Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
β’ (π½ β (Subcatβπ·) β π½ β (Subcatβπ·)) |
2 | | eqid 2732 |
. . . . . 6
β’
(Homf βπ·) = (Homf βπ·) |
3 | 1, 2 | subcssc 17786 |
. . . . 5
β’ (π½ β (Subcatβπ·) β π½ βcat
(Homf βπ·)) |
4 | | subsubc.d |
. . . . . . 7
β’ π· = (πΆ βΎcat π») |
5 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΆ) =
(BaseβπΆ) |
6 | | subcrcl 17759 |
. . . . . . 7
β’ (π» β (SubcatβπΆ) β πΆ β Cat) |
7 | | id 22 |
. . . . . . . 8
β’ (π» β (SubcatβπΆ) β π» β (SubcatβπΆ)) |
8 | | eqidd 2733 |
. . . . . . . 8
β’ (π» β (SubcatβπΆ) β dom dom π» = dom dom π») |
9 | 7, 8 | subcfn 17787 |
. . . . . . 7
β’ (π» β (SubcatβπΆ) β π» Fn (dom dom π» Γ dom dom π»)) |
10 | 7, 9, 5 | subcss1 17788 |
. . . . . . 7
β’ (π» β (SubcatβπΆ) β dom dom π» β (BaseβπΆ)) |
11 | 4, 5, 6, 9, 10 | reschomf 17775 |
. . . . . 6
β’ (π» β (SubcatβπΆ) β π» = (Homf βπ·)) |
12 | 11 | breq2d 5159 |
. . . . 5
β’ (π» β (SubcatβπΆ) β (π½ βcat π» β π½ βcat
(Homf βπ·))) |
13 | 3, 12 | imbitrrid 245 |
. . . 4
β’ (π» β (SubcatβπΆ) β (π½ β (Subcatβπ·) β π½ βcat π»)) |
14 | 13 | pm4.71rd 563 |
. . 3
β’ (π» β (SubcatβπΆ) β (π½ β (Subcatβπ·) β (π½ βcat π» β§ π½ β (Subcatβπ·)))) |
15 | | simpr 485 |
. . . . . . . 8
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π½ βcat π») |
16 | | simpl 483 |
. . . . . . . . 9
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π» β (SubcatβπΆ)) |
17 | | eqid 2732 |
. . . . . . . . 9
β’
(Homf βπΆ) = (Homf βπΆ) |
18 | 16, 17 | subcssc 17786 |
. . . . . . . 8
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π» βcat
(Homf βπΆ)) |
19 | | ssctr 17768 |
. . . . . . . 8
β’ ((π½ βcat π» β§ π» βcat
(Homf βπΆ)) β π½ βcat
(Homf βπΆ)) |
20 | 15, 18, 19 | syl2anc 584 |
. . . . . . 7
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π½ βcat
(Homf βπΆ)) |
21 | 12 | biimpa 477 |
. . . . . . 7
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π½ βcat
(Homf βπ·)) |
22 | 20, 21 | 2thd 264 |
. . . . . 6
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β (π½ βcat
(Homf βπΆ) β π½ βcat
(Homf βπ·))) |
23 | 16 | adantr 481 |
. . . . . . . . 9
β’ (((π» β (SubcatβπΆ) β§ π½ βcat π») β§ π₯ β dom dom π½) β π» β (SubcatβπΆ)) |
24 | 9 | adantr 481 |
. . . . . . . . . 10
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π» Fn (dom dom π» Γ dom dom π»)) |
25 | 24 | adantr 481 |
. . . . . . . . 9
β’ (((π» β (SubcatβπΆ) β§ π½ βcat π») β§ π₯ β dom dom π½) β π» Fn (dom dom π» Γ dom dom π»)) |
26 | | eqid 2732 |
. . . . . . . . 9
β’
(IdβπΆ) =
(IdβπΆ) |
27 | | eqidd 2733 |
. . . . . . . . . . . 12
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β dom dom π½ = dom dom π½) |
28 | 15, 27 | sscfn1 17760 |
. . . . . . . . . . 11
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π½ Fn (dom dom π½ Γ dom dom π½)) |
29 | 28, 24, 15 | ssc1 17764 |
. . . . . . . . . 10
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β dom dom π½ β dom dom π») |
30 | 29 | sselda 3981 |
. . . . . . . . 9
β’ (((π» β (SubcatβπΆ) β§ π½ βcat π») β§ π₯ β dom dom π½) β π₯ β dom dom π») |
31 | 4, 23, 25, 26, 30 | subcid 17793 |
. . . . . . . 8
β’ (((π» β (SubcatβπΆ) β§ π½ βcat π») β§ π₯ β dom dom π½) β ((IdβπΆ)βπ₯) = ((Idβπ·)βπ₯)) |
32 | 31 | eleq1d 2818 |
. . . . . . 7
β’ (((π» β (SubcatβπΆ) β§ π½ βcat π») β§ π₯ β dom dom π½) β (((IdβπΆ)βπ₯) β (π₯π½π₯) β ((Idβπ·)βπ₯) β (π₯π½π₯))) |
33 | 32 | ralbidva 3175 |
. . . . . 6
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β (βπ₯ β dom dom π½((IdβπΆ)βπ₯) β (π₯π½π₯) β βπ₯ β dom dom π½((Idβπ·)βπ₯) β (π₯π½π₯))) |
34 | 4 | oveq1i 7415 |
. . . . . . . 8
β’ (π· βΎcat π½) = ((πΆ βΎcat π») βΎcat π½) |
35 | 6 | adantr 481 |
. . . . . . . . 9
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β πΆ β Cat) |
36 | | dmexg 7890 |
. . . . . . . . . . 11
β’ (π» β (SubcatβπΆ) β dom π» β V) |
37 | 36 | dmexd 7892 |
. . . . . . . . . 10
β’ (π» β (SubcatβπΆ) β dom dom π» β V) |
38 | 37 | adantr 481 |
. . . . . . . . 9
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β dom dom π» β V) |
39 | 35, 24, 28, 38, 29 | rescabs 17778 |
. . . . . . . 8
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β ((πΆ βΎcat π») βΎcat π½) = (πΆ βΎcat π½)) |
40 | 34, 39 | eqtr2id 2785 |
. . . . . . 7
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β (πΆ βΎcat π½) = (π· βΎcat π½)) |
41 | 40 | eleq1d 2818 |
. . . . . 6
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β ((πΆ βΎcat π½) β Cat β (π· βΎcat π½) β Cat)) |
42 | 22, 33, 41 | 3anbi123d 1436 |
. . . . 5
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β ((π½ βcat
(Homf βπΆ) β§ βπ₯ β dom dom π½((IdβπΆ)βπ₯) β (π₯π½π₯) β§ (πΆ βΎcat π½) β Cat) β (π½ βcat
(Homf βπ·) β§ βπ₯ β dom dom π½((Idβπ·)βπ₯) β (π₯π½π₯) β§ (π· βΎcat π½) β Cat))) |
43 | | eqid 2732 |
. . . . . 6
β’ (πΆ βΎcat π½) = (πΆ βΎcat π½) |
44 | 17, 26, 43, 35, 28 | issubc3 17795 |
. . . . 5
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β (π½ β (SubcatβπΆ) β (π½ βcat
(Homf βπΆ) β§ βπ₯ β dom dom π½((IdβπΆ)βπ₯) β (π₯π½π₯) β§ (πΆ βΎcat π½) β Cat))) |
45 | | eqid 2732 |
. . . . . 6
β’
(Idβπ·) =
(Idβπ·) |
46 | | eqid 2732 |
. . . . . 6
β’ (π· βΎcat π½) = (π· βΎcat π½) |
47 | 4, 7 | subccat 17794 |
. . . . . . 7
β’ (π» β (SubcatβπΆ) β π· β Cat) |
48 | 47 | adantr 481 |
. . . . . 6
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β π· β Cat) |
49 | 2, 45, 46, 48, 28 | issubc3 17795 |
. . . . 5
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β (π½ β (Subcatβπ·) β (π½ βcat
(Homf βπ·) β§ βπ₯ β dom dom π½((Idβπ·)βπ₯) β (π₯π½π₯) β§ (π· βΎcat π½) β Cat))) |
50 | 42, 44, 49 | 3bitr4rd 311 |
. . . 4
β’ ((π» β (SubcatβπΆ) β§ π½ βcat π») β (π½ β (Subcatβπ·) β π½ β (SubcatβπΆ))) |
51 | 50 | pm5.32da 579 |
. . 3
β’ (π» β (SubcatβπΆ) β ((π½ βcat π» β§ π½ β (Subcatβπ·)) β (π½ βcat π» β§ π½ β (SubcatβπΆ)))) |
52 | 14, 51 | bitrd 278 |
. 2
β’ (π» β (SubcatβπΆ) β (π½ β (Subcatβπ·) β (π½ βcat π» β§ π½ β (SubcatβπΆ)))) |
53 | 52 | biancomd 464 |
1
β’ (π» β (SubcatβπΆ) β (π½ β (Subcatβπ·) β (π½ β (SubcatβπΆ) β§ π½ βcat π»))) |