![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dflim7 | Structured version Visualization version GIF version |
Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of [Schloeder] p. 2. Closely related to dflim4 7885. (Contributed by RP, 17-Jan-2025.) |
Ref | Expression |
---|---|
dflim7 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim4 7885 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴)) | |
2 | ord0eln0 6450 | . . . . . 6 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 2 | anbi1d 630 | . . . . 5 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (𝐴 ≠ ∅ ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴))) |
4 | 3 | biancomd 463 | . . . 4 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) |
5 | 4 | pm5.32i 574 | . . 3 ⊢ ((Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴)) ↔ (Ord 𝐴 ∧ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) |
6 | 3anass 1095 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴))) | |
7 | 3anass 1095 | . . 3 ⊢ ((Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) | |
8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
9 | 1, 8 | bitri 275 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 Ord word 6394 Lim wlim 6396 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |