| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsslss | Structured version Visualization version GIF version | ||
| Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
| Ref | Expression |
|---|---|
| lsslss.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| lsslss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lsslss.t | ⊢ 𝑇 = (LSubSp‘𝑋) |
| Ref | Expression |
|---|---|
| lsslss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslss.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 2 | lsslss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lsslmod 20903 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
| 4 | eqid 2733 | . . . 4 ⊢ (𝑋 ↾s 𝑉) = (𝑋 ↾s 𝑉) | |
| 5 | eqid 2733 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 6 | lsslss.t | . . . 4 ⊢ 𝑇 = (LSubSp‘𝑋) | |
| 7 | 4, 5, 6 | islss3 20902 | . . 3 ⊢ (𝑋 ∈ LMod → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 9 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 10 | 9, 2 | lssss 20879 | . . . . . 6 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
| 12 | 1, 9 | ressbas2 17159 | . . . . 5 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 14 | 13 | sseq2d 3964 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ (Base‘𝑋))) |
| 15 | 14 | anbi1d 631 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
| 16 | sstr2 3938 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊))) | |
| 17 | 11, 16 | mpan9 506 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ (Base‘𝑊)) |
| 18 | 17 | biantrurd 532 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 19 | 1 | oveq1i 7365 | . . . . . . 7 ⊢ (𝑋 ↾s 𝑉) = ((𝑊 ↾s 𝑈) ↾s 𝑉) |
| 20 | ressabs 17169 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) | |
| 21 | 20 | adantll 714 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
| 22 | 19, 21 | eqtrid 2780 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑋 ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
| 23 | 22 | eleq1d 2818 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ (𝑊 ↾s 𝑉) ∈ LMod)) |
| 24 | eqid 2733 | . . . . . . 7 ⊢ (𝑊 ↾s 𝑉) = (𝑊 ↾s 𝑉) | |
| 25 | 24, 9, 2 | islss3 20902 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 26 | 25 | ad2antrr 726 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
| 27 | 18, 23, 26 | 3bitr4d 311 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ 𝑉 ∈ 𝑆)) |
| 28 | 27 | pm5.32da 579 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆))) |
| 29 | 28 | biancomd 463 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| 30 | 8, 15, 29 | 3bitr2d 307 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 ↾s cress 17151 LModclmod 20803 LSubSpclss 20874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-sca 17187 df-vsca 17188 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-mgp 20069 df-ur 20110 df-ring 20163 df-lmod 20805 df-lss 20875 |
| This theorem is referenced by: lsslsp 20958 lsslspOLD 20959 mplbas2 21987 mplind 22015 lcdlss 41728 lnmlsslnm 43188 lmhmlnmsplit 43194 |
| Copyright terms: Public domain | W3C validator |