MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Visualization version   GIF version

Theorem qbtwnre 13166
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 11678 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 11493 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 nnrecl 12447 . . . . . . 7 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
42, 3sylan 580 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
54ex 412 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
65ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
71, 6sylbid 240 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
8 nnre 12200 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
98adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
10 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐵 ∈ ℝ)
119, 10remulcld 11211 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝐵) ∈ ℝ)
12 peano2rem 11496 . . . . . . 7 ((𝑦 · 𝐵) ∈ ℝ → ((𝑦 · 𝐵) − 1) ∈ ℝ)
1311, 12syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
14 zbtwnre 12912 . . . . . 6 (((𝑦 · 𝐵) − 1) ∈ ℝ → ∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
15 reurex 3360 . . . . . 6 (∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
1613, 14, 153syl 18 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
17 znq 12918 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 / 𝑦) ∈ ℚ)
1817ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 / 𝑦) ∈ ℚ)
1918adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 / 𝑦) ∈ ℚ)
20 an32 646 . . . . . . . . . 10 (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) ↔ ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
218ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℝ)
22 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℝ)
2321, 22remulcld 11211 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐴) ∈ ℝ)
2413adantrr 717 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
25 zre 12540 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2625ad2antll 729 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℝ)
27 ltletr 11273 . . . . . . . . . . . . 13 (((𝑦 · 𝐴) ∈ ℝ ∧ ((𝑦 · 𝐵) − 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2823, 24, 26, 27syl3anc 1373 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2921recnd 11209 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℂ)
30 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℝ)
3130recnd 11209 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℂ)
3222recnd 11209 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℂ)
3329, 31, 32subdid 11641 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · (𝐵𝐴)) = ((𝑦 · 𝐵) − (𝑦 · 𝐴)))
3433breq2d 5122 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (1 < (𝑦 · (𝐵𝐴)) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
35 1red 11182 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 1 ∈ ℝ)
3630, 22resubcld 11613 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝐵𝐴) ∈ ℝ)
37 nngt0 12224 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 < 𝑦)
3837ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 0 < 𝑦)
39 ltdivmul 12065 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4035, 36, 21, 38, 39syl112anc 1376 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4111adantrr 717 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℝ)
42 ltsub13 11666 . . . . . . . . . . . . . . . 16 (((𝑦 · 𝐴) ∈ ℝ ∧ (𝑦 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4323, 41, 35, 42syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4434, 40, 433bitr4rd 312 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ (1 / 𝑦) < (𝐵𝐴)))
4544anbi1d 631 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ ((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧)))
4645biancomd 463 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴))))
47 ltmuldiv2 12064 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4822, 26, 21, 38, 47syl112anc 1376 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4928, 46, 483imtr3d 293 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) → 𝐴 < (𝑧 / 𝑦)))
5041recnd 11209 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℂ)
51 ax-1cn 11133 . . . . . . . . . . . . . . 15 1 ∈ ℂ
52 npcan 11437 . . . . . . . . . . . . . . 15 (((𝑦 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5350, 51, 52sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5453breq2d 5122 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ 𝑧 < (𝑦 · 𝐵)))
55 ltdivmul 12065 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5626, 30, 21, 38, 55syl112anc 1376 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5754, 56bitr4d 282 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ (𝑧 / 𝑦) < 𝐵))
5857biimpd 229 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) → (𝑧 / 𝑦) < 𝐵))
5949, 58anim12d 609 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6020, 59biimtrid 242 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
61 breq2 5114 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝐴 < 𝑥𝐴 < (𝑧 / 𝑦)))
62 breq1 5113 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝑥 < 𝐵 ↔ (𝑧 / 𝑦) < 𝐵))
6361, 62anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝑧 / 𝑦) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6463rspcev 3591 . . . . . . . . 9 (((𝑧 / 𝑦) ∈ ℚ ∧ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
6519, 60, 64syl6an 684 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
6665expd 415 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6766expr 456 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℤ → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))))
6867rexlimdv 3133 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6916, 68mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7069rexlimdva 3135 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
717, 70syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
72713impia 1117 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  ∃!wreu 3354   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cz 12536  cq 12914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915
This theorem is referenced by:  qbtwnxr  13167  qsqueeze  13168  nmoleub2lem3  25022  mbfaddlem  25568  rpnnen3lem  43027
  Copyright terms: Public domain W3C validator