| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dflim7 | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of [Schloeder] p. 2. Closely related to dflim4 7788. (Contributed by RP, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| dflim7 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflim4 7788 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴)) | |
| 2 | ord0eln0 6367 | . . . . . 6 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (𝐴 ≠ ∅ ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴))) |
| 4 | 3 | biancomd 463 | . . . 4 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) |
| 5 | 4 | pm5.32i 574 | . . 3 ⊢ ((Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴)) ↔ (Ord 𝐴 ∧ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) |
| 6 | 3anass 1094 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴))) | |
| 7 | 3anass 1094 | . . 3 ⊢ ((Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅) ↔ (Ord 𝐴 ∧ (∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴) ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4286 Ord word 6310 Lim wlim 6312 suc csuc 6313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |