Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnmpti | Structured version Visualization version GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnmpti.1 | ⊢ 𝐵 ∈ V |
fnmpti.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fnmpti | ⊢ 𝐹 Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpti.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3065 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | fnmpti.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | mptfng 6470 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴) |
5 | 2, 4 | mpbi 233 | 1 ⊢ 𝐹 Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2113 ∀wral 3053 Vcvv 3397 ↦ cmpt 5107 Fn wfn 6328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-fun 6335 df-fn 6336 |
This theorem is referenced by: dmmpti 6475 fconst 6558 dffn5 6722 idref 6912 eufnfv 6996 offn 7431 caofinvl 7448 fo1st 7727 fo2nd 7728 reldm 7761 fimaproj 7848 mapsnf1o2 8497 unfilem2 8850 fidomdm 8867 pwfilemOLD 8884 noinfep 9189 aceq3lem 9613 dfac4 9615 ackbij2lem2 9733 cfslb2n 9761 axcc2lem 9929 dmct 10017 konigthlem 10061 rankcf 10270 tskuni 10276 seqf1o 13496 ccatlen 14009 ccatlenOLD 14010 ccatvalfn 14017 swrdlen 14091 swrdwrdsymb 14106 swrdswrd 14149 sqrtf 14806 mptfzshft 15219 efcvgfsum 15524 prmreclem2 16346 1arith 16356 vdwlem6 16415 vdwlem8 16417 slotfn 16597 topnfn 16795 fnmre 16958 cidffn 17045 cidfn 17046 funcres 17264 initofn 17352 termofn 17353 zeroofn 17354 yonedainv 17640 fn0g 17982 smndex1igid 18178 smndex1n0mnd 18186 grpinvfn 18256 cycsubmel 18454 conjnmz 18503 psgnfn 18740 odf 18776 sylow1lem4 18837 pgpssslw 18850 sylow2blem3 18858 sylow3lem2 18864 cygctb 19124 dprd2da 19276 fnmgp 19353 rlmfn 20074 rrgsupp 20176 frlmup4 20610 asclfn 20687 evlslem1 20889 mdetrlin 21346 fncld 21766 hauseqlcld 22390 kqf 22491 filunirn 22626 fmf 22689 txflf 22750 clsnsg 22854 tgpconncomp 22857 qustgpopn 22864 qustgplem 22865 ustfn 22946 xmetunirn 23083 met1stc 23267 rrxmvallem 24149 ovolf 24227 vitali 24358 i1fmulc 24448 mbfi1fseqlem4 24463 itg2seq 24487 itg2monolem1 24495 i1fibl 24552 fncpn 24677 lhop1lem 24757 mdegxrf 24813 aannenlem3 25070 efabl 25286 logccv 25398 gausslemma2dlem1 26094 padicabvf 26359 mptelee 26833 wlkiswwlks2lem1 27799 clwlkclwwlklem2a2 27922 grpoinvf 28459 occllem 29230 pjfni 29628 pjmfn 29642 rnbra 30034 bra11 30035 kbass2 30044 hmopidmchi 30078 xppreima2 30554 abfmpunirn 30556 psgnfzto1stlem 30936 elrspunidl 31170 locfinreflem 31354 zarclsint 31386 zar0ring 31392 rhmpreimacn 31399 ofcfn 31630 sxbrsigalem3 31801 eulerpartgbij 31901 sseqfv1 31918 sseqfn 31919 sseqf 31921 sseqfv2 31923 signstlen 32108 msubrn 33054 msrf 33067 faclimlem1 33272 bj-evalfn 34855 bj-inftyexpitaufo 34983 matunitlindflem1 35385 poimirlem30 35419 mblfinlem2 35427 volsupnfl 35434 cnambfre 35437 itg2addnclem2 35441 itg2addnclem3 35442 ftc1anclem5 35466 ftc1anclem7 35468 sdclem2 35512 prdsbnd2 35565 rrncmslem 35602 diafn 38660 cdlemm10N 38744 dibfna 38780 lcfrlem9 39176 mapd1o 39274 hdmapfnN 39455 hgmapfnN 39514 evlsbagval 39838 fsuppind 39842 mhphf 39848 rmxypairf1o 40289 hbtlem6 40510 dgraaf 40528 cytpfn 40589 ntrf 41263 uzmptshftfval 41486 binomcxplemrat 41490 addrfn 41612 subrfn 41613 mulvfn 41614 limsup10exlem 42839 liminfvalxr 42850 fourierdlem62 43235 fourierdlem70 43243 fourierdlem71 43244 fmtnorn 44504 zrinitorngc 45076 zrtermorngc 45077 zrtermoringc 45146 |
Copyright terms: Public domain | W3C validator |