![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > truae | Structured version Visualization version GIF version |
Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
truae.1 | ⊢ ∪ dom 𝑀 = 𝑂 |
truae.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
truae.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
truae | ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | truae.3 | . . . . . . . 8 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm2.24d 151 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝜓 → 𝑥 ∈ ∅)) |
3 | 2 | ralrimivw 3150 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) |
4 | rabss 4085 | . . . . . 6 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) | |
5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅) |
6 | ss0 4411 | . . . . 5 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) |
8 | 7 | fveq2d 6918 | . . 3 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅)) |
9 | truae.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | measbasedom 34197 | . . . . 5 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) | |
11 | measvnul 34201 | . . . . 5 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0) | |
12 | 10, 11 | sylbi 217 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀‘∅) = 0) |
13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀‘∅) = 0) |
14 | 8, 13 | eqtrd 2777 | . 2 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
15 | truae.1 | . . . 4 ⊢ ∪ dom 𝑀 = 𝑂 | |
16 | 15 | braew 34237 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
17 | 9, 16 | syl 17 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
18 | 14, 17 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {crab 3436 ⊆ wss 3966 ∅c0 4342 ∪ cuni 4915 class class class wbr 5151 dom cdm 5693 ran crn 5694 ‘cfv 6569 0cc0 11162 measurescmeas 34190 a.e.cae 34232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fv 6577 df-ov 7441 df-esum 34023 df-meas 34191 df-ae 34234 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |