Step | Hyp | Ref
| Expression |
1 | | elfvex 6807 |
. 2
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V) |
2 | | elfvex 6807 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V) |
3 | 2 | adantr 481 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝑋 ∈ V) |
4 | | simpllr 773 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
5 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
6 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
7 | 4, 5, 6 | fovrnd 7444 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧𝐷𝑥) ∈ ℝ) |
8 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
9 | 4, 5, 8 | fovrnd 7444 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧𝐷𝑦) ∈ ℝ) |
10 | 7, 9 | rexaddd 12968 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
11 | 10 | breq2d 5086 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
12 | 11 | ralbidva 3111 |
. . . . . . . 8
⊢ (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) |
13 | 12 | anbi2d 629 |
. . . . . . 7
⊢ (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
14 | 13 | 2ralbidva 3128 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) |
15 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
16 | | ressxr 11019 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
17 | | fss 6617 |
. . . . . . . 8
⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆
ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
18 | 15, 16, 17 | sylancl 586 |
. . . . . . 7
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
19 | 18 | biantrurd 533 |
. . . . . 6
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
20 | 14, 19 | bitr3d 280 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
21 | 20 | pm5.32da 579 |
. . . 4
⊢ (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))) |
22 | 21 | biancomd 464 |
. . 3
⊢ (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))) |
23 | | ismet 23476 |
. . 3
⊢ (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) |
24 | | isxmet 23477 |
. . . 4
⊢ (𝑋 ∈ V → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) |
25 | 24 | anbi1d 630 |
. . 3
⊢ (𝑋 ∈ V → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))) |
26 | 22, 23, 25 | 3bitr4d 311 |
. 2
⊢ (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))) |
27 | 1, 3, 26 | pm5.21nii 380 |
1
⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) |