MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem4 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem4 25647
Description: Lemma for mbfi1fseq 25650. This lemma is not as interesting as it is long - it is simply checking that 𝐺 is in fact a sequence of simple functions, by verifying that its range is in (0...𝑛2↑𝑛) / (2↑𝑛) (which is to say, the numbers from 0 to 𝑛 in increments of 1 / (2↑𝑛)), and also that the preimage of each point 𝑘 is measurable, because it is equal to (-𝑛[,]𝑛) ∩ (𝐹 “ (𝑘[,)𝑘 + 1 / (2↑𝑛))) for 𝑘 < 𝑛 and (-𝑛[,]𝑛) ∩ (𝐹 “ (𝑘[,)+∞)) for 𝑘 = 𝑛. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem4 (𝜑𝐺:ℕ⟶dom ∫1)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem4
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11097 . . . . 5 ℝ ∈ V
21mptex 7157 . . . 4 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V
3 mbfi1fseq.4 . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
42, 3fnmpti 6624 . . 3 𝐺 Fn ℕ
54a1i 11 . 2 (𝜑𝐺 Fn ℕ)
6 mbfi1fseq.1 . . . . . 6 (𝜑𝐹 ∈ MblFn)
7 mbfi1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
8 mbfi1fseq.3 . . . . . 6 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
96, 7, 8, 3mbfi1fseqlem3 25646 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
10 elfznn0 13520 . . . . . . . . 9 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0)
1110nn0red 12443 . . . . . . . 8 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ)
12 2nn 12198 . . . . . . . . . 10 2 ∈ ℕ
13 nnnn0 12388 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
14 nnexpcl 13981 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
1512, 13, 14sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1615adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℕ)
17 nndivre 12166 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ (2↑𝑛) ∈ ℕ) → (𝑚 / (2↑𝑛)) ∈ ℝ)
1811, 16, 17syl2anr 597 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ)
1918fmpttd 7048 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ)
2019frnd 6659 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ)
219, 20fssd 6668 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛):ℝ⟶ℝ)
22 fzfid 13880 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin)
2319ffnd 6652 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))))
24 dffn4 6741 . . . . . . 7 ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
2523, 24sylib 218 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
26 fofi 9197 . . . . . 6 (((0...(𝑛 · (2↑𝑛))) ∈ Fin ∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin)
2722, 25, 26syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin)
289frnd 6659 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
2927, 28ssfid 9153 . . . 4 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ∈ Fin)
306, 7, 8, 3mbfi1fseqlem2 25645 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝐺𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)))
3130fveq1d 6824 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝐺𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥))
3231ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥))
33 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
34 ovex 7379 . . . . . . . . . . . . . . 15 (𝑛𝐽𝑥) ∈ V
35 vex 3440 . . . . . . . . . . . . . . 15 𝑛 ∈ V
3634, 35ifex 4526 . . . . . . . . . . . . . 14 if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V
37 c0ex 11106 . . . . . . . . . . . . . 14 0 ∈ V
3836, 37ifex 4526 . . . . . . . . . . . . 13 if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V
39 eqid 2731 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4039fvmpt2 6940 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4133, 38, 40sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4232, 41eqtrd 2766 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4342adantlr 715 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
4443eqeq1d 2733 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))
45 eldifsni 4742 . . . . . . . . . . . . 13 (𝑘 ∈ (ran (𝐺𝑛) ∖ {0}) → 𝑘 ≠ 0)
4645ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0)
47 neeq1 2990 . . . . . . . . . . . 12 (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0))
4846, 47syl5ibrcom 247 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0))
49 iffalse 4484 . . . . . . . . . . . 12 𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0)
5049necon1ai 2955 . . . . . . . . . . 11 (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛))
5148, 50syl6 35 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘𝑥 ∈ (-𝑛[,]𝑛)))
5251pm4.71rd 562 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)))
53 iftrue 4481 . . . . . . . . . . . 12 (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))
5453eqeq1d 2733 . . . . . . . . . . 11 (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘))
55 simpllr 775 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ)
5655nnred 12140 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ)
58 rge0ssre 13356 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0[,)+∞) ⊆ ℝ
59 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
60 ffvelcdm 7014 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
617, 59, 60syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
6258, 61sselid 3932 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
63 nnnn0 12388 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
64 nnexpcl 13981 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
6512, 63, 64sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
6665ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
6766nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
6862, 67remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
69 reflcl 13700 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
7170, 66nndivred 12179 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
7271ralrimivva 3175 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
738fmpo 8000 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
7472, 73sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
75 fovcdm 7516 . . . . . . . . . . . . . . . . . . . 20 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7674, 75syl3an1 1163 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
77763expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7877adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ)
7978adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ)
80 lemin 13091 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
8157, 79, 57, 80syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
8279, 57ifcld 4522 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ)
8382, 57letri3d 11255 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))))
84 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛)
8584eqeq2d 2742 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛))
86 min2 13089 . . . . . . . . . . . . . . . . . 18 (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
8779, 57, 86syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
8887biantrurd 532 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))))
8983, 85, 883bitr4d 311 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))
9057leidd 11683 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛𝑛)
9190biantrud 531 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛𝑛)))
9281, 89, 913bitr4d 311 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑛 ≤ (𝑛𝐽𝑥)))
93 breq1 5094 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝑘 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝐹𝑥)))
947adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
9594ffvelcdmda 7017 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
96 elrege0 13354 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
9795, 96sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
9897simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
9998adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
10055, 15syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℕ)
101100nnred 12140 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℝ)
10299, 101remulcld 11142 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝑛)) ∈ ℝ)
103 reflcl 13700 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) · (2↑𝑛)) ∈ ℝ → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ)
104102, 103syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ)
105100nngt0d 12174 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛))
106 lemuldiv 12002 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℝ ∧ (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
10756, 104, 101, 105, 106syl112anc 1376 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
108 lemul1 11973 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
10956, 99, 101, 105, 108syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
110 nnmulcl 12149 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ (2↑𝑛) ∈ ℕ) → (𝑛 · (2↑𝑛)) ∈ ℕ)
11155, 15, 110syl2anc2 585 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ)
112111nnzd 12495 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ)
113 flge 13709 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
114102, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
115109, 114bitrd 279 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹𝑥) · (2↑𝑛)))))
116 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
117 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = 𝑛𝑦 = 𝑥) → 𝑦 = 𝑥)
118117fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑛𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
119 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 = 𝑛𝑦 = 𝑥) → 𝑚 = 𝑛)
120119oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑛𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛))
121118, 120oveq12d 7364 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑛𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝑛)))
122121fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑛𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝑛))))
123122, 120oveq12d 7364 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑛𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
124 ovex 7379 . . . . . . . . . . . . . . . . . . 19 ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V
125123, 8, 124ovmpoa 7501 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
12655, 116, 125syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)))
127126breq2d 5103 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛))))
128107, 115, 1273bitr4d 311 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥)))
12993, 128sylan9bbr 510 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥)))
130116adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ)
131 iftrue 4481 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ)
132131adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ)
133130, 132eleqtrrd 2834 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
134133biantrurd 532 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
13592, 129, 1343bitr2d 307 . . . . . . . . . . . . 13 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
13628ssdifssd 4097 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (ran (𝐺𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
137136sselda 3934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))))
138 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))
139138rnmpt 5897 . . . . . . . . . . . . . . . . . . . . 21 ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))}
140139eqabri 2874 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)))
141 elfzelz 13424 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ)
142141adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ)
143142zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ)
14415ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ)
145144nncnd 12141 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ)
146144nnne0d 12175 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0)
147143, 145, 146divcan1d 11898 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚)
148147, 142eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)
149 oveq1 7353 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛)))
150149eleq1d 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ))
151148, 150syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ))
152151rexlimdva 3133 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ))
153140, 152biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ))
154153imp 406 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ)
155137, 154syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ)
157 flbi 13720 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
158102, 156, 157syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
159158adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
160 neeq1 2990 . . . . . . . . . . . . . . . . . . . . . . . 24 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛𝑘𝑛))
161160biimparc 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛)
162 iffalse 4484 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ (𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)
163162necon1ai 2955 . . . . . . . . . . . . . . . . . . . . . . 23 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛)
164161, 163syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛)
165164iftrued 4483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥))
166 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)
167165, 166eqtr3d 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘)
168167, 164eqbrtrrd 5115 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘𝑛)
169168, 167jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))
170169ex 412 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
171 breq1 5094 . . . . . . . . . . . . . . . . . . . 20 ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛𝑘𝑛))
172171biimparc 479 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛)
173172iftrued 4483 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥))
174 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘)
175173, 174eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)
176170, 175impbid1 225 . . . . . . . . . . . . . . . 16 (𝑘𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
177176adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
178 eldifi 4081 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ran (𝐺𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺𝑛))
179 nnre 12132 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
180179ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ)
18177, 180, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛)
18213ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0)
183182nn0ge0d 12445 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛)
184 breq1 5094 . . . . . . . . . . . . . . . . . . . . . . . 24 (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛))
185 breq1 5094 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛))
186184, 185ifboth 4515 . . . . . . . . . . . . . . . . . . . . . . 23 ((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)
187181, 183, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)
18842, 187eqbrtrd 5113 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) ≤ 𝑛)
189188ralrimiva 3124 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛)
1909ffnd 6652 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) Fn ℝ)
191 breq1 5094 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = ((𝐺𝑛)‘𝑥) → (𝑘𝑛 ↔ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
192191ralrn 7021 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺𝑛)‘𝑥) ≤ 𝑛))
194189, 193mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺𝑛)𝑘𝑛)
195194r19.21bi 3224 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺𝑛)) → 𝑘𝑛)
196178, 195sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘𝑛)
197196ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → 𝑘𝑛)
198197biantrurd 532 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)))
199126eqeq1d 2733 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘))
200104recnd 11140 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝑛))) ∈ ℂ)
20128, 20sstrd 3945 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → ran (𝐺𝑛) ⊆ ℝ)
202201ssdifssd 4097 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (ran (𝐺𝑛) ∖ {0}) ⊆ ℝ)
203202sselda 3934 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑘 ∈ ℝ)
204203adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ)
205204recnd 11140 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ)
206100nncnd 12141 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈ ℂ)
207100nnne0d 12175 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0)
208200, 205, 206, 207divmul3d 11931 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((⌊‘((𝐹𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
209199, 208bitrd 279 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
210209adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
211177, 198, 2103bitr2d 307 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛))))
212 ifnefalse 4487 . . . . . . . . . . . . . . . . . 18 (𝑘𝑛 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))
213212eleq2d 2817 . . . . . . . . . . . . . . . . 17 (𝑘𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
214100nnrecred 12176 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈ ℝ)
215204, 214readdcld 11141 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ)
216215rexrd 11162 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ*)
217 elioomnf 13344 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
218216, 217syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
21994ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞))
220219ffnd 6652 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
221 elpreima 6991 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
222220, 221syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))))
223116, 222mpbirand 707 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))
22499biantrurd 532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))))))
225218, 223, 2243bitr4d 311 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹𝑥) < (𝑘 + (1 / (2↑𝑛)))))
226 ltmul1 11971 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛))))
22799, 215, 101, 105, 226syl112anc 1376 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛))))
228214recnd 11140 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈ ℂ)
229206, 207recid2d 11893 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1)
230229oveq2d 7362 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1))
231205, 206, 228, 230joinlmuladdmuld 11139 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1))
232231breq2d 5103 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
233225, 227, 2323bitrd 305 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
234213, 233sylan9bbr 510 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))
235 lemul1 11973 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
236204, 99, 101, 105, 235syl112anc 1376 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
237236adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (𝑘 ≤ (𝐹𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛))))
238234, 237anbi12d 632 . . . . . . . . . . . . . . 15 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥)) ↔ (((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)))))
239238biancomd 463 . . . . . . . . . . . . . 14 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹𝑥) · (2↑𝑛)) ∧ ((𝐹𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))))
240159, 211, 2393bitr4d 311 . . . . . . . . . . . . 13 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
241135, 240pm2.61dane 3015 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
242 eldif 3912 . . . . . . . . . . . . 13 (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘))))
243204rexrd 11162 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*)
244 elioomnf 13344 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
245243, 244syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
246 elpreima 6991 . . . . . . . . . . . . . . . . . . 19 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)𝑘))))
247220, 246syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (-∞(,)𝑘))))
248116, 247mpbirand 707 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝐹𝑥) ∈ (-∞(,)𝑘)))
24999biantrurd 532 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) < 𝑘 ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝑘)))
250245, 248, 2493bitr4d 311 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ (𝐹𝑥) < 𝑘))
251250notbid 318 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹𝑥) < 𝑘))
252204, 99lenltd 11259 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝑘))
253251, 252bitr4d 282 . . . . . . . . . . . . . 14 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹𝑥)))
254253anbi2d 630 . . . . . . . . . . . . 13 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
255242, 254bitrid 283 . . . . . . . . . . . 12 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹𝑥))))
256241, 255bitr4d 282 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
25754, 256sylan9bbr 510 . . . . . . . . . 10 (((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
258257pm5.32da 579 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
25944, 52, 2583bitrd 305 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
260259pm5.32da 579 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
26121adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛):ℝ⟶ℝ)
262261ffnd 6652 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛) Fn ℝ)
263 fniniseg 6993 . . . . . . . 8 ((𝐺𝑛) Fn ℝ → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
264262, 263syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
265 elin 3918 . . . . . . . 8 (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
266179ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → 𝑛 ∈ ℝ)
267266renegcld 11544 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → -𝑛 ∈ ℝ)
268 iccmbl 25495 . . . . . . . . . . . . 13 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
269267, 266, 268syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol)
270 mblss 25460 . . . . . . . . . . . 12 ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ)
271269, 270syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ)
272271sseld 3933 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ))
273272adantrd 491 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ))
274273pm4.71rd 562 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
275265, 274bitrid 283 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))))
276260, 264, 2753bitr4d 311 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))))))
277276eqrdv 2729 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))))
278 rembl 25469 . . . . . . . . 9 ℝ ∈ dom vol
279 fss 6667 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2807, 58, 279sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
281 mbfima 25559 . . . . . . . . . 10 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol)
2826, 280, 281syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol)
283 ifcl 4521 . . . . . . . . 9 ((ℝ ∈ dom vol ∧ (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol)
284278, 282, 283sylancr 587 . . . . . . . 8 (𝜑 → if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol)
285 mbfima 25559 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (-∞(,)𝑘)) ∈ dom vol)
2866, 280, 285syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 “ (-∞(,)𝑘)) ∈ dom vol)
287 difmbl 25472 . . . . . . . 8 ((if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
288284, 286, 287syl2anc 584 . . . . . . 7 (𝜑 → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
289288ad2antrr 726 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol)
290 inmbl 25471 . . . . . 6 (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ∈ dom vol)
291269, 289, 290syl2anc 584 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (𝐹 “ (-∞(,)𝑘)))) ∈ dom vol)
292277, 291eqeltrd 2831 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) ∈ dom vol)
293 mblvol 25459 . . . . . 6 (((𝐺𝑛) “ {𝑘}) ∈ dom vol → (vol‘((𝐺𝑛) “ {𝑘})) = (vol*‘((𝐺𝑛) “ {𝑘})))
294292, 293syl 17 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘((𝐺𝑛) “ {𝑘})) = (vol*‘((𝐺𝑛) “ {𝑘})))
295190adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝐺𝑛) Fn ℝ)
296295, 263syl 17 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘)))
29777, 180ifcld 4522 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ)
298 0re 11114 . . . . . . . . . . . . . . 15 0 ∈ ℝ
299 ifcl 4521 . . . . . . . . . . . . . . 15 ((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ)
300297, 298, 299sylancl 586 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ)
30139fvmpt2 6940 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
30233, 300, 301syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
30332, 302eqtrd 2766 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
304303adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))
305304eqeq1d 2733 . . . . . . . . . 10 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))
306305, 51sylbid 240 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺𝑛)‘𝑥) = 𝑘𝑥 ∈ (-𝑛[,]𝑛)))
307306expimpd 453 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛)))
308296, 307sylbid 240 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (𝑥 ∈ ((𝐺𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛)))
309308ssrdv 3940 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → ((𝐺𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛))
310 iccssre 13329 . . . . . . 7 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
311267, 266, 310syl2anc 584 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ)
312 mblvol 25459 . . . . . . . 8 ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛)))
313269, 312syl 17 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛)))
314 iccvolcl 25496 . . . . . . . 8 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ)
315267, 266, 314syl2anc 584 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ)
316313, 315eqeltrrd 2832 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ)
317 ovolsscl 25415 . . . . . 6 ((((𝐺𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
318309, 311, 316, 317syl3anc 1373 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol*‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
319294, 318eqeltrd 2831 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺𝑛) ∖ {0})) → (vol‘((𝐺𝑛) “ {𝑘})) ∈ ℝ)
32021, 29, 292, 319i1fd 25610 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ dom ∫1)
321320ralrimiva 3124 . 2 (𝜑 → ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ dom ∫1)
322 ffnfv 7052 . 2 (𝐺:ℕ⟶dom ∫1 ↔ (𝐺 Fn ℕ ∧ ∀𝑛 ∈ ℕ (𝐺𝑛) ∈ dom ∫1))
3235, 321, 322sylanbrc 583 1 (𝜑𝐺:ℕ⟶dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  cin 3901  wss 3902  ifcif 4475  {csn 4576   class class class wbr 5091  cmpt 5172   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  (,)cioo 13245  [,)cico 13247  [,]cicc 13248  ...cfz 13407  cfl 13694  cexp 13968  vol*covol 25391  volcvol 25392  MblFncmbf 25543  1citg1 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-bases 22862  df-cmp 23303  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549
This theorem is referenced by:  mbfi1fseqlem5  25648  mbfi1fseqlem6  25649
  Copyright terms: Public domain W3C validator