MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Visualization version   GIF version

Theorem qbtwnre 13261
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 11783 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 11600 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
3 nnrecl 12551 . . . . . . 7 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
42, 3sylan 579 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 0 < (𝐵𝐴)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴))
54ex 412 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
65ancoms 458 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵𝐴) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
71, 6sylbid 240 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴)))
8 nnre 12300 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
98adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
10 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐵 ∈ ℝ)
119, 10remulcld 11320 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝐵) ∈ ℝ)
12 peano2rem 11603 . . . . . . 7 ((𝑦 · 𝐵) ∈ ℝ → ((𝑦 · 𝐵) − 1) ∈ ℝ)
1311, 12syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
14 zbtwnre 13011 . . . . . 6 (((𝑦 · 𝐵) − 1) ∈ ℝ → ∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
15 reurex 3392 . . . . . 6 (∃!𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
1613, 14, 153syl 18 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
17 znq 13017 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑧 / 𝑦) ∈ ℚ)
1817ancoms 458 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 / 𝑦) ∈ ℚ)
1918adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 / 𝑦) ∈ ℚ)
20 an32 645 . . . . . . . . . 10 (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) ↔ ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)))
218ad2antrl 727 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℝ)
22 simpll 766 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℝ)
2321, 22remulcld 11320 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐴) ∈ ℝ)
2413adantrr 716 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐵) − 1) ∈ ℝ)
25 zre 12643 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
2625ad2antll 728 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑧 ∈ ℝ)
27 ltletr 11382 . . . . . . . . . . . . 13 (((𝑦 · 𝐴) ∈ ℝ ∧ ((𝑦 · 𝐵) − 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2823, 24, 26, 27syl3anc 1371 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) → (𝑦 · 𝐴) < 𝑧))
2921recnd 11318 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝑦 ∈ ℂ)
30 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℝ)
3130recnd 11318 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐵 ∈ ℂ)
3222recnd 11318 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 𝐴 ∈ ℂ)
3329, 31, 32subdid 11746 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · (𝐵𝐴)) = ((𝑦 · 𝐵) − (𝑦 · 𝐴)))
3433breq2d 5178 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (1 < (𝑦 · (𝐵𝐴)) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
35 1red 11291 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 1 ∈ ℝ)
3630, 22resubcld 11718 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝐵𝐴) ∈ ℝ)
37 nngt0 12324 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → 0 < 𝑦)
3837ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → 0 < 𝑦)
39 ltdivmul 12170 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4035, 36, 21, 38, 39syl112anc 1374 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((1 / 𝑦) < (𝐵𝐴) ↔ 1 < (𝑦 · (𝐵𝐴))))
4111adantrr 716 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℝ)
42 ltsub13 11771 . . . . . . . . . . . . . . . 16 (((𝑦 · 𝐴) ∈ ℝ ∧ (𝑦 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4323, 41, 35, 42syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ 1 < ((𝑦 · 𝐵) − (𝑦 · 𝐴))))
4434, 40, 433bitr4rd 312 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ↔ (1 / 𝑦) < (𝐵𝐴)))
4544anbi1d 630 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ ((1 / 𝑦) < (𝐵𝐴) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧)))
4645biancomd 463 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐴) < ((𝑦 · 𝐵) − 1) ∧ ((𝑦 · 𝐵) − 1) ≤ 𝑧) ↔ (((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴))))
47 ltmuldiv2 12169 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4822, 26, 21, 38, 47syl112anc 1374 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) < 𝑧𝐴 < (𝑧 / 𝑦)))
4928, 46, 483imtr3d 293 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) → 𝐴 < (𝑧 / 𝑦)))
5041recnd 11318 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑦 · 𝐵) ∈ ℂ)
51 ax-1cn 11242 . . . . . . . . . . . . . . 15 1 ∈ ℂ
52 npcan 11545 . . . . . . . . . . . . . . 15 (((𝑦 · 𝐵) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5350, 51, 52sylancl 585 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((𝑦 · 𝐵) − 1) + 1) = (𝑦 · 𝐵))
5453breq2d 5178 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ 𝑧 < (𝑦 · 𝐵)))
55 ltdivmul 12170 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5626, 30, 21, 38, 55syl112anc 1374 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((𝑧 / 𝑦) < 𝐵𝑧 < (𝑦 · 𝐵)))
5754, 56bitr4d 282 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) ↔ (𝑧 / 𝑦) < 𝐵))
5857biimpd 229 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (𝑧 < (((𝑦 · 𝐵) − 1) + 1) → (𝑧 / 𝑦) < 𝐵))
5949, 58anim12d 608 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧 ∧ (1 / 𝑦) < (𝐵𝐴)) ∧ 𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6020, 59biimtrid 242 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
61 breq2 5170 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝐴 < 𝑥𝐴 < (𝑧 / 𝑦)))
62 breq1 5169 . . . . . . . . . . 11 (𝑥 = (𝑧 / 𝑦) → (𝑥 < 𝐵 ↔ (𝑧 / 𝑦) < 𝐵))
6361, 62anbi12d 631 . . . . . . . . . 10 (𝑥 = (𝑧 / 𝑦) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)))
6463rspcev 3635 . . . . . . . . 9 (((𝑧 / 𝑦) ∈ ℚ ∧ (𝐴 < (𝑧 / 𝑦) ∧ (𝑧 / 𝑦) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
6519, 60, 64syl6an 683 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → (((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) ∧ (1 / 𝑦) < (𝐵𝐴)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
6665expd 415 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ)) → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6766expr 456 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℤ → ((((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))))
6867rexlimdv 3159 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (∃𝑧 ∈ ℤ (((𝑦 · 𝐵) − 1) ≤ 𝑧𝑧 < (((𝑦 · 𝐵) − 1) + 1)) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))))
6916, 68mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7069rexlimdva 3161 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑦 ∈ ℕ (1 / 𝑦) < (𝐵𝐴) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
717, 70syld 47 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
72713impia 1117 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  cq 13013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014
This theorem is referenced by:  qbtwnxr  13262  qsqueeze  13263  nmoleub2lem3  25167  mbfaddlem  25714  rpnnen3lem  42988
  Copyright terms: Public domain W3C validator