MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismet2 Structured version   Visualization version   GIF version

Theorem ismet2 22944
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))

Proof of Theorem ismet2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6682 . 2 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V)
2 elfvex 6682 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V)
32adantr 484 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝑋 ∈ V)
4 simpllr 775 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
5 simpr 488 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
6 simplrl 776 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑥𝑋)
74, 5, 6fovrnd 7304 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧𝐷𝑥) ∈ ℝ)
8 simplrr 777 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑦𝑋)
94, 5, 8fovrnd 7304 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧𝐷𝑦) ∈ ℝ)
107, 9rexaddd 12619 . . . . . . . . . 10 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1110breq2d 5045 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
1211ralbidva 3164 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
1312anbi2d 631 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14132ralbidva 3166 . . . . . 6 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
15 simpr 488 . . . . . . . 8 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
16 ressxr 10678 . . . . . . . 8 ℝ ⊆ ℝ*
17 fss 6505 . . . . . . . 8 ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
1815, 16, 17sylancl 589 . . . . . . 7 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
1918biantrurd 536 . . . . . 6 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2014, 19bitr3d 284 . . . . 5 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2120pm5.32da 582 . . . 4 (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))))
2221biancomd 467 . . 3 (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
23 ismet 22934 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
24 isxmet 22935 . . . 4 (𝑋 ∈ V → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2524anbi1d 632 . . 3 (𝑋 ∈ V → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
2622, 23, 253bitr4d 314 . 2 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
271, 3, 26pm5.21nii 383 1 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  wss 3884   class class class wbr 5033   × cxp 5521  wf 6324  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530   + caddc 10533  *cxr 10667  cle 10669   +𝑒 cxad 12497  ∞Metcxmet 20080  Metcmet 20081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-mulcl 10592  ax-i2m1 10598
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-xadd 12500  df-xmet 20088  df-met 20089
This theorem is referenced by:  metxmet  22945  metres2  22974  prdsmet  22981  imasf1omet  22987  xmetresbl  23048  stdbdmet  23127  isbndx  35219
  Copyright terms: Public domain W3C validator