MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Visualization version   GIF version

Theorem qbtwnre 13237
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 11753 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 11570 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 nnrecl 12521 . . . . . . 7 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
42, 3sylan 580 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
54ex 412 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
65ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
71, 6sylbid 240 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
8 nnre 12270 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
98adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
10 simplr 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐵 ∈ ℝ)
119, 10remulcld 11288 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝐵) ∈ ℝ)
12 peano2rem 11573 . . . . . . 7 ((𝑦 · 𝐵) ∈ ℝ → ((𝑦 · 𝐵) − 1) ∈ ℝ)
1311, 12syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
14 zbtwnre 12985 . . . . . 6 (((𝑦 · 𝐵) − 1) ∈ ℝ → ∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
15 reurex 3381 . . . . . 6 (∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
1613, 14, 153syl 18 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
17 znq 12991 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 / 𝑦) ∈ ℚ)
1817ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 / 𝑦) ∈ ℚ)
1918adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 / 𝑦) ∈ ℚ)
20 an32 646 . . . . . . . . . 10 (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) ↔ ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
218ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℝ)
22 simpll 767 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℝ)
2321, 22remulcld 11288 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐴) ∈ ℝ)
2413adantrr 717 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
25 zre 12614 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2625ad2antll 729 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℝ)
27 ltletr 11350 . . . . . . . . . . . . 13 (((𝑦 · 𝐴) ∈ ℝ ∧ ((𝑦 · 𝐵) − 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2823, 24, 26, 27syl3anc 1370 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2921recnd 11286 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℂ)
30 simplr 769 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℝ)
3130recnd 11286 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℂ)
3222recnd 11286 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℂ)
3329, 31, 32subdid 11716 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · (𝐵𝐴)) = ((𝑦 · 𝐵) − (𝑦 · 𝐴)))
3433breq2d 5159 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (1 < (𝑦 · (𝐵𝐴)) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
35 1red 11259 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 1 ∈ ℝ)
3630, 22resubcld 11688 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝐵𝐴) ∈ ℝ)
37 nngt0 12294 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 < 𝑦)
3837ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 0 < 𝑦)
39 ltdivmul 12140 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4035, 36, 21, 38, 39syl112anc 1373 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4111adantrr 717 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℝ)
42 ltsub13 11741 . . . . . . . . . . . . . . . 16 (((𝑦 · 𝐴) ∈ ℝ ∧ (𝑦 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4323, 41, 35, 42syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4434, 40, 433bitr4rd 312 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ (1 / 𝑦) < (𝐵𝐴)))
4544anbi1d 631 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ ((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧)))
4645biancomd 463 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴))))
47 ltmuldiv2 12139 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4822, 26, 21, 38, 47syl112anc 1373 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4928, 46, 483imtr3d 293 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) → 𝐴 < (𝑧 / 𝑦)))
5041recnd 11286 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℂ)
51 ax-1cn 11210 . . . . . . . . . . . . . . 15 1 ∈ ℂ
52 npcan 11514 . . . . . . . . . . . . . . 15 (((𝑦 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5350, 51, 52sylancl 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5453breq2d 5159 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ 𝑧 < (𝑦 · 𝐵)))
55 ltdivmul 12140 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5626, 30, 21, 38, 55syl112anc 1373 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5754, 56bitr4d 282 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ (𝑧 / 𝑦) < 𝐵))
5857biimpd 229 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) → (𝑧 / 𝑦) < 𝐵))
5949, 58anim12d 609 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6020, 59biimtrid 242 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
61 breq2 5151 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝐴 < 𝑥𝐴 < (𝑧 / 𝑦)))
62 breq1 5150 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝑥 < 𝐵 ↔ (𝑧 / 𝑦) < 𝐵))
6361, 62anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝑧 / 𝑦) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6463rspcev 3621 . . . . . . . . 9 (((𝑧 / 𝑦) ∈ ℚ ∧ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
6519, 60, 64syl6an 684 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
6665expd 415 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6766expr 456 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℤ → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))))
6867rexlimdv 3150 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6916, 68mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7069rexlimdva 3152 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
717, 70syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
72713impia 1116 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  ∃!wreu 3375   class class class wbr 5147  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  cz 12610  cq 12987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988
This theorem is referenced by:  qbtwnxr  13238  qsqueeze  13239  nmoleub2lem3  25161  mbfaddlem  25708  rpnnen3lem  43019
  Copyright terms: Public domain W3C validator