MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letri3 Structured version   Visualization version   GIF version

Theorem letri3 10883
Description: Trichotomy law. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 10881 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
21biancomd 467 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
3 lenlt 10876 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
4 lenlt 10876 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
54ancoms 462 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
63, 5anbi12d 634 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
72, 6bitr4d 285 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112   class class class wbr 5039  cr 10693   < clt 10832  cle 10833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-pre-lttri 10768  ax-pre-lttrn 10769
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838
This theorem is referenced by:  eqlelt  10885  eqlei  10907  eqlei2  10908  letri3i  10913  letri3d  10939  lesub0  11314  eqord1  11325  lbreu  11747  nnle1eq1  11825  nn0le0eq0  12083  zextle  12215  uz11  12428  uzin  12439  uzwo  12472  qsqueeze  12756  elfz1eq  13088  faclbnd4lem4  13827  swrdccat3blem  14269  repswswrd  14314  sqeqd  14694  max0add  14839  fsum00  15325  reef11  15643  dvdsabseq  15837  nn0seqcvgd  16090  infpnlem1  16426  gzrngunit  20383  psrbaglesupp  20837  psrbaglesuppOLD  20838  nmoeq0  23588  oprpiece1res2  23803  pcoval2  23867  minveclem7  24286  pjthlem1  24288  iblposlem  24643  dvferm  24839  dveq0  24851  dv11cn  24852  fta1blem  25020  dgrco  25123  aalioulem3  25181  logf1o2  25492  cxpsqrtlem  25544  ang180lem3  25648  chpeq0  26043  chteq0  26044  lgsdir  26167  lgsabs1  26171  minvecolem7  28918  pjhthlem1  29426  pjnormssi  30203  hstles  30266  stge1i  30273  stle0i  30274  stlesi  30276  cdj3lem1  30469  derangen  32801  bfplem2  35667  bfp  35668  acongeq  40449  jm2.26lem3  40467  dvconstbi  41566  zgeltp1eq  44417  zgtp1leeq  45478
  Copyright terms: Public domain W3C validator