MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpmg Structured version   Visualization version   GIF version

Theorem elpmg 8770
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
elpmg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))

Proof of Theorem elpmg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 pmvalg 8764 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴pm 𝐵) = {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔})
21eleq2d 2814 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ 𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔}))
3 funeq 6502 . . . . 5 (𝑔 = 𝐶 → (Fun 𝑔 ↔ Fun 𝐶))
43elrab 3648 . . . 4 (𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔} ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶))
52, 4bitrdi 287 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶)))
65biancomd 463 . 2 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴))))
7 elex 3457 . . . . 5 (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V)
87a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V))
9 xpexg 7686 . . . . . 6 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
109ancoms 458 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
11 ssexg 5262 . . . . . 6 ((𝐶 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ∈ V) → 𝐶 ∈ V)
1211expcom 413 . . . . 5 ((𝐵 × 𝐴) ∈ V → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V))
1310, 12syl 17 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V))
14 elpwg 4554 . . . . 5 (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))
1514a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴))))
168, 13, 15pm5.21ndd 379 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))
1716anbi2d 630 . 2 ((𝐴𝑉𝐵𝑊) → ((Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴)) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
186, 17bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551   × cxp 5617  Fun wfun 6476  (class class class)co 7349  pm cpm 8754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-pm 8756
This theorem is referenced by:  elpm2g  8771  pmss12g  8796  elpm  8800  pmsspw  8804  lmfss  23181  lmmbr2  25157  iscau2  25175  caussi  25195  causs  25196
  Copyright terms: Public domain W3C validator