MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invsym Structured version   Visualization version   GIF version

Theorem invsym 17724
Description: The inverse relation is symmetric. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
Assertion
Ref Expression
invsym (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))

Proof of Theorem invsym
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invss.x . . . 4 (𝜑𝑋𝐵)
5 invss.y . . . 4 (𝜑𝑌𝐵)
6 eqid 2729 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
71, 2, 3, 4, 5, 6isinv 17722 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)𝐺𝐺(𝑌(Sect‘𝐶)𝑋)𝐹)))
87biancomd 463 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝐺)))
91, 2, 3, 5, 4, 6isinv 17722 . 2 (𝜑 → (𝐺(𝑌𝑁𝑋)𝐹 ↔ (𝐺(𝑌(Sect‘𝐶)𝑋)𝐹𝐹(𝑋(Sect‘𝐶)𝑌)𝐺)))
108, 9bitr4d 282 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐺(𝑌𝑁𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Catccat 17625  Sectcsect 17706  Invcinv 17707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-sect 17709  df-inv 17710
This theorem is referenced by:  invsym2  17725  inviso2  17729  invisoinvl  17752  invisoinvr  17753
  Copyright terms: Public domain W3C validator