MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubc Structured version   Visualization version   GIF version

Theorem subsubc 17115
Description: A subcategory of a subcategory is a subcategory. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
subsubc.d 𝐷 = (𝐶cat 𝐻)
Assertion
Ref Expression
subsubc (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))

Proof of Theorem subsubc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝐽 ∈ (Subcat‘𝐷) → 𝐽 ∈ (Subcat‘𝐷))
2 eqid 2819 . . . . . 6 (Homf𝐷) = (Homf𝐷)
31, 2subcssc 17102 . . . . 5 (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat (Homf𝐷))
4 subsubc.d . . . . . . 7 𝐷 = (𝐶cat 𝐻)
5 eqid 2819 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
6 subcrcl 17078 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
7 id 22 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 ∈ (Subcat‘𝐶))
8 eqidd 2820 . . . . . . . 8 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 = dom dom 𝐻)
97, 8subcfn 17103 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
107, 9, 5subcss1 17104 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ⊆ (Base‘𝐶))
114, 5, 6, 9, 10reschomf 17093 . . . . . 6 (𝐻 ∈ (Subcat‘𝐶) → 𝐻 = (Homf𝐷))
1211breq2d 5069 . . . . 5 (𝐻 ∈ (Subcat‘𝐶) → (𝐽cat 𝐻𝐽cat (Homf𝐷)))
133, 12syl5ibr 248 . . . 4 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) → 𝐽cat 𝐻))
1413pm4.71rd 565 . . 3 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷))))
15 simpr 487 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat 𝐻)
16 simpl 485 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 ∈ (Subcat‘𝐶))
17 eqid 2819 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
1816, 17subcssc 17102 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻cat (Homf𝐶))
19 ssctr 17087 . . . . . . . 8 ((𝐽cat 𝐻𝐻cat (Homf𝐶)) → 𝐽cat (Homf𝐶))
2015, 18, 19syl2anc 586 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐶))
2112biimpa 479 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽cat (Homf𝐷))
2220, 212thd 267 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽cat (Homf𝐶) ↔ 𝐽cat (Homf𝐷)))
2316adantr 483 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 ∈ (Subcat‘𝐶))
249adantr 483 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
2524adantr 483 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝐻 Fn (dom dom 𝐻 × dom dom 𝐻))
26 eqid 2819 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
27 eqidd 2820 . . . . . . . . . . . 12 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 = dom dom 𝐽)
2815, 27sscfn1 17079 . . . . . . . . . . 11 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽))
2928, 24, 15ssc1 17083 . . . . . . . . . 10 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐽 ⊆ dom dom 𝐻)
3029sselda 3965 . . . . . . . . 9 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → 𝑥 ∈ dom dom 𝐻)
314, 23, 25, 26, 30subcid 17109 . . . . . . . 8 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → ((Id‘𝐶)‘𝑥) = ((Id‘𝐷)‘𝑥))
3231eleq1d 2895 . . . . . . 7 (((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) ∧ 𝑥 ∈ dom dom 𝐽) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
3332ralbidva 3194 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥)))
344oveq1i 7158 . . . . . . . 8 (𝐷cat 𝐽) = ((𝐶cat 𝐻) ↾cat 𝐽)
356adantr 483 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐶 ∈ Cat)
36 dmexg 7605 . . . . . . . . . . 11 (𝐻 ∈ (Subcat‘𝐶) → dom 𝐻 ∈ V)
3736dmexd 7607 . . . . . . . . . 10 (𝐻 ∈ (Subcat‘𝐶) → dom dom 𝐻 ∈ V)
3837adantr 483 . . . . . . . . 9 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → dom dom 𝐻 ∈ V)
3935, 24, 28, 38, 29rescabs 17095 . . . . . . . 8 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐻) ↾cat 𝐽) = (𝐶cat 𝐽))
4034, 39syl5req 2867 . . . . . . 7 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐶cat 𝐽) = (𝐷cat 𝐽))
4140eleq1d 2895 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐶cat 𝐽) ∈ Cat ↔ (𝐷cat 𝐽) ∈ Cat))
4222, 33, 413anbi123d 1430 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → ((𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
43 eqid 2819 . . . . . 6 (𝐶cat 𝐽) = (𝐶cat 𝐽)
4417, 26, 43, 35, 28issubc3 17111 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐶)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐶cat 𝐽) ∈ Cat)))
45 eqid 2819 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
46 eqid 2819 . . . . . 6 (𝐷cat 𝐽) = (𝐷cat 𝐽)
474, 7subccat 17110 . . . . . . 7 (𝐻 ∈ (Subcat‘𝐶) → 𝐷 ∈ Cat)
4847adantr 483 . . . . . 6 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → 𝐷 ∈ Cat)
492, 45, 46, 48, 28issubc3 17111 . . . . 5 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat (Homf𝐷) ∧ ∀𝑥 ∈ dom dom 𝐽((Id‘𝐷)‘𝑥) ∈ (𝑥𝐽𝑥) ∧ (𝐷cat 𝐽) ∈ Cat)))
5042, 44, 493bitr4rd 314 . . . 4 ((𝐻 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻) → (𝐽 ∈ (Subcat‘𝐷) ↔ 𝐽 ∈ (Subcat‘𝐶)))
5150pm5.32da 581 . . 3 (𝐻 ∈ (Subcat‘𝐶) → ((𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐷)) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5214, 51bitrd 281 . 2 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽cat 𝐻𝐽 ∈ (Subcat‘𝐶))))
5352biancomd 466 1 (𝐻 ∈ (Subcat‘𝐶) → (𝐽 ∈ (Subcat‘𝐷) ↔ (𝐽 ∈ (Subcat‘𝐶) ∧ 𝐽cat 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493   class class class wbr 5057   × cxp 5546  dom cdm 5548   Fn wfn 6343  cfv 6348  (class class class)co 7148  Basecbs 16475  Catccat 16927  Idccid 16928  Homf chomf 16929  cat cssc 17069  cat cresc 17070  Subcatcsubc 17071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-hom 16581  df-cco 16582  df-cat 16931  df-cid 16932  df-homf 16933  df-ssc 17072  df-resc 17073  df-subc 17074
This theorem is referenced by:  fldhmsubc  44345  fldhmsubcALTV  44363
  Copyright terms: Public domain W3C validator