Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letri3 | Structured version Visualization version GIF version |
Description: Trichotomy law. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
letri3 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 11058 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
2 | 1 | biancomd 464 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
3 | lenlt 11053 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | lenlt 11053 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
5 | 4 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
6 | 3, 5 | anbi12d 631 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) ↔ (¬ 𝐵 < 𝐴 ∧ ¬ 𝐴 < 𝐵))) |
7 | 2, 6 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: eqlelt 11062 eqlei 11085 eqlei2 11086 letri3i 11091 letri3d 11117 lesub0 11492 eqord1 11503 lbreu 11925 nnle1eq1 12003 nn0le0eq0 12261 zextle 12393 uz11 12607 uzin 12618 uzwo 12651 qsqueeze 12935 elfz1eq 13267 faclbnd4lem4 14010 swrdccat3blem 14452 repswswrd 14497 sqeqd 14877 max0add 15022 fsum00 15510 reef11 15828 dvdsabseq 16022 nn0seqcvgd 16275 infpnlem1 16611 gzrngunit 20664 psrbaglesupp 21127 psrbaglesuppOLD 21128 nmoeq0 23900 oprpiece1res2 24115 pcoval2 24179 minveclem7 24599 pjthlem1 24601 iblposlem 24956 dvferm 25152 dveq0 25164 dv11cn 25165 fta1blem 25333 dgrco 25436 aalioulem3 25494 logf1o2 25805 cxpsqrtlem 25857 ang180lem3 25961 chpeq0 26356 chteq0 26357 lgsdir 26480 lgsabs1 26484 minvecolem7 29245 pjhthlem1 29753 pjnormssi 30530 hstles 30593 stge1i 30600 stle0i 30601 stlesi 30603 cdj3lem1 30796 derangen 33134 bfplem2 35981 bfp 35982 acongeq 40805 jm2.26lem3 40823 dvconstbi 41952 zgeltp1eq 44801 zgtp1leeq 45862 |
Copyright terms: Public domain | W3C validator |