Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letri3 | Structured version Visualization version GIF version |
Description: Trichotomy law. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
letri3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 11059 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
2 | 1 | biancomd 464 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
3 | lenlt 11054 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | lenlt 11054 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
5 | 4 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
6 | 3, 5 | anbi12d 631 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
7 | 2, 6 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ℝcr 10871 < clt 11010 ≤ cle 11011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-pre-lttri 10946 ax-pre-lttrn 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 |
This theorem is referenced by: eqlelt 11063 eqlei 11085 eqlei2 11086 letri3i 11091 letri3d 11117 lesub0 11492 eqord1 11503 lbreu 11925 nnle1eq1 12003 nn0le0eq0 12261 zextle 12393 uz11 12606 uzin 12617 uzwo 12650 qsqueeze 12934 elfz1eq 13266 faclbnd4lem4 14008 swrdccat3blem 14450 repswswrd 14495 sqeqd 14875 max0add 15020 fsum00 15508 reef11 15826 dvdsabseq 16020 nn0seqcvgd 16273 infpnlem1 16609 gzrngunit 20662 psrbaglesupp 21125 psrbaglesuppOLD 21126 nmoeq0 23898 oprpiece1res2 24113 pcoval2 24177 minveclem7 24597 pjthlem1 24599 iblposlem 24954 dvferm 25150 dveq0 25162 dv11cn 25163 fta1blem 25331 dgrco 25434 aalioulem3 25492 logf1o2 25803 cxpsqrtlem 25855 ang180lem3 25959 chpeq0 26354 chteq0 26355 lgsdir 26478 lgsabs1 26482 minvecolem7 29241 pjhthlem1 29749 pjnormssi 30526 hstles 30589 stge1i 30596 stle0i 30597 stlesi 30599 cdj3lem1 30792 derangen 33130 bfplem2 35977 bfp 35978 acongeq 40802 jm2.26lem3 40820 dvconstbi 41922 zgeltp1eq 44770 zgtp1leeq 45831 |
Copyright terms: Public domain | W3C validator |