MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letri3 Structured version   Visualization version   GIF version

Theorem letri3 11346
Description: Trichotomy law. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 11344 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
21biancomd 463 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
3 lenlt 11339 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
4 lenlt 11339 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
54ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
63, 5anbi12d 632 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
72, 6bitr4d 282 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cr 11154   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301
This theorem is referenced by:  eqlelt  11348  eqlei  11371  eqlei2  11372  letri3i  11377  letri3d  11403  lesub0  11780  eqord1  11791  lbreu  12218  nnle1eq1  12296  nn0le0eq0  12554  zextle  12691  uz11  12903  uzin  12918  uzwo  12953  qsqueeze  13243  elfz1eq  13575  faclbnd4lem4  14335  swrdccat3blem  14777  repswswrd  14822  sqeqd  15205  max0add  15349  fsum00  15834  reef11  16155  dvdsabseq  16350  nn0seqcvgd  16607  infpnlem1  16948  gzrngunit  21451  psrbaglesupp  21942  nmoeq0  24757  oprpiece1res2  24983  pcoval2  25049  minveclem7  25469  pjthlem1  25471  iblposlem  25827  dvferm  26026  dveq0  26039  dv11cn  26040  fta1blem  26210  dgrco  26315  aalioulem3  26376  logf1o2  26692  cxpsqrtlem  26744  ang180lem3  26854  chpeq0  27252  chteq0  27253  lgsdir  27376  lgsabs1  27380  minvecolem7  30902  pjhthlem1  31410  pjnormssi  32187  hstles  32250  stge1i  32257  stle0i  32258  stlesi  32260  cdj3lem1  32453  derangen  35177  bfplem2  37830  bfp  37831  acongeq  42995  jm2.26lem3  43013  dvconstbi  44353  zgeltp1eq  47321  zgtp1leeq  48438
  Copyright terms: Public domain W3C validator