|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > invsym | Structured version Visualization version GIF version | ||
| Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) | 
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) | 
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| invsym | ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐺(𝑌𝑁𝑋)𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | eqid 2736 | . . . 4 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | isinv 17805 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺 ∧ 𝐺(𝑌(Sect‘𝐶)𝑋)𝐹))) | 
| 8 | 7 | biancomd 463 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝐺))) | 
| 9 | 1, 2, 3, 5, 4, 6 | isinv 17805 | . 2 ⊢ (𝜑 → (𝐺(𝑌𝑁𝑋)𝐹 ↔ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹 ∧ 𝐹(𝑋(Sect‘𝐶)𝑌)𝐺))) | 
| 10 | 8, 9 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐺(𝑌𝑁𝑋)𝐹)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Catccat 17708 Sectcsect 17789 Invcinv 17790 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-sect 17792 df-inv 17793 | 
| This theorem is referenced by: invsym2 17808 inviso2 17812 invisoinvl 17835 invisoinvr 17836 | 
| Copyright terms: Public domain | W3C validator |