MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem4 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem4 24588
Description: Lemma for mbfi1fseq 24591. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem4 (𝜑𝐺:ℕ⟶dom ∫1)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10803 . . . . 5 ℝ ∈ V
21mptex 7028 . . . 4 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V
3 mbfi1fseq.4 . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
42, 3fnmpti 6510 . . 3 𝐺 Fn ℕ
54a1i 11 . 2 (𝜑𝐺 Fn ℕ)
6 mbfi1fseq.1 . . . . . 6 (𝜑𝐹 ∈ MblFn)
7 mbfi1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
8 mbfi1fseq.3 . . . . . 6 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
96, 7, 8, 3mbfi1fseqlem3 24587 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
10 elfznn0 13188 . . . . . . . . 9 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0)
1110nn0red 12134 . . . . . . . 8 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ)
12 2nn 11886 . . . . . . . . . 10 2 ∈ ℕ
13 nnnn0 12080 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
14 nnexpcl 13631 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1512, 13, 14sylancr 590 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1615adantl 485 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
17 nndivre 11854 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ (2↑𝑛) ∈ ℕ) → (𝑚 / (2↑𝑛)) ∈ ℝ)
1811, 16, 17syl2anr 600 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ)
1918fmpttd 6921 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ)
2019frnd 6542 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ)
219, 20fssd 6552 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛):ℝ⟶ℝ)
22 fzfid 13529 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin)
2319ffnd 6535 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))))
24 dffn4 6628 . . . . . . 7 ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
2523, 24sylib 221 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
26 fofi 8951 . . . . . 6 (((0...(𝑛 · (2↑𝑛))) ∈ Fin ∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin)
2722, 25, 26syl2anc 587 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin)
289frnd 6542 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
2927, 28ssfid 8887 . . . 4 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ∈ Fin)
306, 7, 8, 3mbfi1fseqlem2 24586 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)))
3130fveq1d 6708 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝐺𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥))
3231ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥))
33 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
34 ovex 7235 . . . . . . . . . . . . . . 15 (𝑛𝐽𝑥) ∈ V
35 vex 3405 . . . . . . . . . . . . . . 15 𝑛 ∈ V
3634, 35ifex 4479 . . . . . . . . . . . . . 14 if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V
37 c0ex 10810 . . . . . . . . . . . . . 14 0 ∈ V
3836, 37ifex 4479 . . . . . . . . . . . . 13 if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V
39 eqid 2734 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4039fvmpt2 6818 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4133, 38, 40sylancl 589 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4232, 41eqtrd 2774 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4342adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4443eqeq1d 2736 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))
45 eldifsni 4693 . . . . . . . . . . . . 13 (𝑘 ∈ (ran (𝐺𝑛) ∖ {0}) → 𝑘 ≠ 0)
4645ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0)
47 neeq1 2997 . . . . . . . . . . . 12 (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0))
4846, 47syl5ibrcom 250 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0))
49 iffalse 4438 . . . . . . . . . . . 12 𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0)
5049necon1ai 2962 . . . . . . . . . . 11 (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛))
5148, 50syl6 35 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘𝑥 ∈ (-𝑛[,]𝑛)))
5251pm4.71rd 566 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)))
53 iftrue 4435 . . . . . . . . . . . 12 (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))
5453eqeq1d 2736 . . . . . . . . . . 11 (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘))
55 simpllr 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ)
5655nnred 11828 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ)
5756adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ)
58 rge0ssre 13027 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0[,)+∞) ⊆ ℝ
59 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
60 ffvelrn 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
617, 59, 60syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
6258, 61sseldi 3889 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
63 nnnn0 12080 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
64 nnexpcl 13631 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
6512, 63, 64sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
6665ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
6766nnred 11828 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
6862, 67remulcld 10846 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
69 reflcl 13354 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
7170, 66nndivred 11867 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
7271ralrimivva 3105 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
738fmpo 7827 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
7472, 73sylib 221 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
75 fovrn 7367 . . . . . . . . . . . . . . . . . . . 20 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7674, 75syl3an1 1165 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
77763expa 1120 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7877adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7978adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ)
80 lemin 12765 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
8157, 79, 57, 80syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
8279, 57ifcld 4475 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ)
8382, 57letri3d 10957 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))))
84 simpr 488 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
8584eqeq2d 2745 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛))
86 min2 12763 . . . . . . . . . . . . . . . . . 18 (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
8779, 57, 86syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
8887biantrurd 536 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))))
8983, 85, 883bitr4d 314 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))
9057leidd 11381 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛𝑛)
9190biantrud 535 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
9281, 89, 913bitr4d 314 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑛 ≤ (𝑛𝐽𝑥)))
93 breq1 5046 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝐹𝑥)))
947adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
9594ffvelrnda 6893 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
96 elrege0 13025 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
9795, 96sylib 221 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
9897simpld 498 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
9998adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
10055, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℕ)
101100nnred 11828 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℝ)
10299, 101remulcld 10846 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝑛)) ∈ ℝ)
103 reflcl 13354 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) · (2↑𝑛)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ)
104102, 103syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ)
105100nngt0d 11862 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛))
106 lemuldiv 11695 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
10756, 104, 101, 105, 106syl112anc 1376 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
108 lemul1 11667 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
10956, 99, 101, 105, 108syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
110 nnmulcl 11837 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ (2↑𝑛) ∈ ℕ) → (𝑛 · (2↑𝑛)) ∈ ℕ)
11155, 15, 110syl2anc2 588 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ)
112111nnzd 12264 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ)
113 flge 13363 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
114102, 112, 113syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
115109, 114bitrd 282 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
116 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
117 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = 𝑛𝑦 = 𝑥) → 𝑦 = 𝑥)
118117fveq2d 6710 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑛𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
119 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = 𝑛𝑦 = 𝑥) → 𝑚 = 𝑛)
120119oveq2d 7218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑛𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛))
121118, 120oveq12d 7220 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑛𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑛)))
122121fveq2d 6710 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑛𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑛))))
123122, 120oveq12d 7220 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑛𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
124 ovex 7235 . . . . . . . . . . . . . . . . . . 19 ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V
125123, 8, 124ovmpoa 7353 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
12655, 116, 125syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
127126breq2d 5055 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
128107, 115, 1273bitr4d 314 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥)))
12993, 128sylan9bbr 514 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥)))
130116adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ)
131 iftrue 4435 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ)
132131adantl 485 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ)
133130, 132eleqtrrd 2837 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
134133biantrurd 536 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
13592, 129, 1343bitr2d 310 . . . . . . . . . . . . 13 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
13628ssdifssd 4047 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (ran (𝐺𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
137136sselda 3891 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
138 eqid 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))
139138rnmpt 5813 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))}
140139abeq2i 2868 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)))
141 elfzelz 13095 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ)
142141adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ)
143142zcnd 12266 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ)
14415ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ)
145144nncnd 11829 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ)
146144nnne0d 11863 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0)
147143, 145, 146divcan1d 11592 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚)
148147, 142eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)
149 oveq1 7209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛)))
150149eleq1d 2818 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ))
151148, 150syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ))
152151rexlimdva 3196 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ))
153140, 152syl5bi 245 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ))
154153imp 410 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ)
155137, 154syldan 594 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ)
156155adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ)
157 flbi 13374 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
158102, 156, 157syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
159158adantr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
160 neeq1 2997 . . . . . . . . . . . . . . . . . . . . . . . 24 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛𝑘𝑛))
161160biimparc 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛)
162 iffalse 4438 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)
163162necon1ai 2962 . . . . . . . . . . . . . . . . . . . . . . 23 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛)
164161, 163syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛)
165164iftrued 4437 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥))
166 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)
167165, 166eqtr3d 2776 . . . . . . . . . . . . . . . . . . . 20 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘)
168167, 164eqbrtrrd 5067 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘𝑛)
169168, 167jca 515 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))
170169ex 416 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
171 breq1 5046 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛𝑘𝑛))
172171biimparc 483 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛)
173172iftrued 4437 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥))
174 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘)
175173, 174eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)
176170, 175impbid1 228 . . . . . . . . . . . . . . . 16 (𝑘𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
177176adantl 485 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
178 eldifi 4031 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ran (𝐺𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺𝑛))
179 nnre 11820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
180179ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ)
18177, 180, 86syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
18213ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0)
183182nn0ge0d 12136 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛)
184 breq1 5046 . . . . . . . . . . . . . . . . . . . . . . . 24 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛))
185 breq1 5046 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛))
186184, 185ifboth 4468 . . . . . . . . . . . . . . . . . . . . . . 23 ((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)
187181, 183, 186syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)
18842, 187eqbrtrd 5065 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) ≤ 𝑛)
189188ralrimiva 3098 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛)
1909ffnd 6535 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) Fn ℝ)
191 breq1 5046 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = ((𝐺𝑛)‘𝑥) → (𝑘𝑛 ↔ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
192191ralrn 6896 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
194189, 193mpbird 260 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛)
195194r19.21bi 3123 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺𝑛)) → 𝑘𝑛)
196178, 195sylan2 596 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘𝑛)
197196ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → 𝑘𝑛)
198197biantrurd 536 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
199126eqeq1d 2736 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘))
200104recnd 10844 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℂ)
20128, 20sstrd 3901 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ⊆ ℝ)
202201ssdifssd 4047 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (ran (𝐺𝑛) ∖ {0}) ⊆ ℝ)
203202sselda 3891 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘 ∈ ℝ)
204203adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ)
205204recnd 10844 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ)
206100nncnd 11829 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℂ)
207100nnne0d 11863 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0)
208200, 205, 206, 207divmul3d 11625 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
209199, 208bitrd 282 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
210209adantr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
211177, 198, 2103bitr2d 310 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
212 ifnefalse 4441 . . . . . . . . . . . . . . . . . 18 (𝑘𝑛 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))
213212eleq2d 2819 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
214100nnrecred 11864 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈ ℝ)
215204, 214readdcld 10845 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ)
216215rexrd 10866 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ*)
217 elioomnf 13015 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
218216, 217syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
21994ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞))
220219ffnd 6535 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
221 elpreima 6867 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
222220, 221syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
223116, 222mpbirand 707 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))
22499biantrurd 536 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
225218, 223, 2243bitr4d 314 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛)))))
226 ltmul1 11665 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛))))
22799, 215, 101, 105, 226syl112anc 1376 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛))))
228214recnd 10844 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈ ℂ)
229206, 207recid2d 11587 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1)
230229oveq2d 7218 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1))
231205, 206, 228, 230joinlmuladdmuld 10843 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1))
232231breq2d 5055 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
233225, 227, 2323bitrd 308 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
234213, 233sylan9bbr 514 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
235 lemul1 11667 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
236204, 99, 101, 105, 235syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
237236adantr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
238234, 237anbi12d 634 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥)) ↔ (((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)))))
239238biancomd 467 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
240159, 211, 2393bitr4d 314 . . . . . . . . . . . . 13 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
241135, 240pm2.61dane 3022 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
242 eldif 3867 . . . . . . . . . . . . 13 (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘))))
243204rexrd 10866 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*)
244 elioomnf 13015 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
246 elpreima 6867 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)𝑘))))
247220, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)𝑘))))
248116, 247mpbirand 707 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝐹𝑥) ∈ (-∞(,)𝑘)))
24999biantrurd 536 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < 𝑘 ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
250245, 248, 2493bitr4d 314 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝐹𝑥) < 𝑘))
251250notbid 321 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹𝑥) < 𝑘))
252204, 99lenltd 10961 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝑘))
253251, 252bitr4d 285 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹𝑥)))
254253anbi2d 632 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
255242, 254syl5bb 286 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
256241, 255bitr4d 285 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
25754, 256sylan9bbr 514 . . . . . . . . . 10 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
258257pm5.32da 582 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
25944, 52, 2583bitrd 308 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
260259pm5.32da 582 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
26121adantr 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛):ℝ⟶ℝ)
262261ffnd 6535 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛) Fn ℝ)
263 fniniseg 6869 . . . . . . . 8 ((𝐺𝑛) Fn ℝ → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
264262, 263syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
265 elin 3873 . . . . . . . 8 (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
266179ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑛 ∈ ℝ)
267266renegcld 11242 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → -𝑛 ∈ ℝ)
268 iccmbl 24435 . . . . . . . . . . . . 13 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
269267, 266, 268syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol)
270 mblss 24400 . . . . . . . . . . . 12 ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ)
271269, 270syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ)
272271sseld 3890 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ))
273272adantrd 495 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ))
274273pm4.71rd 566 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
275265, 274syl5bb 286 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
276260, 264, 2753bitr4d 314 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
277276eqrdv 2732 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
278 rembl 24409 . . . . . . . . 9 ℝ ∈ dom vol
279 fss 6551 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2807, 58, 279sylancl 589 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
281 mbfima 24499 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol)
2826, 280, 281syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol)
283 ifcl 4474 . . . . . . . . 9 ((ℝ ∈ dom vol ∧ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol)
284278, 282, 283sylancr 590 . . . . . . . 8 (𝜑 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol)
285 mbfima 24499 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)𝑘)) ∈ dom vol)
2866, 280, 285syl2anc 587 . . . . . . . 8 (𝜑 → (𝐹 “ (-∞(,)𝑘)) ∈ dom vol)
287 difmbl 24412 . . . . . . . 8 ((if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
288284, 286, 287syl2anc 587 . . . . . . 7 (𝜑 → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
289288ad2antrr 726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
290 inmbl 24411 . . . . . 6 (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ∈ dom vol)
291269, 289, 290syl2anc 587 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ∈ dom vol)
292277, 291eqeltrd 2834 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) ∈ dom vol)
293 mblvol 24399 . . . . . 6 (((𝐺𝑛) “ {𝑘}) ∈ dom vol → (vol‘((𝐺𝑛) “ {𝑘})) = (vol*‘((𝐺𝑛) “ {𝑘})))
294292, 293syl 17 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘((𝐺𝑛) “ {𝑘})) = (vol*‘((𝐺𝑛) “ {𝑘})))
295190adantr 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛) Fn ℝ)
296295, 263syl 17 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
29777, 180ifcld 4475 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ)
298 0re 10818 . . . . . . . . . . . . . . 15 0 ∈ ℝ
299 ifcl 4474 . . . . . . . . . . . . . . 15 ((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ)
300297, 298, 299sylancl 589 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ)
30139fvmpt2 6818 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
30233, 300, 301syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
30332, 302eqtrd 2774 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
304303adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
305304eqeq1d 2736 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))
306305, 51sylbid 243 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘𝑥 ∈ (-𝑛[,]𝑛)))
307306expimpd 457 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛)))
308296, 307sylbid 243 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛)))
309308ssrdv 3897 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛))
310 iccssre 13000 . . . . . . 7 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
311267, 266, 310syl2anc 587 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ)
312 mblvol 24399 . . . . . . . 8 ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛)))
313269, 312syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛)))
314 iccvolcl 24436 . . . . . . . 8 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ)
315267, 266, 314syl2anc 587 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ)
316313, 315eqeltrrd 2835 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ)
317 ovolsscl 24355 . . . . . 6 ((((𝐺𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
318309, 311, 316, 317syl3anc 1373 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol*‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
319294, 318eqeltrd 2834 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
32021, 29, 292, 319i1fd 24550 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ dom ∫1)
321320ralrimiva 3098 . 2 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ dom ∫1)
322 ffnfv 6924 . 2 (𝐺:ℕ⟶dom ∫1 ↔ (𝐺 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ dom ∫1))
3235, 321, 322sylanbrc 586 1 (𝜑𝐺:ℕ⟶dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  Vcvv 3401  cdif 3854  cin 3856  wss 3857  ifcif 4429  {csn 4531   class class class wbr 5043  cmpt 5124   × cxp 5538  ccnv 5539  dom cdm 5540  ran crn 5541  cima 5543   Fn wfn 6364  wf 6365  ontowfo 6367  cfv 6369  (class class class)co 7202  cmpo 7204  Fincfn 8615  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717  +∞cpnf 10847  -∞cmnf 10848  *cxr 10849   < clt 10850  cle 10851  -cneg 11046   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cz 12159  (,)cioo 12918  [,)cico 12920  [,]cicc 12921  ...cfz 13078  cfl 13348  cexp 13618  vol*covol 24331  volcvol 24332  MblFncmbf 24483  1citg1 24484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fi 9016  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-ioo 12922  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-rlim 15033  df-sum 15233  df-rest 16899  df-topgen 16920  df-psmet 20327  df-xmet 20328  df-met 20329  df-bl 20330  df-mopn 20331  df-top 21763  df-topon 21780  df-bases 21815  df-cmp 22256  df-ovol 24333  df-vol 24334  df-mbf 24488  df-itg1 24489
This theorem is referenced by:  mbfi1fseqlem5  24589  mbfi1fseqlem6  24590
  Copyright terms: Public domain W3C validator