Step | Hyp | Ref
| Expression |
1 | | elfvex 6930 |
. 2
β’ (π· β (Metβπ) β π β V) |
2 | | elfvex 6930 |
. . 3
β’ (π· β (βMetβπ) β π β V) |
3 | 2 | adantr 482 |
. 2
β’ ((π· β (βMetβπ) β§ π·:(π Γ π)βΆβ) β π β V) |
4 | | simpllr 775 |
. . . . . . . . . . . 12
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β π·:(π Γ π)βΆβ) |
5 | | simpr 486 |
. . . . . . . . . . . 12
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β π§ β π) |
6 | | simplrl 776 |
. . . . . . . . . . . 12
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β π₯ β π) |
7 | 4, 5, 6 | fovcdmd 7579 |
. . . . . . . . . . 11
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β (π§π·π₯) β β) |
8 | | simplrr 777 |
. . . . . . . . . . . 12
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β π¦ β π) |
9 | 4, 5, 8 | fovcdmd 7579 |
. . . . . . . . . . 11
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β (π§π·π¦) β β) |
10 | 7, 9 | rexaddd 13213 |
. . . . . . . . . 10
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β ((π§π·π₯) +π (π§π·π¦)) = ((π§π·π₯) + (π§π·π¦))) |
11 | 10 | breq2d 5161 |
. . . . . . . . 9
β’ ((((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β§ π§ β π) β ((π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)) β (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))) |
12 | 11 | ralbidva 3176 |
. . . . . . . 8
β’ (((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β (βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)) β βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))) |
13 | 12 | anbi2d 630 |
. . . . . . 7
β’ (((π β V β§ π·:(π Γ π)βΆβ) β§ (π₯ β π β§ π¦ β π)) β ((((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) β (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))))) |
14 | 13 | 2ralbidva 3217 |
. . . . . 6
β’ ((π β V β§ π·:(π Γ π)βΆβ) β (βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) β βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))))) |
15 | | simpr 486 |
. . . . . . . 8
β’ ((π β V β§ π·:(π Γ π)βΆβ) β π·:(π Γ π)βΆβ) |
16 | | ressxr 11258 |
. . . . . . . 8
β’ β
β β* |
17 | | fss 6735 |
. . . . . . . 8
β’ ((π·:(π Γ π)βΆβ β§ β β
β*) β π·:(π Γ π)βΆβ*) |
18 | 15, 16, 17 | sylancl 587 |
. . . . . . 7
β’ ((π β V β§ π·:(π Γ π)βΆβ) β π·:(π Γ π)βΆβ*) |
19 | 18 | biantrurd 534 |
. . . . . 6
β’ ((π β V β§ π·:(π Γ π)βΆβ) β (βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
20 | 14, 19 | bitr3d 281 |
. . . . 5
β’ ((π β V β§ π·:(π Γ π)βΆβ) β (βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦))) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
21 | 20 | pm5.32da 580 |
. . . 4
β’ (π β V β ((π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))) β (π·:(π Γ π)βΆβ β§ (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))))) |
22 | 21 | biancomd 465 |
. . 3
β’ (π β V β ((π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))) β ((π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) β§ π·:(π Γ π)βΆβ))) |
23 | | ismet 23829 |
. . 3
β’ (π β V β (π· β (Metβπ) β (π·:(π Γ π)βΆβ β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) + (π§π·π¦)))))) |
24 | | isxmet 23830 |
. . . 4
β’ (π β V β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
25 | 24 | anbi1d 631 |
. . 3
β’ (π β V β ((π· β (βMetβπ) β§ π·:(π Γ π)βΆβ) β ((π·:(π Γ π)βΆβ* β§
βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))) β§ π·:(π Γ π)βΆβ))) |
26 | 22, 23, 25 | 3bitr4d 311 |
. 2
β’ (π β V β (π· β (Metβπ) β (π· β (βMetβπ) β§ π·:(π Γ π)βΆβ))) |
27 | 1, 3, 26 | pm5.21nii 380 |
1
β’ (π· β (Metβπ) β (π· β (βMetβπ) β§ π·:(π Γ π)βΆβ)) |