Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim7 Structured version   Visualization version   GIF version

Theorem dflim7 43235
Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of [Schloeder] p. 2. Closely related to dflim4 7885. (Contributed by RP, 17-Jan-2025.)
Assertion
Ref Expression
dflim7 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅))
Distinct variable group:   𝐴,𝑏

Proof of Theorem dflim7
StepHypRef Expression
1 dflim4 7885 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴))
2 ord0eln0 6450 . . . . . 6 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
32anbi1d 630 . . . . 5 (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴) ↔ (𝐴 ≠ ∅ ∧ ∀𝑏𝐴 suc 𝑏𝐴)))
43biancomd 463 . . . 4 (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴) ↔ (∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅)))
54pm5.32i 574 . . 3 ((Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴)) ↔ (Ord 𝐴 ∧ (∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅)))
6 3anass 1095 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴)))
7 3anass 1095 . . 3 ((Ord 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ (∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅)))
85, 6, 73bitr4i 303 . 2 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴) ↔ (Ord 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅))
91, 8bitri 275 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏𝐴 suc 𝑏𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087  wcel 2108  wne 2946  wral 3067  c0 4352  Ord word 6394  Lim wlim 6396  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator