MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invsym Structured version   Visualization version   GIF version

Theorem invsym 17677
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invsym (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))

Proof of Theorem invsym
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invss.x . . . 4 (𝜑𝑋𝐵)
5 invss.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2733 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
71, 2, 3, 4, 5, 6isinv 17675 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
87biancomd 463 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝐺)))
91, 2, 3, 5, 4, 6isinv 17675 . 2 (𝜑 → (𝐺(𝑌𝑁𝑋)𝐹 ↔ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝐺)))
108, 9bitr4d 282 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Catccat 17578  Sectcsect 17659  Invcinv 17660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-sect 17662  df-inv 17663
This theorem is referenced by:  invsym2  17678  inviso2  17682  invisoinvl  17705  invisoinvr  17706
  Copyright terms: Public domain W3C validator