| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letri3 | Structured version Visualization version GIF version | ||
| Description: Trichotomy law. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| letri3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttri3 11344 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
| 2 | 1 | biancomd 463 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
| 3 | lenlt 11339 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | lenlt 11339 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 6 | 3, 5 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
| 7 | 2, 6 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ℝcr 11154 < clt 11295 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 |
| This theorem is referenced by: eqlelt 11348 eqlei 11371 eqlei2 11372 letri3i 11377 letri3d 11403 lesub0 11780 eqord1 11791 lbreu 12218 nnle1eq1 12296 nn0le0eq0 12554 zextle 12691 uz11 12903 uzin 12918 uzwo 12953 qsqueeze 13243 elfz1eq 13575 faclbnd4lem4 14335 swrdccat3blem 14777 repswswrd 14822 sqeqd 15205 max0add 15349 fsum00 15834 reef11 16155 dvdsabseq 16350 nn0seqcvgd 16607 infpnlem1 16948 gzrngunit 21451 psrbaglesupp 21942 nmoeq0 24757 oprpiece1res2 24983 pcoval2 25049 minveclem7 25469 pjthlem1 25471 iblposlem 25827 dvferm 26026 dveq0 26039 dv11cn 26040 fta1blem 26210 dgrco 26315 aalioulem3 26376 logf1o2 26692 cxpsqrtlem 26744 ang180lem3 26854 chpeq0 27252 chteq0 27253 lgsdir 27376 lgsabs1 27380 minvecolem7 30902 pjhthlem1 31410 pjnormssi 32187 hstles 32250 stge1i 32257 stle0i 32258 stlesi 32260 cdj3lem1 32453 derangen 35177 bfplem2 37830 bfp 37831 acongeq 42995 jm2.26lem3 43013 dvconstbi 44353 zgeltp1eq 47321 zgtp1leeq 48438 |
| Copyright terms: Public domain | W3C validator |