MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem4 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem4 25767
Description: Lemma for mbfi1fseq 25770. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem4 (𝜑𝐺:ℕ⟶dom ∫1)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11243 . . . . 5 ℝ ∈ V
21mptex 7242 . . . 4 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V
3 mbfi1fseq.4 . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
42, 3fnmpti 6711 . . 3 𝐺 Fn ℕ
54a1i 11 . 2 (𝜑𝐺 Fn ℕ)
6 mbfi1fseq.1 . . . . . 6 (𝜑𝐹 ∈ MblFn)
7 mbfi1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
8 mbfi1fseq.3 . . . . . 6 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
96, 7, 8, 3mbfi1fseqlem3 25766 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
10 elfznn0 13656 . . . . . . . . 9 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0)
1110nn0red 12585 . . . . . . . 8 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ)
12 2nn 12336 . . . . . . . . . 10 2 ∈ ℕ
13 nnnn0 12530 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
14 nnexpcl 14111 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1512, 13, 14sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1615adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
17 nndivre 12304 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ (2↑𝑛) ∈ ℕ) → (𝑚 / (2↑𝑛)) ∈ ℝ)
1811, 16, 17syl2anr 597 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ)
1918fmpttd 7134 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ)
2019frnd 6744 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ)
219, 20fssd 6753 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛):ℝ⟶ℝ)
22 fzfid 14010 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin)
2319ffnd 6737 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))))
24 dffn4 6826 . . . . . . 7 ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
2523, 24sylib 218 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
26 fofi 9348 . . . . . 6 (((0...(𝑛 · (2↑𝑛))) ∈ Fin ∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin)
2722, 25, 26syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin)
289frnd 6744 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
2927, 28ssfid 9298 . . . 4 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ∈ Fin)
306, 7, 8, 3mbfi1fseqlem2 25765 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)))
3130fveq1d 6908 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝐺𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥))
3231ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥))
33 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
34 ovex 7463 . . . . . . . . . . . . . . 15 (𝑛𝐽𝑥) ∈ V
35 vex 3481 . . . . . . . . . . . . . . 15 𝑛 ∈ V
3634, 35ifex 4580 . . . . . . . . . . . . . 14 if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V
37 c0ex 11252 . . . . . . . . . . . . . 14 0 ∈ V
3836, 37ifex 4580 . . . . . . . . . . . . 13 if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V
39 eqid 2734 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4039fvmpt2 7026 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4133, 38, 40sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4232, 41eqtrd 2774 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4342adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4443eqeq1d 2736 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))
45 eldifsni 4794 . . . . . . . . . . . . 13 (𝑘 ∈ (ran (𝐺𝑛) ∖ {0}) → 𝑘 ≠ 0)
4645ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0)
47 neeq1 3000 . . . . . . . . . . . 12 (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0))
4846, 47syl5ibrcom 247 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0))
49 iffalse 4539 . . . . . . . . . . . 12 𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0)
5049necon1ai 2965 . . . . . . . . . . 11 (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛))
5148, 50syl6 35 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘𝑥 ∈ (-𝑛[,]𝑛)))
5251pm4.71rd 562 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)))
53 iftrue 4536 . . . . . . . . . . . 12 (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))
5453eqeq1d 2736 . . . . . . . . . . 11 (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘))
55 simpllr 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ)
5655nnred 12278 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ)
58 rge0ssre 13492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0[,)+∞) ⊆ ℝ
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
60 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
617, 59, 60syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
6258, 61sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
63 nnnn0 12530 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
64 nnexpcl 14111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
6512, 63, 64sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
6665ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
6766nnred 12278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
6862, 67remulcld 11288 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
69 reflcl 13832 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
7170, 66nndivred 12317 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
7271ralrimivva 3199 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
738fmpo 8091 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
7472, 73sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
75 fovcdm 7602 . . . . . . . . . . . . . . . . . . . 20 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7674, 75syl3an1 1162 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
77763expa 1117 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7877adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ)
80 lemin 13230 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
8157, 79, 57, 80syl3anc 1370 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
8279, 57ifcld 4576 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ)
8382, 57letri3d 11400 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))))
84 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
8584eqeq2d 2745 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛))
86 min2 13228 . . . . . . . . . . . . . . . . . 18 (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
8779, 57, 86syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
8887biantrurd 532 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))))
8983, 85, 883bitr4d 311 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))
9057leidd 11826 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛𝑛)
9190biantrud 531 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
9281, 89, 913bitr4d 311 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑛 ≤ (𝑛𝐽𝑥)))
93 breq1 5150 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝐹𝑥)))
947adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
9594ffvelcdmda 7103 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
96 elrege0 13490 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
9795, 96sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
9897simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
9998adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
10055, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℕ)
101100nnred 12278 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℝ)
10299, 101remulcld 11288 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝑛)) ∈ ℝ)
103 reflcl 13832 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) · (2↑𝑛)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ)
104102, 103syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ)
105100nngt0d 12312 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛))
106 lemuldiv 12145 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
10756, 104, 101, 105, 106syl112anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
108 lemul1 12116 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
10956, 99, 101, 105, 108syl112anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
110 nnmulcl 12287 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ (2↑𝑛) ∈ ℕ) → (𝑛 · (2↑𝑛)) ∈ ℕ)
11155, 15, 110syl2anc2 585 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ)
112111nnzd 12637 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ)
113 flge 13841 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
114102, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
115109, 114bitrd 279 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
116 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
117 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = 𝑛𝑦 = 𝑥) → 𝑦 = 𝑥)
118117fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑛𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
119 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = 𝑛𝑦 = 𝑥) → 𝑚 = 𝑛)
120119oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑛𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛))
121118, 120oveq12d 7448 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑛𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑛)))
122121fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑛𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑛))))
123122, 120oveq12d 7448 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑛𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
124 ovex 7463 . . . . . . . . . . . . . . . . . . 19 ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V
125123, 8, 124ovmpoa 7587 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
12655, 116, 125syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
127126breq2d 5159 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
128107, 115, 1273bitr4d 311 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥)))
12993, 128sylan9bbr 510 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥)))
130116adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ)
131 iftrue 4536 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ)
132131adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ)
133130, 132eleqtrrd 2841 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
134133biantrurd 532 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
13592, 129, 1343bitr2d 307 . . . . . . . . . . . . 13 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
13628ssdifssd 4156 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (ran (𝐺𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
137136sselda 3994 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
138 eqid 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))
139138rnmpt 5970 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))}
140139eqabri 2882 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)))
141 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ)
142141adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ)
143142zcnd 12720 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ)
14415ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ)
145144nncnd 12279 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ)
146144nnne0d 12313 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0)
147143, 145, 146divcan1d 12041 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚)
148147, 142eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)
149 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛)))
150149eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ))
151148, 150syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ))
152151rexlimdva 3152 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ))
153140, 152biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ))
154153imp 406 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ)
155137, 154syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ)
157 flbi 13852 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
158102, 156, 157syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
159158adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
160 neeq1 3000 . . . . . . . . . . . . . . . . . . . . . . . 24 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛𝑘𝑛))
161160biimparc 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛)
162 iffalse 4539 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)
163162necon1ai 2965 . . . . . . . . . . . . . . . . . . . . . . 23 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛)
164161, 163syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛)
165164iftrued 4538 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥))
166 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)
167165, 166eqtr3d 2776 . . . . . . . . . . . . . . . . . . . 20 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘)
168167, 164eqbrtrrd 5171 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘𝑛)
169168, 167jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))
170169ex 412 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
171 breq1 5150 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛𝑘𝑛))
172171biimparc 479 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛)
173172iftrued 4538 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥))
174 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘)
175173, 174eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)
176170, 175impbid1 225 . . . . . . . . . . . . . . . 16 (𝑘𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
177176adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
178 eldifi 4140 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ran (𝐺𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺𝑛))
179 nnre 12270 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
180179ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ)
18177, 180, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
18213ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0)
183182nn0ge0d 12587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛)
184 breq1 5150 . . . . . . . . . . . . . . . . . . . . . . . 24 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛))
185 breq1 5150 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛))
186184, 185ifboth 4569 . . . . . . . . . . . . . . . . . . . . . . 23 ((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)
187181, 183, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)
18842, 187eqbrtrd 5169 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) ≤ 𝑛)
189188ralrimiva 3143 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛)
1909ffnd 6737 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) Fn ℝ)
191 breq1 5150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = ((𝐺𝑛)‘𝑥) → (𝑘𝑛 ↔ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
192191ralrn 7107 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
194189, 193mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛)
195194r19.21bi 3248 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺𝑛)) → 𝑘𝑛)
196178, 195sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘𝑛)
197196ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → 𝑘𝑛)
198197biantrurd 532 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
199126eqeq1d 2736 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘))
200104recnd 11286 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℂ)
20128, 20sstrd 4005 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ⊆ ℝ)
202201ssdifssd 4156 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (ran (𝐺𝑛) ∖ {0}) ⊆ ℝ)
203202sselda 3994 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘 ∈ ℝ)
204203adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ)
205204recnd 11286 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ)
206100nncnd 12279 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℂ)
207100nnne0d 12313 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0)
208200, 205, 206, 207divmul3d 12074 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
209199, 208bitrd 279 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
210209adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
211177, 198, 2103bitr2d 307 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
212 ifnefalse 4542 . . . . . . . . . . . . . . . . . 18 (𝑘𝑛 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))
213212eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
214100nnrecred 12314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈ ℝ)
215204, 214readdcld 11287 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ)
216215rexrd 11308 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ*)
217 elioomnf 13480 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
218216, 217syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
21994ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞))
220219ffnd 6737 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
221 elpreima 7077 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
222220, 221syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
223116, 222mpbirand 707 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))
22499biantrurd 532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
225218, 223, 2243bitr4d 311 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛)))))
226 ltmul1 12114 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛))))
22799, 215, 101, 105, 226syl112anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛))))
228214recnd 11286 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈ ℂ)
229206, 207recid2d 12036 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1)
230229oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1))
231205, 206, 228, 230joinlmuladdmuld 11285 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1))
232231breq2d 5159 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
233225, 227, 2323bitrd 305 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
234213, 233sylan9bbr 510 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
235 lemul1 12116 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
236204, 99, 101, 105, 235syl112anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
237236adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
238234, 237anbi12d 632 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥)) ↔ (((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)))))
239238biancomd 463 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
240159, 211, 2393bitr4d 311 . . . . . . . . . . . . 13 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
241135, 240pm2.61dane 3026 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
242 eldif 3972 . . . . . . . . . . . . 13 (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘))))
243204rexrd 11308 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*)
244 elioomnf 13480 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
246 elpreima 7077 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)𝑘))))
247220, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)𝑘))))
248116, 247mpbirand 707 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝐹𝑥) ∈ (-∞(,)𝑘)))
24999biantrurd 532 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < 𝑘 ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
250245, 248, 2493bitr4d 311 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝐹𝑥) < 𝑘))
251250notbid 318 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹𝑥) < 𝑘))
252204, 99lenltd 11404 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝑘))
253251, 252bitr4d 282 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹𝑥)))
254253anbi2d 630 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
255242, 254bitrid 283 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
256241, 255bitr4d 282 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
25754, 256sylan9bbr 510 . . . . . . . . . 10 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
258257pm5.32da 579 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
25944, 52, 2583bitrd 305 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
260259pm5.32da 579 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
26121adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛):ℝ⟶ℝ)
262261ffnd 6737 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛) Fn ℝ)
263 fniniseg 7079 . . . . . . . 8 ((𝐺𝑛) Fn ℝ → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
264262, 263syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
265 elin 3978 . . . . . . . 8 (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
266179ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑛 ∈ ℝ)
267266renegcld 11687 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → -𝑛 ∈ ℝ)
268 iccmbl 25614 . . . . . . . . . . . . 13 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
269267, 266, 268syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol)
270 mblss 25579 . . . . . . . . . . . 12 ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ)
271269, 270syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ)
272271sseld 3993 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ))
273272adantrd 491 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ))
274273pm4.71rd 562 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
275265, 274bitrid 283 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
276260, 264, 2753bitr4d 311 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
277276eqrdv 2732 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
278 rembl 25588 . . . . . . . . 9 ℝ ∈ dom vol
279 fss 6752 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2807, 58, 279sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
281 mbfima 25678 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol)
2826, 280, 281syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol)
283 ifcl 4575 . . . . . . . . 9 ((ℝ ∈ dom vol ∧ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol)
284278, 282, 283sylancr 587 . . . . . . . 8 (𝜑 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol)
285 mbfima 25678 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)𝑘)) ∈ dom vol)
2866, 280, 285syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 “ (-∞(,)𝑘)) ∈ dom vol)
287 difmbl 25591 . . . . . . . 8 ((if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
288284, 286, 287syl2anc 584 . . . . . . 7 (𝜑 → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
289288ad2antrr 726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
290 inmbl 25590 . . . . . 6 (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ∈ dom vol)
291269, 289, 290syl2anc 584 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ∈ dom vol)
292277, 291eqeltrd 2838 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) ∈ dom vol)
293 mblvol 25578 . . . . . 6 (((𝐺𝑛) “ {𝑘}) ∈ dom vol → (vol‘((𝐺𝑛) “ {𝑘})) = (vol*‘((𝐺𝑛) “ {𝑘})))
294292, 293syl 17 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘((𝐺𝑛) “ {𝑘})) = (vol*‘((𝐺𝑛) “ {𝑘})))
295190adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛) Fn ℝ)
296295, 263syl 17 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
29777, 180ifcld 4576 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ)
298 0re 11260 . . . . . . . . . . . . . . 15 0 ∈ ℝ
299 ifcl 4575 . . . . . . . . . . . . . . 15 ((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ)
300297, 298, 299sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ)
30139fvmpt2 7026 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
30233, 300, 301syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
30332, 302eqtrd 2774 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
304303adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
305304eqeq1d 2736 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))
306305, 51sylbid 240 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘𝑥 ∈ (-𝑛[,]𝑛)))
307306expimpd 453 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛)))
308296, 307sylbid 240 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛)))
309308ssrdv 4000 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛))
310 iccssre 13465 . . . . . . 7 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
311267, 266, 310syl2anc 584 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ)
312 mblvol 25578 . . . . . . . 8 ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛)))
313269, 312syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛)))
314 iccvolcl 25615 . . . . . . . 8 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ)
315267, 266, 314syl2anc 584 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ)
316313, 315eqeltrrd 2839 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ)
317 ovolsscl 25534 . . . . . 6 ((((𝐺𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
318309, 311, 316, 317syl3anc 1370 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol*‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
319294, 318eqeltrd 2838 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
32021, 29, 292, 319i1fd 25729 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ dom ∫1)
321320ralrimiva 3143 . 2 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ dom ∫1)
322 ffnfv 7138 . 2 (𝐺:ℕ⟶dom ∫1 ↔ (𝐺 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ dom ∫1))
3235, 321, 322sylanbrc 583 1 (𝜑𝐺:ℕ⟶dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cdif 3959  cin 3961  wss 3962  ifcif 4530  {csn 4630   class class class wbr 5147  cmpt 5230   × cxp 5686  ccnv 5687  dom cdm 5688  ran crn 5689  cima 5691   Fn wfn 6557  wf 6558  ontowfo 6560  cfv 6562  (class class class)co 7430  cmpo 7432  Fincfn 8983  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  (,)cioo 13383  [,)cico 13385  [,]cicc 13386  ...cfz 13543  cfl 13826  cexp 14098  vol*covol 25510  volcvol 25511  MblFncmbf 25662  1citg1 25663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668
This theorem is referenced by:  mbfi1fseqlem5  25768  mbfi1fseqlem6  25769
  Copyright terms: Public domain W3C validator