Step | Hyp | Ref
| Expression |
1 | | reex 10418 |
. . . . 5
⊢ ℝ
∈ V |
2 | 1 | mptex 6806 |
. . . 4
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V |
3 | | mbfi1fseq.4 |
. . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
4 | 2, 3 | fnmpti 6315 |
. . 3
⊢ 𝐺 Fn ℕ |
5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → 𝐺 Fn ℕ) |
6 | | mbfi1fseq.1 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ MblFn) |
7 | | mbfi1fseq.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
8 | | mbfi1fseq.3 |
. . . . . 6
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
9 | 6, 7, 8, 3 | mbfi1fseqlem3 24011 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
10 | | elfznn0 12809 |
. . . . . . . . 9
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0) |
11 | 10 | nn0red 11761 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ) |
12 | | 2nn 11506 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
13 | | nnnn0 11708 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
14 | | nnexpcl 13250 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
15 | 12, 13, 14 | sylancr 578 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
16 | 15 | adantl 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℕ) |
17 | | nndivre 11474 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑚 / (2↑𝑛)) ∈
ℝ) |
18 | 11, 16, 17 | syl2anr 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ) |
19 | 18 | fmpttd 6696 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ) |
20 | 19 | frnd 6345 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ) |
21 | 9, 20 | fssd 6352 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ℝ) |
22 | | fzfid 13149 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin) |
23 | 19 | ffnd 6339 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛)))) |
24 | | dffn4 6419 |
. . . . . . 7
⊢ ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
25 | 23, 24 | sylib 210 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
26 | | fofi 8597 |
. . . . . 6
⊢
(((0...(𝑛 ·
(2↑𝑛))) ∈ Fin
∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) |
27 | 22, 25, 26 | syl2anc 576 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) |
28 | 9 | frnd 6345 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
29 | 27, 28 | ssfid 8528 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ∈ Fin) |
30 | 6, 7, 8, 3 | mbfi1fseqlem2 24010 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))) |
31 | 30 | fveq1d 6495 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) |
32 | 31 | ad2antlr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) |
33 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
34 | | ovex 7002 |
. . . . . . . . . . . . . . 15
⊢ (𝑛𝐽𝑥) ∈ V |
35 | | vex 3412 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
36 | 34, 35 | ifex 4392 |
. . . . . . . . . . . . . 14
⊢ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V |
37 | | c0ex 10425 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
38 | 36, 37 | ifex 4392 |
. . . . . . . . . . . . 13
⊢ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V |
39 | | eqid 2772 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
40 | 39 | fvmpt2 6599 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
41 | 33, 38, 40 | sylancl 577 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
42 | 32, 41 | eqtrd 2808 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
43 | 42 | adantlr 702 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
44 | 43 | eqeq1d 2774 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) |
45 | | eldifsni 4590 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ≠ 0) |
46 | 45 | ad2antlr 714 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0) |
47 | | neeq1 3023 |
. . . . . . . . . . . 12
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0)) |
48 | 46, 47 | syl5ibrcom 239 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0)) |
49 | | iffalse 4353 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0) |
50 | 49 | necon1ai 2988 |
. . . . . . . . . . 11
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛)) |
51 | 48, 50 | syl6 35 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) |
52 | 51 | pm4.71rd 555 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))) |
53 | | iftrue 4350 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)) |
54 | 53 | eqeq1d 2774 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)) |
55 | | simpllr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ) |
56 | 55 | nnred 11448 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) |
57 | 56 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ) |
58 | | rge0ssre 12653 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℝ |
59 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
60 | | ffvelrn 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) |
61 | 7, 59, 60 | syl2an 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
62 | 58, 61 | sseldi 3852 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
63 | | nnnn0 11708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
64 | | nnexpcl 13250 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
65 | 12, 63, 64 | sylancr 578 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) |
66 | 65 | ad2antrl 715 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) |
67 | 66 | nnred 11448 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) |
68 | 62, 67 | remulcld 10462 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
69 | | reflcl 12974 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
71 | 70, 66 | nndivred 11487 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
72 | 71 | ralrimivva 3135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
73 | 8 | fmpo 7567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) |
74 | 72, 73 | sylib 210 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) |
75 | | fovrn 7128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
76 | 74, 75 | syl3an1 1143 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
77 | 76 | 3expa 1098 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
78 | 77 | adantlr 702 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
79 | 78 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ) |
80 | | lemin 12395 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
81 | 57, 79, 57, 80 | syl3anc 1351 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
82 | 79, 57 | ifcld 4389 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) |
83 | 82, 57 | letri3d 10574 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) |
84 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
85 | 84 | eqeq2d 2782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)) |
86 | | min2 12393 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
87 | 79, 57, 86 | syl2anc 576 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
88 | 87 | biantrurd 525 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) |
89 | 83, 85, 88 | 3bitr4d 303 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))) |
90 | 57 | leidd 10999 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ≤ 𝑛) |
91 | 90 | biantrud 524 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
92 | 81, 89, 91 | 3bitr4d 303 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
93 | | breq1 4926 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝐹‘𝑥))) |
94 | 7 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) |
95 | 94 | ffvelrnda 6670 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
96 | | elrege0 12651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
97 | 95, 96 | sylib 210 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
98 | 97 | simpld 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
99 | 98 | adantlr 702 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
100 | 55, 15 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℕ) |
101 | 100 | nnred 11448 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℝ) |
102 | 99, 101 | remulcld 10462 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ) |
103 | | reflcl 12974 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) |
105 | 100 | nngt0d 11482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛)) |
106 | | lemuldiv 11313 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℝ ∧
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
107 | 56, 104, 101, 105, 106 | syl112anc 1354 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
108 | | lemul1 11285 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
109 | 56, 99, 101, 105, 108 | syl112anc 1354 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
110 | | nnmulcl 11456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ ℕ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑛 ·
(2↑𝑛)) ∈
ℕ) |
111 | 15, 110 | mpdan 674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 · (2↑𝑛)) ∈
ℕ) |
112 | 55, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ) |
113 | 112 | nnzd 11892 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ) |
114 | | flge 12983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
115 | 102, 113,
114 | syl2anc 576 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
116 | 109, 115 | bitrd 271 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
117 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
118 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
119 | 118 | fveq2d 6497 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
120 | | simpl 475 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑚 = 𝑛) |
121 | 120 | oveq2d 6986 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛)) |
122 | 119, 121 | oveq12d 6988 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝑛))) |
123 | 122 | fveq2d 6497 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝑛)))) |
124 | 123, 121 | oveq12d 6988 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
125 | | ovex 7002 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V |
126 | 124, 8, 125 | ovmpoa 7115 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
127 | 55, 117, 126 | syl2anc 576 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
128 | 127 | breq2d 4935 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
129 | 107, 116,
128 | 3bitr4d 303 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
130 | 93, 129 | sylan9bbr 503 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
131 | 117 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ) |
132 | | iftrue 4350 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) |
133 | 132 | adantl 474 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) |
134 | 131, 133 | eleqtrrd 2863 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
135 | 134 | biantrurd 525 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
136 | 92, 130, 135 | 3bitr2d 299 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
137 | 28 | ssdifssd 4005 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
138 | 137 | sselda 3854 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
139 | | eqid 2772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) |
140 | 139 | rnmpt 5663 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ran
(𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))} |
141 | 140 | abeq2i 2894 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))) |
142 | | elfzelz 12717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ) |
143 | 142 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ) |
144 | 143 | zcnd 11894 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ) |
145 | 15 | ad2antlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ) |
146 | 145 | nncnd 11449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ) |
147 | 145 | nnne0d 11483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0) |
148 | 144, 146,
147 | divcan1d 11210 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚) |
149 | 148, 143 | eqeltrd 2860 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ) |
150 | | oveq1 6977 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛))) |
151 | 150 | eleq1d 2844 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)) |
152 | 149, 151 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
153 | 152 | rexlimdva 3223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
154 | 141, 153 | syl5bi 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
155 | 154 | imp 398 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
156 | 138, 155 | syldan 582 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
157 | 156 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
158 | | flbi 12994 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
159 | 102, 157,
158 | syl2anc 576 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
160 | 159 | adantr 473 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
161 | | neeq1 3023 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛)) |
162 | 161 | biimparc 472 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛) |
163 | | iffalse 4353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛) |
164 | 163 | necon1ai 2988 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛) |
165 | 162, 164 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) |
166 | 165 | iftrued 4352 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) |
167 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) |
168 | 166, 167 | eqtr3d 2810 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) |
169 | 168, 165 | eqbrtrrd 4947 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘 ≤ 𝑛) |
170 | 169, 168 | jca 504 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)) |
171 | 170 | ex 405 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
172 | | breq1 4926 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛)) |
173 | 172 | biimparc 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) |
174 | 173 | iftrued 4352 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) |
175 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) |
176 | 174, 175 | eqtrd 2808 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) |
177 | 171, 176 | impbid1 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
178 | 177 | adantl 474 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
179 | | eldifi 3989 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺‘𝑛)) |
180 | | nnre 11439 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
181 | 180 | ad2antlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) |
182 | 77, 181, 86 | syl2anc 576 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
183 | 13 | ad2antlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0) |
184 | 183 | nn0ge0d 11763 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛) |
185 | | breq1 4926 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) |
186 | | breq1 4926 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) |
187 | 185, 186 | ifboth 4382 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) |
188 | 182, 184,
187 | syl2anc 576 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) |
189 | 42, 188 | eqbrtrd 4945 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) |
190 | 189 | ralrimiva 3126 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) |
191 | 9 | ffnd 6339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) Fn ℝ) |
192 | | breq1 4926 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ((𝐺‘𝑛)‘𝑥) → (𝑘 ≤ 𝑛 ↔ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
193 | 192 | ralrn 6673 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
194 | 191, 193 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
195 | 190, 194 | mpbird 249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛) |
196 | 195 | r19.21bi 3152 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺‘𝑛)) → 𝑘 ≤ 𝑛) |
197 | 179, 196 | sylan2 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ≤ 𝑛) |
198 | 197 | ad2antrr 713 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → 𝑘 ≤ 𝑛) |
199 | 198 | biantrurd 525 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
200 | 127 | eqeq1d 2774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘)) |
201 | 104 | recnd 10460 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℂ) |
202 | 28, 20 | sstrd 3864 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ℝ) |
203 | 202 | ssdifssd 4005 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆
ℝ) |
204 | 203 | sselda 3854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ℝ) |
205 | 204 | adantr 473 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ) |
206 | 205 | recnd 10460 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ) |
207 | 100 | nncnd 11449 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℂ) |
208 | 100 | nnne0d 11483 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0) |
209 | 201, 206,
207, 208 | divmul3d 11243 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
210 | 200, 209 | bitrd 271 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
211 | 210 | adantr 473 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
212 | 178, 199,
211 | 3bitr2d 299 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
213 | | ifnefalse 4356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ≠ 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) |
214 | 213 | eleq2d 2845 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
215 | 100 | nnrecred 11484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℝ) |
216 | 205, 215 | readdcld 10461 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ) |
217 | 216 | rexrd 10482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈
ℝ*) |
218 | | elioomnf 12641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
219 | 217, 218 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
220 | 94 | ad2antrr 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞)) |
221 | 220 | ffnd 6339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ) |
222 | | elpreima 6647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
223 | 221, 222 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
224 | 117, 223 | mpbirand 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) |
225 | 99 | biantrurd 525 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
226 | 219, 224,
225 | 3bitr4d 303 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))))) |
227 | | ltmul1 11283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) |
228 | 99, 216, 101, 105, 227 | syl112anc 1354 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) |
229 | 215 | recnd 10460 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℂ) |
230 | 207, 208 | recid2d 11205 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1) |
231 | 230 | oveq2d 6986 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1)) |
232 | 206, 207,
229, 231 | joinlmuladdmuld 10459 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1)) |
233 | 232 | breq2d 4935 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
234 | 226, 228,
233 | 3bitrd 297 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
235 | 214, 234 | sylan9bbr 503 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
236 | | lemul1 11285 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
237 | 205, 99, 101, 105, 236 | syl112anc 1354 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
238 | 237 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
239 | 235, 238 | anbi12d 621 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛))))) |
240 | 239 | biancomd 456 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
241 | 160, 212,
240 | 3bitr4d 303 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
242 | 136, 241 | pm2.61dane 3049 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
243 | | eldif 3835 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)))) |
244 | 205 | rexrd 10482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*) |
245 | | elioomnf 12641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
246 | 244, 245 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
247 | | elpreima 6647 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
248 | 221, 247 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
249 | 117, 248 | mpbirand 694 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) ∈ (-∞(,)𝑘))) |
250 | 99 | biantrurd 525 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < 𝑘 ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
251 | 246, 249,
250 | 3bitr4d 303 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) < 𝑘)) |
252 | 251 | notbid 310 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹‘𝑥) < 𝑘)) |
253 | 205, 99 | lenltd 10578 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝑘)) |
254 | 252, 253 | bitr4d 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹‘𝑥))) |
255 | 254 | anbi2d 619 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
256 | 243, 255 | syl5bb 275 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
257 | 242, 256 | bitr4d 274 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
258 | 54, 257 | sylan9bbr 503 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
259 | 258 | pm5.32da 571 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
260 | 44, 52, 259 | 3bitrd 297 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
261 | 260 | pm5.32da 571 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
262 | 21 | adantr 473 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛):ℝ⟶ℝ) |
263 | 262 | ffnd 6339 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) |
264 | | fniniseg 6649 |
. . . . . . . 8
⊢ ((𝐺‘𝑛) Fn ℝ → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
265 | 263, 264 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
266 | | elin 4053 |
. . . . . . . 8
⊢ (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
267 | 180 | ad2antlr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑛 ∈ ℝ) |
268 | 267 | renegcld 10860 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → -𝑛 ∈ ℝ) |
269 | | iccmbl 23860 |
. . . . . . . . . . . . 13
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol) |
270 | 268, 267,
269 | syl2anc 576 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol) |
271 | | mblss 23825 |
. . . . . . . . . . . 12
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ) |
272 | 270, 271 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) |
273 | 272 | sseld 3853 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ)) |
274 | 273 | adantrd 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ)) |
275 | 274 | pm4.71rd 555 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
276 | 266, 275 | syl5bb 275 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
277 | 261, 265,
276 | 3bitr4d 303 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
278 | 277 | eqrdv 2770 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
279 | | rembl 23834 |
. . . . . . . . 9
⊢ ℝ
∈ dom vol |
280 | | fss 6351 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
281 | 7, 58, 280 | sylancl 577 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
282 | | mbfima 23924 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) |
283 | 6, 281, 282 | syl2anc 576 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) |
284 | | ifcl 4388 |
. . . . . . . . 9
⊢ ((ℝ
∈ dom vol ∧ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) →
if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) |
285 | 279, 283,
284 | sylancr 578 |
. . . . . . . 8
⊢ (𝜑 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) |
286 | | mbfima 23924 |
. . . . . . . . 9
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) |
287 | 6, 281, 286 | syl2anc 576 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) |
288 | | difmbl 23837 |
. . . . . . . 8
⊢
((if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
289 | 285, 287,
288 | syl2anc 576 |
. . . . . . 7
⊢ (𝜑 → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
290 | 289 | ad2antrr 713 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
291 | | inmbl 23836 |
. . . . . 6
⊢ (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) |
292 | 270, 290,
291 | syl2anc 576 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) |
293 | 278, 292 | eqeltrd 2860 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol) |
294 | | mblvol 23824 |
. . . . . 6
⊢ ((◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) |
295 | 293, 294 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) |
296 | 191 | adantr 473 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) |
297 | 296, 264 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
298 | 77, 181 | ifcld 4389 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) |
299 | | 0re 10433 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
300 | | ifcl 4388 |
. . . . . . . . . . . . . . 15
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) |
301 | 298, 299,
300 | sylancl 577 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) |
302 | 39 | fvmpt2 6599 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
303 | 33, 301, 302 | syl2anc 576 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
304 | 32, 303 | eqtrd 2808 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
305 | 304 | adantlr 702 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
306 | 305 | eqeq1d 2774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) |
307 | 306, 51 | sylbid 232 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) |
308 | 307 | expimpd 446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛))) |
309 | 297, 308 | sylbid 232 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛))) |
310 | 309 | ssrdv 3860 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛)) |
311 | | iccssre 12627 |
. . . . . . 7
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ) |
312 | 268, 267,
311 | syl2anc 576 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) |
313 | | mblvol 23824 |
. . . . . . . 8
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) |
314 | 270, 313 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) |
315 | | iccvolcl 23861 |
. . . . . . . 8
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) →
(vol‘(-𝑛[,]𝑛)) ∈
ℝ) |
316 | 268, 267,
315 | syl2anc 576 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ) |
317 | 314, 316 | eqeltrrd 2861 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) |
318 | | ovolsscl 23780 |
. . . . . 6
⊢ (((◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
319 | 310, 312,
317, 318 | syl3anc 1351 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
320 | 295, 319 | eqeltrd 2860 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
321 | 21, 29, 293, 320 | i1fd 23975 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ dom
∫1) |
322 | 321 | ralrimiva 3126 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐺‘𝑛) ∈ dom
∫1) |
323 | | ffnfv 6699 |
. 2
⊢ (𝐺:ℕ⟶dom
∫1 ↔ (𝐺
Fn ℕ ∧ ∀𝑛
∈ ℕ (𝐺‘𝑛) ∈ dom
∫1)) |
324 | 5, 322, 323 | sylanbrc 575 |
1
⊢ (𝜑 → 𝐺:ℕ⟶dom
∫1) |