MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismet2 Structured version   Visualization version   GIF version

Theorem ismet2 23185
Description: An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ismet2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))

Proof of Theorem ismet2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6728 . 2 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ V)
2 elfvex 6728 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ V)
32adantr 484 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝑋 ∈ V)
4 simpllr 776 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
5 simpr 488 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
6 simplrl 777 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑥𝑋)
74, 5, 6fovrnd 7358 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧𝐷𝑥) ∈ ℝ)
8 simplrr 778 . . . . . . . . . . . 12 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑦𝑋)
94, 5, 8fovrnd 7358 . . . . . . . . . . 11 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧𝐷𝑦) ∈ ℝ)
107, 9rexaddd 12789 . . . . . . . . . 10 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1110breq2d 5051 . . . . . . . . 9 ((((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
1211ralbidva 3107 . . . . . . . 8 (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
1312anbi2d 632 . . . . . . 7 (((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14132ralbidva 3109 . . . . . 6 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
15 simpr 488 . . . . . . . 8 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
16 ressxr 10842 . . . . . . . 8 ℝ ⊆ ℝ*
17 fss 6540 . . . . . . . 8 ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
1815, 16, 17sylancl 589 . . . . . . 7 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
1918biantrurd 536 . . . . . 6 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2014, 19bitr3d 284 . . . . 5 ((𝑋 ∈ V ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) → (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2120pm5.32da 582 . . . 4 (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))))
2221biancomd 467 . . 3 (𝑋 ∈ V → ((𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
23 ismet 23175 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
24 isxmet 23176 . . . 4 (𝑋 ∈ V → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
2524anbi1d 633 . . 3 (𝑋 ∈ V → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ) ↔ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
2622, 23, 253bitr4d 314 . 2 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)))
271, 3, 26pm5.21nii 383 1 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  wss 3853   class class class wbr 5039   × cxp 5534  wf 6354  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694   + caddc 10697  *cxr 10831  cle 10833   +𝑒 cxad 12667  ∞Metcxmet 20302  Metcmet 20303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-mulcl 10756  ax-i2m1 10762
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-xadd 12670  df-xmet 20310  df-met 20311
This theorem is referenced by:  metxmet  23186  metres2  23215  prdsmet  23222  imasf1omet  23228  xmetresbl  23289  stdbdmet  23368  isbndx  35626
  Copyright terms: Public domain W3C validator