| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dflim7 | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of [Schloeder] p. 2. Closely related to dflim4 7773. (Contributed by RP, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| dflim7 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 7773 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴)) | |
| 2 | ord0eln0 6357 | . . . . . 6 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (𝐴 ≠ ∅ ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴))) |
| 4 | 3 | biancomd 463 | . . . 4 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) |
| 5 | 4 | pm5.32i 574 | . . 3 ⊢ ((Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴)) ↔ (Ord 𝐴 ∧ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) |
| 6 | 3anass 1094 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴))) | |
| 7 | 3anass 1094 | . . 3 ⊢ ((Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∅c0 4278 Ord word 6300 Lim wlim 6302 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |