Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubc Structured version   Visualization version   GIF version

Theorem subsubc 17115
 Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
subsubc.d 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
subsubc (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))

Proof of Theorem subsubc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐽 ∈ (Subcat‘𝐷) → 𝐽 ∈ (Subcat‘𝐷))
2 eqid 2825 . . . . . 6 (Homf𝐷) = (Homf𝐷)
31, 2subcssc 17102 . . . . 5 (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat (Homf𝐷))
4 subsubc.d . . . . . . 7 𝐷 = (𝐶cat 𝐻)
5 eqid 2825 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
6 subcrcl 17078 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
7 id 22 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2826 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 = dom dom 𝐻)
97, 8subcfn 17103 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
107, 9, 5subcss1 17104 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ⊆ (Base‘𝐶))
114, 5, 6, 9, 10reschomf 17093 . . . . . 6 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 = (Homf𝐷))
1211breq2d 5074 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → (𝐽cat 𝐻𝐽cat (Homf𝐷)))
133, 12syl5ibr 247 . . . 4 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat 𝐻))
1413pm4.71rd 563 . . 3 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷))))
15 simpr 485 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat 𝐻)
16 simpl 483 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
17 eqid 2825 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
1816, 17subcssc 17102 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻cat (Homf𝐶))
19 ssctr 17087 . . . . . . . 8 ((𝐽cat 𝐻𝐻cat (Homf𝐶)) → 𝐽cat (Homf𝐶))
2015, 18, 19syl2anc 584 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐶))
2112biimpa 477 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐷))
2220, 212thd 266 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽cat (Homf𝐶) ↔ 𝐽cat (Homf𝐷)))
2316adantr 481 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 ∈ (Subcat‘𝐶))
249adantr 481 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
2524adantr 481 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
26 eqid 2825 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
27 eqidd 2826 . . . . . . . . . . . 12 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 = dom dom 𝐽)
2815, 27sscfn1 17079 . . . . . . . . . . 11 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
2928, 24, 15ssc1 17083 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 ⊆ dom dom 𝐻)
3029sselda 3970 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝑥 ∈ dom dom 𝐻)
314, 23, 25, 26, 30subcid 17109 . . . . . . . 8 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → ((Id‘𝐶)‘𝑥) = ((Id‘𝐷)‘𝑥))
3231eleq1d 2901 . . . . . . 7 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
3332ralbidva 3200 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
344oveq1i 7161 . . . . . . . 8 (𝐷cat 𝐽) = ((𝐶cat 𝐻) ↾cat 𝐽)
356adantr 481 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐶 ∈ Cat)
36 dmexg 7604 . . . . . . . . . . 11 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
3736dmexd 7606 . . . . . . . . . 10 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ∈ V)
3837adantr 481 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐻 ∈ V)
3935, 24, 28, 38, 29rescabs 17095 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
4034, 39syl5req 2873 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐶cat 𝐽) = (𝐷cat 𝐽))
4140eleq1d 2901 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐽) ∈ Cat ↔ (𝐷cat 𝐽) ∈ Cat))
4222, 33, 413anbi123d 1429 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
43 eqid 2825 . . . . . 6 (𝐶cat 𝐽) = (𝐶cat 𝐽)
4417, 26, 43, 35, 28issubc3 17111 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
45 eqid 2825 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
46 eqid 2825 . . . . . 6 (𝐷cat 𝐽) = (𝐷cat 𝐽)
474, 7subccat 17110 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐷 ∈ Cat)
4847adantr 481 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐷 ∈ Cat)
492, 45, 46, 48, 28issubc3 17111 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
5042, 44, 493bitr4rd 313 . . . 4 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ 𝐽 ∈ (Subcat‘𝐶)))
5150pm5.32da 579 . . 3 (𝐻 ∈ (Subcat‘𝐶) → ((𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷)) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5214, 51bitrd 280 . 2 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5352biancomd 464 1 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  ∀wral 3142  Vcvv 3499   class class class wbr 5062   × cxp 5551  dom cdm 5553   Fn wfn 6346  ‘cfv 6351  (class class class)co 7151  Basecbs 16475  Catccat 16927  Idccid 16928  Homf chomf 16929   ⊆cat cssc 17069   ↾cat cresc 17070  Subcatcsubc 17071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-homf 16933  df-ssc 17072  df-resc 17073  df-subc 17074 This theorem is referenced by:  fldhmsubc  44189  fldhmsubcALTV  44207
 Copyright terms: Public domain W3C validator