MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letri3 Structured version   Visualization version   GIF version

Theorem letri3 11303
Description: Trichotomy law. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 11301 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
21biancomd 463 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
3 lenlt 11296 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
4 lenlt 11296 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
54ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
63, 5anbi12d 630 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴𝐵𝐵𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵)))
72, 6bitr4d 282 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   class class class wbr 5141  cr 11111   < clt 11252  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  eqlelt  11305  eqlei  11328  eqlei2  11329  letri3i  11334  letri3d  11360  lesub0  11735  eqord1  11746  lbreu  12168  nnle1eq1  12246  nn0le0eq0  12504  zextle  12639  uz11  12851  uzin  12866  uzwo  12899  qsqueeze  13186  elfz1eq  13518  faclbnd4lem4  14261  swrdccat3blem  14695  repswswrd  14740  sqeqd  15119  max0add  15263  fsum00  15750  reef11  16069  dvdsabseq  16263  nn0seqcvgd  16514  infpnlem1  16852  gzrngunit  21327  psrbaglesupp  21818  psrbaglesuppOLD  21819  nmoeq0  24608  oprpiece1res2  24832  pcoval2  24898  minveclem7  25318  pjthlem1  25320  iblposlem  25676  dvferm  25875  dveq0  25888  dv11cn  25889  fta1blem  26060  dgrco  26165  aalioulem3  26224  logf1o2  26539  cxpsqrtlem  26591  ang180lem3  26698  chpeq0  27096  chteq0  27097  lgsdir  27220  lgsabs1  27224  minvecolem7  30645  pjhthlem1  31153  pjnormssi  31930  hstles  31993  stge1i  32000  stle0i  32001  stlesi  32003  cdj3lem1  32196  derangen  34691  bfplem2  37204  bfp  37205  acongeq  42305  jm2.26lem3  42323  dvconstbi  43674  zgeltp1eq  46594  zgtp1leeq  47482
  Copyright terms: Public domain W3C validator