MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubc Structured version   Visualization version   GIF version

Theorem subsubc 17757
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
subsubc.d 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
subsubc (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))

Proof of Theorem subsubc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐽 ∈ (Subcat‘𝐷) → 𝐽 ∈ (Subcat‘𝐷))
2 eqid 2731 . . . . . 6 (Homf𝐷) = (Homf𝐷)
31, 2subcssc 17744 . . . . 5 (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat (Homf𝐷))
4 subsubc.d . . . . . . 7 𝐷 = (𝐶cat 𝐻)
5 eqid 2731 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
6 subcrcl 17720 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
7 id 22 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2732 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 = dom dom 𝐻)
97, 8subcfn 17745 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
107, 9, 5subcss1 17746 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ⊆ (Base‘𝐶))
114, 5, 6, 9, 10reschomf 17735 . . . . . 6 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 = (Homf𝐷))
1211breq2d 5103 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → (𝐽cat 𝐻𝐽cat (Homf𝐷)))
133, 12imbitrrid 246 . . . 4 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat 𝐻))
1413pm4.71rd 562 . . 3 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷))))
15 simpr 484 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat 𝐻)
16 simpl 482 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
17 eqid 2731 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
1816, 17subcssc 17744 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻cat (Homf𝐶))
19 ssctr 17729 . . . . . . . 8 ((𝐽cat 𝐻𝐻cat (Homf𝐶)) → 𝐽cat (Homf𝐶))
2015, 18, 19syl2anc 584 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐶))
2112biimpa 476 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐷))
2220, 212thd 265 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽cat (Homf𝐶) ↔ 𝐽cat (Homf𝐷)))
2316adantr 480 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 ∈ (Subcat‘𝐶))
249adantr 480 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
2524adantr 480 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
26 eqid 2731 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
27 eqidd 2732 . . . . . . . . . . . 12 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 = dom dom 𝐽)
2815, 27sscfn1 17721 . . . . . . . . . . 11 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
2928, 24, 15ssc1 17725 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 ⊆ dom dom 𝐻)
3029sselda 3934 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝑥 ∈ dom dom 𝐻)
314, 23, 25, 26, 30subcid 17751 . . . . . . . 8 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → ((Id‘𝐶)‘𝑥) = ((Id‘𝐷)‘𝑥))
3231eleq1d 2816 . . . . . . 7 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
3332ralbidva 3153 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
344oveq1i 7356 . . . . . . . 8 (𝐷cat 𝐽) = ((𝐶cat 𝐻) ↾cat 𝐽)
356adantr 480 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐶 ∈ Cat)
36 dmexg 7831 . . . . . . . . . . 11 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
3736dmexd 7833 . . . . . . . . . 10 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ∈ V)
3837adantr 480 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐻 ∈ V)
3935, 24, 28, 38, 29rescabs 17737 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
4034, 39eqtr2id 2779 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐶cat 𝐽) = (𝐷cat 𝐽))
4140eleq1d 2816 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐽) ∈ Cat ↔ (𝐷cat 𝐽) ∈ Cat))
4222, 33, 413anbi123d 1438 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
43 eqid 2731 . . . . . 6 (𝐶cat 𝐽) = (𝐶cat 𝐽)
4417, 26, 43, 35, 28issubc3 17753 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
45 eqid 2731 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
46 eqid 2731 . . . . . 6 (𝐷cat 𝐽) = (𝐷cat 𝐽)
474, 7subccat 17752 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐷 ∈ Cat)
4847adantr 480 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐷 ∈ Cat)
492, 45, 46, 48, 28issubc3 17753 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
5042, 44, 493bitr4rd 312 . . . 4 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ 𝐽 ∈ (Subcat‘𝐶)))
5150pm5.32da 579 . . 3 (𝐻 ∈ (Subcat‘𝐶) → ((𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷)) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5214, 51bitrd 279 . 2 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5352biancomd 463 1 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436   class class class wbr 5091   × cxp 5614  dom cdm 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346  Basecbs 17117  Catccat 17567  Idccid 17568  Homf chomf 17569  cat cssc 17711  cat cresc 17712  Subcatcsubc 17713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-hom 17182  df-cco 17183  df-cat 17571  df-cid 17572  df-homf 17573  df-ssc 17714  df-resc 17715  df-subc 17716
This theorem is referenced by:  fldhmsubc  20698  fldhmsubcALTV  48363
  Copyright terms: Public domain W3C validator