Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsslss | Structured version Visualization version GIF version |
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lsslss.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lsslss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsslss.t | ⊢ 𝑇 = (LSubSp‘𝑋) |
Ref | Expression |
---|---|
lsslss | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsslss.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
2 | lsslss.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lsslmod 20137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LMod) |
4 | eqid 2738 | . . . 4 ⊢ (𝑋 ↾s 𝑉) = (𝑋 ↾s 𝑉) | |
5 | eqid 2738 | . . . 4 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
6 | lsslss.t | . . . 4 ⊢ 𝑇 = (LSubSp‘𝑋) | |
7 | 4, 5, 6 | islss3 20136 | . . 3 ⊢ (𝑋 ∈ LMod → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
9 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
10 | 9, 2 | lssss 20113 | . . . . . 6 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ⊆ (Base‘𝑊)) |
12 | 1, 9 | ressbas2 16875 | . . . . 5 ⊢ (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋)) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
14 | 13 | sseq2d 3949 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ (Base‘𝑋))) |
15 | 14 | anbi1d 629 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋 ↾s 𝑉) ∈ LMod))) |
16 | sstr2 3924 | . . . . . . 7 ⊢ (𝑉 ⊆ 𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊))) | |
17 | 11, 16 | mpan9 506 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ (Base‘𝑊)) |
18 | 17 | biantrurd 532 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
19 | 1 | oveq1i 7265 | . . . . . . 7 ⊢ (𝑋 ↾s 𝑉) = ((𝑊 ↾s 𝑈) ↾s 𝑉) |
20 | ressabs 16885 | . . . . . . . 8 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) | |
21 | 20 | adantll 710 | . . . . . . 7 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑊 ↾s 𝑈) ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
22 | 19, 21 | eqtrid 2790 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑋 ↾s 𝑉) = (𝑊 ↾s 𝑉)) |
23 | 22 | eleq1d 2823 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ (𝑊 ↾s 𝑉) ∈ LMod)) |
24 | eqid 2738 | . . . . . . 7 ⊢ (𝑊 ↾s 𝑉) = (𝑊 ↾s 𝑉) | |
25 | 24, 9, 2 | islss3 20136 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
26 | 25 | ad2antrr 722 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → (𝑉 ∈ 𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝑉) ∈ LMod))) |
27 | 18, 23, 26 | 3bitr4d 310 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ 𝑉 ⊆ 𝑈) → ((𝑋 ↾s 𝑉) ∈ LMod ↔ 𝑉 ∈ 𝑆)) |
28 | 27 | pm5.32da 578 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆))) |
29 | 28 | biancomd 463 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ((𝑉 ⊆ 𝑈 ∧ (𝑋 ↾s 𝑉) ∈ LMod) ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
30 | 8, 15, 29 | 3bitr2d 306 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑉 ∈ 𝑇 ↔ (𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 LModclmod 20038 LSubSpclss 20108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-sca 16904 df-vsca 16905 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 |
This theorem is referenced by: lsslsp 20192 mplbas2 21153 mplind 21188 lcdlss 39560 lnmlsslnm 40822 lmhmlnmsplit 40828 |
Copyright terms: Public domain | W3C validator |