Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslss Structured version   Visualization version   GIF version

Theorem lsslss 19724
 Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x 𝑋 = (𝑊s 𝑈)
lsslss.s 𝑆 = (LSubSp‘𝑊)
lsslss.t 𝑇 = (LSubSp‘𝑋)
Assertion
Ref Expression
lsslss ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4 𝑋 = (𝑊s 𝑈)
2 lsslss.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lsslmod 19723 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
4 eqid 2822 . . . 4 (𝑋s 𝑉) = (𝑋s 𝑉)
5 eqid 2822 . . . 4 (Base‘𝑋) = (Base‘𝑋)
6 lsslss.t . . . 4 𝑇 = (LSubSp‘𝑋)
74, 5, 6islss3 19722 . . 3 (𝑋 ∈ LMod → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
83, 7syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
9 eqid 2822 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
109, 2lssss 19699 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1110adantl 485 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
121, 9ressbas2 16546 . . . . 5 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
1311, 12syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
1413sseq2d 3974 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑈𝑉 ⊆ (Base‘𝑋)))
1514anbi1d 632 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
16 sstr2 3949 . . . . . . 7 (𝑉𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊)))
1711, 16mpan9 510 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑉 ⊆ (Base‘𝑊))
1817biantrurd 536 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
191oveq1i 7150 . . . . . . 7 (𝑋s 𝑉) = ((𝑊s 𝑈) ↾s 𝑉)
20 ressabs 16554 . . . . . . . 8 ((𝑈𝑆𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2120adantll 713 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2219, 21syl5eq 2869 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑋s 𝑉) = (𝑊s 𝑉))
2322eleq1d 2898 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ (𝑊s 𝑉) ∈ LMod))
24 eqid 2822 . . . . . . 7 (𝑊s 𝑉) = (𝑊s 𝑉)
2524, 9, 2islss3 19722 . . . . . 6 (𝑊 ∈ LMod → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2625ad2antrr 725 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2718, 23, 263bitr4d 314 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ 𝑉𝑆))
2827pm5.32da 582 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑈𝑉𝑆)))
2928biancomd 467 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑆𝑉𝑈)))
308, 15, 293bitr2d 310 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908  ‘cfv 6334  (class class class)co 7140  Basecbs 16474   ↾s cress 16475  LModclmod 19625  LSubSpclss 19694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-sca 16572  df-vsca 16573  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-mgp 19231  df-ur 19243  df-ring 19290  df-lmod 19627  df-lss 19695 This theorem is referenced by:  lsslsp  19778  mplbas2  20708  mplind  20739  lcdlss  38873  lnmlsslnm  39955  lmhmlnmsplit  39961
 Copyright terms: Public domain W3C validator