| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | reex 11247 | . . . . 5
⊢ ℝ
∈ V | 
| 2 | 1 | mptex 7244 | . . . 4
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V | 
| 3 |  | mbfi1fseq.4 | . . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | 
| 4 | 2, 3 | fnmpti 6710 | . . 3
⊢ 𝐺 Fn ℕ | 
| 5 | 4 | a1i 11 | . 2
⊢ (𝜑 → 𝐺 Fn ℕ) | 
| 6 |  | mbfi1fseq.1 | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| 7 |  | mbfi1fseq.2 | . . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | 
| 8 |  | mbfi1fseq.3 | . . . . . 6
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | 
| 9 | 6, 7, 8, 3 | mbfi1fseqlem3 25753 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) | 
| 10 |  | elfznn0 13661 | . . . . . . . . 9
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0) | 
| 11 | 10 | nn0red 12590 | . . . . . . . 8
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ) | 
| 12 |  | 2nn 12340 | . . . . . . . . . 10
⊢ 2 ∈
ℕ | 
| 13 |  | nnnn0 12535 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) | 
| 14 |  | nnexpcl 14116 | . . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) | 
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) | 
| 16 | 15 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℕ) | 
| 17 |  | nndivre 12308 | . . . . . . . 8
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑚 / (2↑𝑛)) ∈
ℝ) | 
| 18 | 11, 16, 17 | syl2anr 597 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ) | 
| 19 | 18 | fmpttd 7134 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ) | 
| 20 | 19 | frnd 6743 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ) | 
| 21 | 9, 20 | fssd 6752 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ℝ) | 
| 22 |  | fzfid 14015 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin) | 
| 23 | 19 | ffnd 6736 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛)))) | 
| 24 |  | dffn4 6825 | . . . . . . 7
⊢ ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) | 
| 25 | 23, 24 | sylib 218 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) | 
| 26 |  | fofi 9352 | . . . . . 6
⊢
(((0...(𝑛 ·
(2↑𝑛))) ∈ Fin
∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) | 
| 27 | 22, 25, 26 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) | 
| 28 | 9 | frnd 6743 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) | 
| 29 | 27, 28 | ssfid 9302 | . . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ∈ Fin) | 
| 30 | 6, 7, 8, 3 | mbfi1fseqlem2 25752 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))) | 
| 31 | 30 | fveq1d 6907 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) | 
| 32 | 31 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) | 
| 33 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | 
| 34 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝑛𝐽𝑥) ∈ V | 
| 35 |  | vex 3483 | . . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V | 
| 36 | 34, 35 | ifex 4575 | . . . . . . . . . . . . . 14
⊢ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V | 
| 37 |  | c0ex 11256 | . . . . . . . . . . . . . 14
⊢ 0 ∈
V | 
| 38 | 36, 37 | ifex 4575 | . . . . . . . . . . . . 13
⊢ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V | 
| 39 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 40 | 39 | fvmpt2 7026 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 41 | 33, 38, 40 | sylancl 586 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 42 | 32, 41 | eqtrd 2776 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 43 | 42 | adantlr 715 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 44 | 43 | eqeq1d 2738 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) | 
| 45 |  | eldifsni 4789 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ≠ 0) | 
| 46 | 45 | ad2antlr 727 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0) | 
| 47 |  | neeq1 3002 | . . . . . . . . . . . 12
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0)) | 
| 48 | 46, 47 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0)) | 
| 49 |  | iffalse 4533 | . . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0) | 
| 50 | 49 | necon1ai 2967 | . . . . . . . . . . 11
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛)) | 
| 51 | 48, 50 | syl6 35 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) | 
| 52 | 51 | pm4.71rd 562 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))) | 
| 53 |  | iftrue 4530 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)) | 
| 54 | 53 | eqeq1d 2738 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)) | 
| 55 |  | simpllr 775 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ) | 
| 56 | 55 | nnred 12282 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) | 
| 57 | 56 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ) | 
| 58 |  | rge0ssre 13497 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℝ | 
| 59 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) | 
| 60 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) | 
| 61 | 7, 59, 60 | syl2an 596 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) | 
| 62 | 58, 61 | sselid 3980 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) | 
| 63 |  | nnnn0 12535 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) | 
| 64 |  | nnexpcl 14116 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) | 
| 65 | 12, 63, 64 | sylancr 587 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) | 
| 66 | 65 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) | 
| 67 | 66 | nnred 12282 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) | 
| 68 | 62, 67 | remulcld 11292 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) | 
| 69 |  | reflcl 13837 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | 
| 70 | 68, 69 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | 
| 71 | 70, 66 | nndivred 12321 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) | 
| 72 | 71 | ralrimivva 3201 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) | 
| 73 | 8 | fmpo 8094 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) | 
| 74 | 72, 73 | sylib 218 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) | 
| 75 |  | fovcdm 7604 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) | 
| 76 | 74, 75 | syl3an1 1163 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) | 
| 77 | 76 | 3expa 1118 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) | 
| 78 | 77 | adantlr 715 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) | 
| 79 | 78 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ) | 
| 80 |  | lemin 13235 | . . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) | 
| 81 | 57, 79, 57, 80 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) | 
| 82 | 79, 57 | ifcld 4571 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) | 
| 83 | 82, 57 | letri3d 11404 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) | 
| 84 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) | 
| 85 | 84 | eqeq2d 2747 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)) | 
| 86 |  | min2 13233 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) | 
| 87 | 79, 57, 86 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) | 
| 88 | 87 | biantrurd 532 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) | 
| 89 | 83, 85, 88 | 3bitr4d 311 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))) | 
| 90 | 57 | leidd 11830 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ≤ 𝑛) | 
| 91 | 90 | biantrud 531 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) | 
| 92 | 81, 89, 91 | 3bitr4d 311 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ (𝑛𝐽𝑥))) | 
| 93 |  | breq1 5145 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝐹‘𝑥))) | 
| 94 | 7 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) | 
| 95 | 94 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) | 
| 96 |  | elrege0 13495 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 97 | 95, 96 | sylib 218 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 98 | 97 | simpld 494 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | 
| 99 | 98 | adantlr 715 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | 
| 100 | 55, 15 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℕ) | 
| 101 | 100 | nnred 12282 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℝ) | 
| 102 | 99, 101 | remulcld 11292 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ) | 
| 103 |  | reflcl 13837 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) | 
| 104 | 102, 103 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) | 
| 105 | 100 | nngt0d 12316 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛)) | 
| 106 |  | lemuldiv 12149 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℝ ∧
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) | 
| 107 | 56, 104, 101, 105, 106 | syl112anc 1375 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) | 
| 108 |  | lemul1 12120 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) | 
| 109 | 56, 99, 101, 105, 108 | syl112anc 1375 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) | 
| 110 |  | nnmulcl 12291 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑛 ·
(2↑𝑛)) ∈
ℕ) | 
| 111 | 55, 15, 110 | syl2anc2 585 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ) | 
| 112 | 111 | nnzd 12642 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ) | 
| 113 |  | flge 13846 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) | 
| 114 | 102, 112,
113 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) | 
| 115 | 109, 114 | bitrd 279 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) | 
| 116 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | 
| 117 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) | 
| 118 | 117 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) | 
| 119 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑚 = 𝑛) | 
| 120 | 119 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛)) | 
| 121 | 118, 120 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝑛))) | 
| 122 | 121 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝑛)))) | 
| 123 | 122, 120 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) | 
| 124 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . 19
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V | 
| 125 | 123, 8, 124 | ovmpoa 7589 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) | 
| 126 | 55, 116, 125 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) | 
| 127 | 126 | breq2d 5154 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) | 
| 128 | 107, 115,
127 | 3bitr4d 311 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) | 
| 129 | 93, 128 | sylan9bbr 510 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) | 
| 130 | 116 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ) | 
| 131 |  | iftrue 4530 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) | 
| 132 | 131 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) | 
| 133 | 130, 132 | eleqtrrd 2843 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) | 
| 134 | 133 | biantrurd 532 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) | 
| 135 | 92, 129, 134 | 3bitr2d 307 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) | 
| 136 | 28 | ssdifssd 4146 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) | 
| 137 | 136 | sselda 3982 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) | 
| 138 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) | 
| 139 | 138 | rnmpt 5967 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ran
(𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))} | 
| 140 | 139 | eqabri 2884 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))) | 
| 141 |  | elfzelz 13565 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ) | 
| 142 | 141 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ) | 
| 143 | 142 | zcnd 12725 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ) | 
| 144 | 15 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ) | 
| 145 | 144 | nncnd 12283 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ) | 
| 146 | 144 | nnne0d 12317 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0) | 
| 147 | 143, 145,
146 | divcan1d 12045 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚) | 
| 148 | 147, 142 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ) | 
| 149 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛))) | 
| 150 | 149 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)) | 
| 151 | 148, 150 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) | 
| 152 | 151 | rexlimdva 3154 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) | 
| 153 | 140, 152 | biimtrid 242 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ)) | 
| 154 | 153 | imp 406 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ) | 
| 155 | 137, 154 | syldan 591 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ) | 
| 156 | 155 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ) | 
| 157 |  | flbi 13857 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) | 
| 158 | 102, 156,
157 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) | 
| 159 | 158 | adantr 480 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) | 
| 160 |  | neeq1 3002 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛)) | 
| 161 | 160 | biimparc 479 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛) | 
| 162 |  | iffalse 4533 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛) | 
| 163 | 162 | necon1ai 2967 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛) | 
| 164 | 161, 163 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) | 
| 165 | 164 | iftrued 4532 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) | 
| 166 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) | 
| 167 | 165, 166 | eqtr3d 2778 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) | 
| 168 | 167, 164 | eqbrtrrd 5166 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘 ≤ 𝑛) | 
| 169 | 168, 167 | jca 511 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)) | 
| 170 | 169 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) | 
| 171 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛)) | 
| 172 | 171 | biimparc 479 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) | 
| 173 | 172 | iftrued 4532 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) | 
| 174 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) | 
| 175 | 173, 174 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) | 
| 176 | 170, 175 | impbid1 225 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) | 
| 177 | 176 | adantl 481 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) | 
| 178 |  | eldifi 4130 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺‘𝑛)) | 
| 179 |  | nnre 12274 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) | 
| 180 | 179 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) | 
| 181 | 77, 180, 86 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) | 
| 182 | 13 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0) | 
| 183 | 182 | nn0ge0d 12592 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛) | 
| 184 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) | 
| 185 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) | 
| 186 | 184, 185 | ifboth 4564 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) | 
| 187 | 181, 183,
186 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) | 
| 188 | 42, 187 | eqbrtrd 5164 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) | 
| 189 | 188 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) | 
| 190 | 9 | ffnd 6736 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) Fn ℝ) | 
| 191 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ((𝐺‘𝑛)‘𝑥) → (𝑘 ≤ 𝑛 ↔ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) | 
| 192 | 191 | ralrn 7107 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) | 
| 193 | 190, 192 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) | 
| 194 | 189, 193 | mpbird 257 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛) | 
| 195 | 194 | r19.21bi 3250 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺‘𝑛)) → 𝑘 ≤ 𝑛) | 
| 196 | 178, 195 | sylan2 593 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ≤ 𝑛) | 
| 197 | 196 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → 𝑘 ≤ 𝑛) | 
| 198 | 197 | biantrurd 532 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) | 
| 199 | 126 | eqeq1d 2738 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘)) | 
| 200 | 104 | recnd 11290 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℂ) | 
| 201 | 28, 20 | sstrd 3993 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ℝ) | 
| 202 | 201 | ssdifssd 4146 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆
ℝ) | 
| 203 | 202 | sselda 3982 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ℝ) | 
| 204 | 203 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ) | 
| 205 | 204 | recnd 11290 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ) | 
| 206 | 100 | nncnd 12283 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℂ) | 
| 207 | 100 | nnne0d 12317 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0) | 
| 208 | 200, 205,
206, 207 | divmul3d 12078 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) | 
| 209 | 199, 208 | bitrd 279 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) | 
| 210 | 209 | adantr 480 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) | 
| 211 | 177, 198,
210 | 3bitr2d 307 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) | 
| 212 |  | ifnefalse 4536 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ≠ 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) | 
| 213 | 212 | eleq2d 2826 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) | 
| 214 | 100 | nnrecred 12318 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℝ) | 
| 215 | 204, 214 | readdcld 11291 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ) | 
| 216 | 215 | rexrd 11312 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈
ℝ*) | 
| 217 |  | elioomnf 13485 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) | 
| 218 | 216, 217 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) | 
| 219 | 94 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞)) | 
| 220 | 219 | ffnd 6736 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ) | 
| 221 |  | elpreima 7077 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) | 
| 222 | 220, 221 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) | 
| 223 | 116, 222 | mpbirand 707 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) | 
| 224 | 99 | biantrurd 532 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) | 
| 225 | 218, 223,
224 | 3bitr4d 311 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))))) | 
| 226 |  | ltmul1 12118 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) | 
| 227 | 99, 215, 101, 105, 226 | syl112anc 1375 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) | 
| 228 | 214 | recnd 11290 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℂ) | 
| 229 | 206, 207 | recid2d 12040 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1) | 
| 230 | 229 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1)) | 
| 231 | 205, 206,
228, 230 | joinlmuladdmuld 11289 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1)) | 
| 232 | 231 | breq2d 5154 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) | 
| 233 | 225, 227,
232 | 3bitrd 305 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) | 
| 234 | 213, 233 | sylan9bbr 510 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) | 
| 235 |  | lemul1 12120 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) | 
| 236 | 204, 99, 101, 105, 235 | syl112anc 1375 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) | 
| 237 | 236 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) | 
| 238 | 234, 237 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛))))) | 
| 239 | 238 | biancomd 463 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) | 
| 240 | 159, 211,
239 | 3bitr4d 311 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) | 
| 241 | 135, 240 | pm2.61dane 3028 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) | 
| 242 |  | eldif 3960 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)))) | 
| 243 | 204 | rexrd 11312 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*) | 
| 244 |  | elioomnf 13485 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) | 
| 245 | 243, 244 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) | 
| 246 |  | elpreima 7077 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) | 
| 247 | 220, 246 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) | 
| 248 | 116, 247 | mpbirand 707 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) ∈ (-∞(,)𝑘))) | 
| 249 | 99 | biantrurd 532 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < 𝑘 ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) | 
| 250 | 245, 248,
249 | 3bitr4d 311 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) < 𝑘)) | 
| 251 | 250 | notbid 318 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹‘𝑥) < 𝑘)) | 
| 252 | 204, 99 | lenltd 11408 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝑘)) | 
| 253 | 251, 252 | bitr4d 282 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹‘𝑥))) | 
| 254 | 253 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) | 
| 255 | 242, 254 | bitrid 283 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) | 
| 256 | 241, 255 | bitr4d 282 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) | 
| 257 | 54, 256 | sylan9bbr 510 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) | 
| 258 | 257 | pm5.32da 579 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) | 
| 259 | 44, 52, 258 | 3bitrd 305 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) | 
| 260 | 259 | pm5.32da 579 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) | 
| 261 | 21 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛):ℝ⟶ℝ) | 
| 262 | 261 | ffnd 6736 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) | 
| 263 |  | fniniseg 7079 | . . . . . . . 8
⊢ ((𝐺‘𝑛) Fn ℝ → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) | 
| 264 | 262, 263 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) | 
| 265 |  | elin 3966 | . . . . . . . 8
⊢ (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) | 
| 266 | 179 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑛 ∈ ℝ) | 
| 267 | 266 | renegcld 11691 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → -𝑛 ∈ ℝ) | 
| 268 |  | iccmbl 25602 | . . . . . . . . . . . . 13
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol) | 
| 269 | 267, 266,
268 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol) | 
| 270 |  | mblss 25567 | . . . . . . . . . . . 12
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ) | 
| 271 | 269, 270 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) | 
| 272 | 271 | sseld 3981 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ)) | 
| 273 | 272 | adantrd 491 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ)) | 
| 274 | 273 | pm4.71rd 562 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) | 
| 275 | 265, 274 | bitrid 283 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) | 
| 276 | 260, 264,
275 | 3bitr4d 311 | . . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) | 
| 277 | 276 | eqrdv 2734 | . . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) | 
| 278 |  | rembl 25576 | . . . . . . . . 9
⊢ ℝ
∈ dom vol | 
| 279 |  | fss 6751 | . . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | 
| 280 | 7, 58, 279 | sylancl 586 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | 
| 281 |  | mbfima 25666 | . . . . . . . . . 10
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) | 
| 282 | 6, 280, 281 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) | 
| 283 |  | ifcl 4570 | . . . . . . . . 9
⊢ ((ℝ
∈ dom vol ∧ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) →
if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) | 
| 284 | 278, 282,
283 | sylancr 587 | . . . . . . . 8
⊢ (𝜑 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) | 
| 285 |  | mbfima 25666 | . . . . . . . . 9
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) | 
| 286 | 6, 280, 285 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) | 
| 287 |  | difmbl 25579 | . . . . . . . 8
⊢
((if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) | 
| 288 | 284, 286,
287 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) | 
| 289 | 288 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) | 
| 290 |  | inmbl 25578 | . . . . . 6
⊢ (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) | 
| 291 | 269, 289,
290 | syl2anc 584 | . . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) | 
| 292 | 277, 291 | eqeltrd 2840 | . . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol) | 
| 293 |  | mblvol 25566 | . . . . . 6
⊢ ((◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) | 
| 294 | 292, 293 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) | 
| 295 | 190 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) | 
| 296 | 295, 263 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) | 
| 297 | 77, 180 | ifcld 4571 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) | 
| 298 |  | 0re 11264 | . . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ | 
| 299 |  | ifcl 4570 | . . . . . . . . . . . . . . 15
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) | 
| 300 | 297, 298,
299 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) | 
| 301 | 39 | fvmpt2 7026 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 302 | 33, 300, 301 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 303 | 32, 302 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 304 | 303 | adantlr 715 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) | 
| 305 | 304 | eqeq1d 2738 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) | 
| 306 | 305, 51 | sylbid 240 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) | 
| 307 | 306 | expimpd 453 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛))) | 
| 308 | 296, 307 | sylbid 240 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛))) | 
| 309 | 308 | ssrdv 3988 | . . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛)) | 
| 310 |  | iccssre 13470 | . . . . . . 7
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ) | 
| 311 | 267, 266,
310 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) | 
| 312 |  | mblvol 25566 | . . . . . . . 8
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) | 
| 313 | 269, 312 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) | 
| 314 |  | iccvolcl 25603 | . . . . . . . 8
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) →
(vol‘(-𝑛[,]𝑛)) ∈
ℝ) | 
| 315 | 267, 266,
314 | syl2anc 584 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ) | 
| 316 | 313, 315 | eqeltrrd 2841 | . . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) | 
| 317 |  | ovolsscl 25522 | . . . . . 6
⊢ (((◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) | 
| 318 | 309, 311,
316, 317 | syl3anc 1372 | . . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) | 
| 319 | 294, 318 | eqeltrd 2840 | . . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) | 
| 320 | 21, 29, 292, 319 | i1fd 25717 | . . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ dom
∫1) | 
| 321 | 320 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐺‘𝑛) ∈ dom
∫1) | 
| 322 |  | ffnfv 7138 | . 2
⊢ (𝐺:ℕ⟶dom
∫1 ↔ (𝐺
Fn ℕ ∧ ∀𝑛
∈ ℕ (𝐺‘𝑛) ∈ dom
∫1)) | 
| 323 | 5, 321, 322 | sylanbrc 583 | 1
⊢ (𝜑 → 𝐺:ℕ⟶dom
∫1) |