MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpmg Structured version   Visualization version   GIF version

Theorem elpmg 8819
Description: The predicate "is a partial function". (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
elpmg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))

Proof of Theorem elpmg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 pmvalg 8813 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴pm 𝐵) = {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔})
21eleq2d 2815 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ 𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔}))
3 funeq 6539 . . . . 5 (𝑔 = 𝐶 → (Fun 𝑔 ↔ Fun 𝐶))
43elrab 3662 . . . 4 (𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔} ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶))
52, 4bitrdi 287 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶)))
65biancomd 463 . 2 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴))))
7 elex 3471 . . . . 5 (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V)
87a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V))
9 xpexg 7729 . . . . . 6 ((𝐵𝑊𝐴𝑉) → (𝐵 × 𝐴) ∈ V)
109ancoms 458 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐵 × 𝐴) ∈ V)
11 ssexg 5281 . . . . . 6 ((𝐶 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ∈ V) → 𝐶 ∈ V)
1211expcom 413 . . . . 5 ((𝐵 × 𝐴) ∈ V → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V))
1310, 12syl 17 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V))
14 elpwg 4569 . . . . 5 (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))
1514a1i 11 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴))))
168, 13, 15pm5.21ndd 379 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))
1716anbi2d 630 . 2 ((𝐴𝑉𝐵𝑊) → ((Fun 𝐶𝐶 ∈ 𝒫 (𝐵 × 𝐴)) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
186, 17bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566   × cxp 5639  Fun wfun 6508  (class class class)co 7390  pm cpm 8803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-pm 8805
This theorem is referenced by:  elpm2g  8820  pmss12g  8845  elpm  8849  pmsspw  8853  lmfss  23190  lmmbr2  25166  iscau2  25184  caussi  25204  causs  25205
  Copyright terms: Public domain W3C validator