Step | Hyp | Ref
| Expression |
1 | | reex 10962 |
. . . . 5
⊢ ℝ
∈ V |
2 | 1 | mptex 7099 |
. . . 4
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)) ∈ V |
3 | | mbfi1fseq.4 |
. . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
4 | 2, 3 | fnmpti 6576 |
. . 3
⊢ 𝐺 Fn ℕ |
5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → 𝐺 Fn ℕ) |
6 | | mbfi1fseq.1 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ MblFn) |
7 | | mbfi1fseq.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
8 | | mbfi1fseq.3 |
. . . . . 6
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
9 | 6, 7, 8, 3 | mbfi1fseqlem3 24882 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
10 | | elfznn0 13349 |
. . . . . . . . 9
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℕ0) |
11 | 10 | nn0red 12294 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℝ) |
12 | | 2nn 12046 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
13 | | nnnn0 12240 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
14 | | nnexpcl 13795 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
15 | 12, 13, 14 | sylancr 587 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
16 | 15 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℕ) |
17 | | nndivre 12014 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑚 / (2↑𝑛)) ∈
ℝ) |
18 | 11, 16, 17 | syl2anr 597 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑚 / (2↑𝑛)) ∈ ℝ) |
19 | 18 | fmpttd 6989 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))⟶ℝ) |
20 | 19 | frnd 6608 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ⊆ ℝ) |
21 | 9, 20 | fssd 6618 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛):ℝ⟶ℝ) |
22 | | fzfid 13693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (0...(𝑛 · (2↑𝑛))) ∈ Fin) |
23 | 19 | ffnd 6601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛)))) |
24 | | dffn4 6694 |
. . . . . . 7
⊢ ((𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) Fn (0...(𝑛 · (2↑𝑛))) ↔ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
25 | 23, 24 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
26 | | fofi 9105 |
. . . . . 6
⊢
(((0...(𝑛 ·
(2↑𝑛))) ∈ Fin
∧ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))):(0...(𝑛 · (2↑𝑛)))–onto→ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) |
27 | 22, 25, 26 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ∈ Fin) |
28 | 9 | frnd 6608 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
29 | 27, 28 | ssfid 9042 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ∈ Fin) |
30 | 6, 7, 8, 3 | mbfi1fseqlem2 24881 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))) |
31 | 30 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) |
32 | 31 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥)) |
33 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
34 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝑛𝐽𝑥) ∈ V |
35 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
36 | 34, 35 | ifex 4509 |
. . . . . . . . . . . . . 14
⊢ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ V |
37 | | c0ex 10969 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
38 | 36, 37 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V |
39 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
40 | 39 | fvmpt2 6886 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ V) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
41 | 33, 38, 40 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
42 | 32, 41 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
43 | 42 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
44 | 43 | eqeq1d 2740 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) |
45 | | eldifsni 4723 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ≠ 0) |
46 | 45 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ≠ 0) |
47 | | neeq1 3006 |
. . . . . . . . . . . 12
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 ↔ 𝑘 ≠ 0)) |
48 | 46, 47 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0)) |
49 | | iffalse 4468 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 0) |
50 | 49 | necon1ai 2971 |
. . . . . . . . . . 11
⊢ (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≠ 0 → 𝑥 ∈ (-𝑛[,]𝑛)) |
51 | 48, 50 | syl6 35 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) |
52 | 51 | pm4.71rd 563 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘))) |
53 | | iftrue 4465 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)) |
54 | 53 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-𝑛[,]𝑛) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘)) |
55 | | simpllr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ) |
56 | 55 | nnred 11988 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ∈ ℝ) |
58 | | rge0ssre 13188 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(0[,)+∞) ⊆ ℝ |
59 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
60 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) |
61 | 7, 59, 60 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
62 | 58, 61 | sselid 3919 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
63 | | nnnn0 12240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
64 | | nnexpcl 13795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
65 | 12, 63, 64 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) |
66 | 65 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) |
67 | 66 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) |
68 | 62, 67 | remulcld 11005 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
69 | | reflcl 13516 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
71 | 70, 66 | nndivred 12027 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
72 | 71 | ralrimivva 3123 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
73 | 8 | fmpo 7908 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) |
74 | 72, 73 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) |
75 | | fovrn 7442 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
76 | 74, 75 | syl3an1 1162 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
77 | 76 | 3expa 1117 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
78 | 77 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) ∈ ℝ) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛𝐽𝑥) ∈ ℝ) |
80 | | lemin 12926 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℝ ∧ (𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
81 | 57, 79, 57, 80 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
82 | 79, 57 | ifcld 4505 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) |
83 | 82, 57 | letri3d 11117 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛 ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) |
84 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
85 | 84 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛)) |
86 | | min2 12924 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛𝐽𝑥) ∈ ℝ ∧ 𝑛 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
87 | 79, 57, 86 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
88 | 87 | biantrurd 533 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ↔ (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛)))) |
89 | 83, 85, 88 | 3bitr4d 311 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛))) |
90 | 57 | leidd 11541 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑛 ≤ 𝑛) |
91 | 90 | biantrud 532 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ (𝑛 ≤ (𝑛𝐽𝑥) ∧ 𝑛 ≤ 𝑛))) |
92 | 81, 89, 91 | 3bitr4d 311 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
93 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝐹‘𝑥))) |
94 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) |
95 | 94 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
96 | | elrege0 13186 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
97 | 95, 96 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
98 | 97 | simpld 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
99 | 98 | adantlr 712 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
100 | 55, 15 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℕ) |
101 | 100 | nnred 11988 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℝ) |
102 | 99, 101 | remulcld 11005 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ) |
103 | | reflcl 13516 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ) |
105 | 100 | nngt0d 12022 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 0 < (2↑𝑛)) |
106 | | lemuldiv 11855 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℝ ∧
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
107 | 56, 104, 101, 105, 106 | syl112anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
108 | | lemul1 11827 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
109 | 56, 99, 101, 105, 108 | syl112anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
110 | | nnmulcl 11997 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ∧
(2↑𝑛) ∈ ℕ)
→ (𝑛 ·
(2↑𝑛)) ∈
ℕ) |
111 | 55, 15, 110 | syl2anc2 585 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℕ) |
112 | 111 | nnzd 12425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 · (2↑𝑛)) ∈ ℤ) |
113 | | flge 13525 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑛 · (2↑𝑛)) ∈ ℤ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
114 | 102, 112,
113 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
115 | 109, 114 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ (𝑛 · (2↑𝑛)) ≤ (⌊‘((𝐹‘𝑥) · (2↑𝑛))))) |
116 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
117 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
118 | 117 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
119 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → 𝑚 = 𝑛) |
120 | 119 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝑛)) |
121 | 118, 120 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝑛))) |
122 | 121 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝑛)))) |
123 | 122, 120 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑛 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
124 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . 19
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) ∈ V |
125 | 123, 8, 124 | ovmpoa 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
126 | 55, 116, 125 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛))) |
127 | 126 | breq2d 5086 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝑛𝐽𝑥) ↔ 𝑛 ≤ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)))) |
128 | 107, 115,
127 | 3bitr4d 311 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑛 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
129 | 93, 128 | sylan9bbr 511 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ 𝑛 ≤ (𝑛𝐽𝑥))) |
130 | 116 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ ℝ) |
131 | | iftrue 4465 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) |
132 | 131 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = ℝ) |
133 | 130, 132 | eleqtrrd 2842 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → 𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
134 | 133 | biantrurd 533 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
135 | 92, 129, 134 | 3bitr2d 307 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 = 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
136 | 28 | ssdifssd 4077 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
137 | 136 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) |
138 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) |
139 | 138 | rnmpt 5864 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ran
(𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) = {𝑘 ∣ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))} |
140 | 139 | abeq2i 2875 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) ↔ ∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛))) |
141 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) → 𝑚 ∈ ℤ) |
142 | 141 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℤ) |
143 | 142 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → 𝑚 ∈ ℂ) |
144 | 15 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℕ) |
145 | 144 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ∈ ℂ) |
146 | 144 | nnne0d 12023 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (2↑𝑛) ≠ 0) |
147 | 143, 145,
146 | divcan1d 11752 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) = 𝑚) |
148 | 147, 142 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ) |
149 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) = ((𝑚 / (2↑𝑛)) · (2↑𝑛))) |
150 | 149 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑚 / (2↑𝑛)) → ((𝑘 · (2↑𝑛)) ∈ ℤ ↔ ((𝑚 / (2↑𝑛)) · (2↑𝑛)) ∈ ℤ)) |
151 | 148, 150 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝑛 · (2↑𝑛)))) → (𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
152 | 151 | rexlimdva 3213 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∃𝑚 ∈ (0...(𝑛 · (2↑𝑛)))𝑘 = (𝑚 / (2↑𝑛)) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
153 | 140, 152 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛))) → (𝑘 · (2↑𝑛)) ∈ ℤ)) |
154 | 153 | imp 407 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝑚 ∈ (0...(𝑛 · (2↑𝑛))) ↦ (𝑚 / (2↑𝑛)))) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
155 | 137, 154 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
156 | 155 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 · (2↑𝑛)) ∈ ℤ) |
157 | | flbi 13536 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝑛)) ∈ ℝ ∧ (𝑘 · (2↑𝑛)) ∈ ℤ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
158 | 102, 156,
157 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
159 | 158 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
160 | | neeq1 3006 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛)) |
161 | 160 | biimparc 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛) |
162 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑛𝐽𝑥) ≤ 𝑛 → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑛) |
163 | 162 | necon1ai 2971 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≠ 𝑛 → (𝑛𝐽𝑥) ≤ 𝑛) |
164 | 161, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) |
165 | 164 | iftrued 4467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) |
166 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) |
167 | 165, 166 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) |
168 | 167, 164 | eqbrtrrd 5098 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → 𝑘 ≤ 𝑛) |
169 | 168, 167 | jca 512 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≠ 𝑛 ∧ if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘)) |
170 | 169 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 → (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
171 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛𝐽𝑥) = 𝑘 → ((𝑛𝐽𝑥) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛)) |
172 | 171 | biimparc 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) ≤ 𝑛) |
173 | 172 | iftrued 4467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = (𝑛𝐽𝑥)) |
174 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → (𝑛𝐽𝑥) = 𝑘) |
175 | 173, 174 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘) |
176 | 170, 175 | impbid1 224 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ≠ 𝑛 → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
177 | 176 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
178 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0}) → 𝑘 ∈ ran (𝐺‘𝑛)) |
179 | | nnre 11980 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
180 | 179 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℝ) |
181 | 77, 180, 86 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛) |
182 | 13 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑛 ∈ ℕ0) |
183 | 182 | nn0ge0d 12296 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝑛) |
184 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) |
185 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 =
if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) → (0 ≤ 𝑛 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛)) |
186 | 184, 185 | ifboth 4498 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ≤ 𝑛 ∧ 0 ≤ 𝑛) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) |
187 | 181, 183,
186 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ≤ 𝑛) |
188 | 42, 187 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) |
189 | 188 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛) |
190 | 9 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) Fn ℝ) |
191 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = ((𝐺‘𝑛)‘𝑥) → (𝑘 ≤ 𝑛 ↔ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
192 | 191 | ralrn 6964 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐺‘𝑛) Fn ℝ → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
193 | 190, 192 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛 ↔ ∀𝑥 ∈ ℝ ((𝐺‘𝑛)‘𝑥) ≤ 𝑛)) |
194 | 189, 193 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ ran (𝐺‘𝑛)𝑘 ≤ 𝑛) |
195 | 194 | r19.21bi 3134 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ran (𝐺‘𝑛)) → 𝑘 ≤ 𝑛) |
196 | 178, 195 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ≤ 𝑛) |
197 | 196 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → 𝑘 ≤ 𝑛) |
198 | 197 | biantrurd 533 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (𝑘 ≤ 𝑛 ∧ (𝑛𝐽𝑥) = 𝑘))) |
199 | 126 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ ((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘)) |
200 | 104 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝑛))) ∈ ℂ) |
201 | 28, 20 | sstrd 3931 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ran (𝐺‘𝑛) ⊆ ℝ) |
202 | 201 | ssdifssd 4077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ran (𝐺‘𝑛) ∖ {0}) ⊆
ℝ) |
203 | 202 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑘 ∈ ℝ) |
204 | 203 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ) |
205 | 204 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℂ) |
206 | 100 | nncnd 11989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ∈
ℂ) |
207 | 100 | nnne0d 12023 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (2↑𝑛) ≠ 0) |
208 | 200, 205,
206, 207 | divmul3d 11785 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) →
(((⌊‘((𝐹‘𝑥) · (2↑𝑛))) / (2↑𝑛)) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
209 | 199, 208 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
210 | 209 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑛𝐽𝑥) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
211 | 177, 198,
210 | 3bitr2d 307 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (⌊‘((𝐹‘𝑥) · (2↑𝑛))) = (𝑘 · (2↑𝑛)))) |
212 | | ifnefalse 4471 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ≠ 𝑛 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) = (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) |
213 | 212 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ 𝑛 → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ 𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
214 | 100 | nnrecred 12024 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℝ) |
215 | 204, 214 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈ ℝ) |
216 | 215 | rexrd 11025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 + (1 / (2↑𝑛))) ∈
ℝ*) |
217 | | elioomnf 13176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 + (1 / (2↑𝑛))) ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
218 | 216, 217 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
219 | 94 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶(0[,)+∞)) |
220 | 219 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ) |
221 | | elpreima 6935 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
222 | 220, 221 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛))))))) |
223 | 116, 222 | mpbirand 704 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) ∈ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) |
224 | 99 | biantrurd 533 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛)))))) |
225 | 218, 223,
224 | 3bitr4d 311 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ (𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))))) |
226 | | ltmul1 11825 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝑘 + (1 / (2↑𝑛))) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) |
227 | 99, 215, 101, 105, 226 | syl112anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < (𝑘 + (1 / (2↑𝑛))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)))) |
228 | 214 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (1 / (2↑𝑛)) ∈
ℂ) |
229 | 206, 207 | recid2d 11747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((1 / (2↑𝑛)) · (2↑𝑛)) = 1) |
230 | 229 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 · (2↑𝑛)) + ((1 / (2↑𝑛)) · (2↑𝑛))) = ((𝑘 · (2↑𝑛)) + 1)) |
231 | 205, 206,
228, 230 | joinlmuladdmuld 11002 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) = ((𝑘 · (2↑𝑛)) + 1)) |
232 | 231 | breq2d 5086 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 + (1 / (2↑𝑛))) · (2↑𝑛)) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
233 | 225, 227,
232 | 3bitrd 305 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
234 | 213, 233 | sylan9bbr 511 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ↔ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1))) |
235 | | lemul1 11827 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 <
(2↑𝑛))) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
236 | 204, 99, 101, 105, 235 | syl112anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
237 | 236 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (𝑘 ≤ (𝐹‘𝑥) ↔ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)))) |
238 | 234, 237 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ (((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1) ∧ (𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛))))) |
239 | 238 | biancomd 464 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)) ↔ ((𝑘 · (2↑𝑛)) ≤ ((𝐹‘𝑥) · (2↑𝑛)) ∧ ((𝐹‘𝑥) · (2↑𝑛)) < ((𝑘 · (2↑𝑛)) + 1)))) |
240 | 159, 211,
239 | 3bitr4d 311 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ≠ 𝑛) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
241 | 135, 240 | pm2.61dane 3032 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
242 | | eldif 3897 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)))) |
243 | 204 | rexrd 11025 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → 𝑘 ∈ ℝ*) |
244 | | elioomnf 13176 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
245 | 243, 244 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝑘) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
246 | | elpreima 6935 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
247 | 220, 246 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (-∞(,)𝑘)))) |
248 | 116, 247 | mpbirand 704 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) ∈ (-∞(,)𝑘))) |
249 | 99 | biantrurd 533 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) < 𝑘 ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝑘))) |
250 | 245, 248,
249 | 3bitr4d 311 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ (𝐹‘𝑥) < 𝑘)) |
251 | 250 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ ¬ (𝐹‘𝑥) < 𝑘)) |
252 | 204, 99 | lenltd 11121 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑘 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝑘)) |
253 | 251, 252 | bitr4d 281 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘)) ↔ 𝑘 ≤ (𝐹‘𝑥))) |
254 | 253 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ ¬ 𝑥 ∈ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
255 | 242, 254 | bitrid 282 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ↔ (𝑥 ∈ if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∧ 𝑘 ≤ (𝐹‘𝑥)))) |
256 | 241, 255 | bitr4d 281 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
257 | 54, 256 | sylan9bbr 511 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (-𝑛[,]𝑛)) → (if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘 ↔ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
258 | 257 | pm5.32da 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
259 | 44, 52, 258 | 3bitrd 305 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
260 | 259 | pm5.32da 579 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
261 | 21 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛):ℝ⟶ℝ) |
262 | 261 | ffnd 6601 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) |
263 | | fniniseg 6937 |
. . . . . . . 8
⊢ ((𝐺‘𝑛) Fn ℝ → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
264 | 262, 263 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
265 | | elin 3903 |
. . . . . . . 8
⊢ (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
266 | 179 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → 𝑛 ∈ ℝ) |
267 | 266 | renegcld 11402 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → -𝑛 ∈ ℝ) |
268 | | iccmbl 24730 |
. . . . . . . . . . . . 13
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol) |
269 | 267, 266,
268 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ∈ dom vol) |
270 | | mblss 24695 |
. . . . . . . . . . . 12
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (-𝑛[,]𝑛) ⊆ ℝ) |
271 | 269, 270 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) |
272 | 271 | sseld 3920 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (-𝑛[,]𝑛) → 𝑥 ∈ ℝ)) |
273 | 272 | adantrd 492 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) → 𝑥 ∈ ℝ)) |
274 | 273 | pm4.71rd 563 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
275 | 265, 274 | bitrid 282 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ (-𝑛[,]𝑛) ∧ 𝑥 ∈ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))))) |
276 | 260, 264,
275 | 3bitr4d 311 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ 𝑥 ∈ ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))))) |
277 | 276 | eqrdv 2736 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) = ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))))) |
278 | | rembl 24704 |
. . . . . . . . 9
⊢ ℝ
∈ dom vol |
279 | | fss 6617 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
280 | 7, 58, 279 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
281 | | mbfima 24794 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) |
282 | 6, 280, 281 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) |
283 | | ifcl 4504 |
. . . . . . . . 9
⊢ ((ℝ
∈ dom vol ∧ (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛))))) ∈ dom vol) →
if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) |
284 | 278, 282,
283 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol) |
285 | | mbfima 24794 |
. . . . . . . . 9
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) |
286 | 6, 280, 285 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) |
287 | | difmbl 24707 |
. . . . . . . 8
⊢
((if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∈ dom vol ∧ (◡𝐹 “ (-∞(,)𝑘)) ∈ dom vol) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
288 | 284, 286,
287 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
289 | 288 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) |
290 | | inmbl 24706 |
. . . . . 6
⊢ (((-𝑛[,]𝑛) ∈ dom vol ∧ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘))) ∈ dom vol) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) |
291 | 269, 289,
290 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((-𝑛[,]𝑛) ∩ (if(𝑘 = 𝑛, ℝ, (◡𝐹 “ (-∞(,)(𝑘 + (1 / (2↑𝑛)))))) ∖ (◡𝐹 “ (-∞(,)𝑘)))) ∈ dom vol) |
292 | 277, 291 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol) |
293 | | mblvol 24694 |
. . . . . 6
⊢ ((◡(𝐺‘𝑛) “ {𝑘}) ∈ dom vol → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) |
294 | 292, 293 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) = (vol*‘(◡(𝐺‘𝑛) “ {𝑘}))) |
295 | 190 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝐺‘𝑛) Fn ℝ) |
296 | 295, 263 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘))) |
297 | 77, 180 | ifcld 4505 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ) |
298 | | 0re 10977 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
299 | | ifcl 4504 |
. . . . . . . . . . . . . . 15
⊢
((if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) |
300 | 297, 298,
299 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) |
301 | 39 | fvmpt2 6886 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
302 | 33, 300, 301 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0))‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
303 | 32, 302 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
304 | 303 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → ((𝐺‘𝑛)‘𝑥) = if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0)) |
305 | 304 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 ↔ if(𝑥 ∈ (-𝑛[,]𝑛), if((𝑛𝐽𝑥) ≤ 𝑛, (𝑛𝐽𝑥), 𝑛), 0) = 𝑘)) |
306 | 305, 51 | sylbid 239 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) ∧ 𝑥 ∈ ℝ) → (((𝐺‘𝑛)‘𝑥) = 𝑘 → 𝑥 ∈ (-𝑛[,]𝑛))) |
307 | 306 | expimpd 454 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → ((𝑥 ∈ ℝ ∧ ((𝐺‘𝑛)‘𝑥) = 𝑘) → 𝑥 ∈ (-𝑛[,]𝑛))) |
308 | 296, 307 | sylbid 239 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (𝑥 ∈ (◡(𝐺‘𝑛) “ {𝑘}) → 𝑥 ∈ (-𝑛[,]𝑛))) |
309 | 308 | ssrdv 3927 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛)) |
310 | | iccssre 13161 |
. . . . . . 7
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ) |
311 | 267, 266,
310 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (-𝑛[,]𝑛) ⊆ ℝ) |
312 | | mblvol 24694 |
. . . . . . . 8
⊢ ((-𝑛[,]𝑛) ∈ dom vol → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) |
313 | 269, 312 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) = (vol*‘(-𝑛[,]𝑛))) |
314 | | iccvolcl 24731 |
. . . . . . . 8
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) →
(vol‘(-𝑛[,]𝑛)) ∈
ℝ) |
315 | 267, 266,
314 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(-𝑛[,]𝑛)) ∈ ℝ) |
316 | 313, 315 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) |
317 | | ovolsscl 24650 |
. . . . . 6
⊢ (((◡(𝐺‘𝑛) “ {𝑘}) ⊆ (-𝑛[,]𝑛) ∧ (-𝑛[,]𝑛) ⊆ ℝ ∧ (vol*‘(-𝑛[,]𝑛)) ∈ ℝ) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
318 | 309, 311,
316, 317 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol*‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
319 | 294, 318 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ran (𝐺‘𝑛) ∖ {0})) → (vol‘(◡(𝐺‘𝑛) “ {𝑘})) ∈ ℝ) |
320 | 21, 29, 292, 319 | i1fd 24845 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ dom
∫1) |
321 | 320 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐺‘𝑛) ∈ dom
∫1) |
322 | | ffnfv 6992 |
. 2
⊢ (𝐺:ℕ⟶dom
∫1 ↔ (𝐺
Fn ℕ ∧ ∀𝑛
∈ ℕ (𝐺‘𝑛) ∈ dom
∫1)) |
323 | 5, 321, 322 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐺:ℕ⟶dom
∫1) |