MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslss Structured version   Visualization version   GIF version

Theorem lsslss 19467
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x 𝑋 = (𝑊s 𝑈)
lsslss.s 𝑆 = (LSubSp‘𝑊)
lsslss.t 𝑇 = (LSubSp‘𝑋)
Assertion
Ref Expression
lsslss ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4 𝑋 = (𝑊s 𝑈)
2 lsslss.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lsslmod 19466 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
4 eqid 2772 . . . 4 (𝑋s 𝑉) = (𝑋s 𝑉)
5 eqid 2772 . . . 4 (Base‘𝑋) = (Base‘𝑋)
6 lsslss.t . . . 4 𝑇 = (LSubSp‘𝑋)
74, 5, 6islss3 19465 . . 3 (𝑋 ∈ LMod → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
83, 7syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
9 eqid 2772 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
109, 2lssss 19442 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1110adantl 474 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
121, 9ressbas2 16409 . . . . 5 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
1311, 12syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
1413sseq2d 3883 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑈𝑉 ⊆ (Base‘𝑋)))
1514anbi1d 620 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
16 sstr2 3859 . . . . . . 7 (𝑉𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊)))
1711, 16mpan9 499 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑉 ⊆ (Base‘𝑊))
1817biantrurd 525 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
191oveq1i 6984 . . . . . . 7 (𝑋s 𝑉) = ((𝑊s 𝑈) ↾s 𝑉)
20 ressabs 16417 . . . . . . . 8 ((𝑈𝑆𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2120adantll 701 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2219, 21syl5eq 2820 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑋s 𝑉) = (𝑊s 𝑉))
2322eleq1d 2844 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ (𝑊s 𝑉) ∈ LMod))
24 eqid 2772 . . . . . . 7 (𝑊s 𝑉) = (𝑊s 𝑉)
2524, 9, 2islss3 19465 . . . . . 6 (𝑊 ∈ LMod → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2625ad2antrr 713 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2718, 23, 263bitr4d 303 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ 𝑉𝑆))
2827pm5.32da 571 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑈𝑉𝑆)))
2928biancomd 456 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑆𝑉𝑈)))
308, 15, 293bitr2d 299 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wss 3823  cfv 6185  (class class class)co 6974  Basecbs 16337  s cress 16338  LModclmod 19368  LSubSpclss 19437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-sca 16435  df-vsca 16436  df-0g 16569  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-mgp 18975  df-ur 18987  df-ring 19034  df-lmod 19370  df-lss 19438
This theorem is referenced by:  lsslsp  19521  mplbas2  19976  mplind  20007  lcdlss  38229  lnmlsslnm  39106  lmhmlnmsplit  39112
  Copyright terms: Public domain W3C validator