 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑉 ⊆ (Base‘𝑊))
1817biantrurd 532 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
191oveq1i 7414 . . . . . . 7 (𝑋s 𝑉) = ((𝑊s 𝑈) ↾s 𝑉)
20 ressabs 17201 . . . . . . . 8 ((𝑈𝑆𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2120adantll 711 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2219, 21eqtrid 2778 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑋s 𝑉) = (𝑊s 𝑉))
2322eleq1d 2812 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ (𝑊s 𝑉) ∈ LMod))
24 eqid 2726 . . . . . . 7 (𝑊s 𝑉) = (𝑊s 𝑉)
2524, 9, 2islss3 20804 . . . . . 6 (𝑊 ∈ LMod → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2625ad2antrr 723 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2718, 23, 263bitr4d 311 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ 𝑉𝑆))
2827pm5.32da 578 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑈𝑉𝑆)))
2928biancomd 463 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑆𝑉𝑈)))
308, 15, 293bitr2d 307 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wss 3943  cfv 6536  (class class class)co 7404  Basecbs 17151  s cress 17180  LModclmod 20704  LSubSpclss 20776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-sca 17220  df-vsca 17221  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-sbg 18866  df-subg 19048  df-mgp 20038  df-ur 20085  df-ring 20138  df-lmod 20706  df-lss 20777
This theorem is referenced by:  lsslsp  20860  lsslspOLD  20861  mplbas2  21935  mplind  21969  lcdlss  41001  lnmlsslnm  42382  lmhmlnmsplit  42388
  Copyright terms: Public domain W3C validator