![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > truae | Structured version Visualization version GIF version |
Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
Ref | Expression |
---|---|
truae.1 | ⊢ ∪ dom 𝑀 = 𝑂 |
truae.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
truae.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
truae | ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | truae.3 | . . . . . . . 8 ⊢ (𝜑 → 𝜓) | |
2 | 1 | pm2.24d 151 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝜓 → 𝑥 ∈ ∅)) |
3 | 2 | ralrimivw 3145 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) |
4 | rabss 4065 | . . . . . 6 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) | |
5 | 3, 4 | sylibr 233 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅) |
6 | ss0 4394 | . . . . 5 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) |
8 | 7 | fveq2d 6895 | . . 3 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅)) |
9 | truae.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | measbasedom 33757 | . . . . 5 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) | |
11 | measvnul 33761 | . . . . 5 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0) | |
12 | 10, 11 | sylbi 216 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀‘∅) = 0) |
13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀‘∅) = 0) |
14 | 8, 13 | eqtrd 2767 | . 2 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
15 | truae.1 | . . . 4 ⊢ ∪ dom 𝑀 = 𝑂 | |
16 | 15 | braew 33797 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
17 | 9, 16 | syl 17 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
18 | 14, 17 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 ⊆ wss 3944 ∅c0 4318 ∪ cuni 4903 class class class wbr 5142 dom cdm 5672 ran crn 5673 ‘cfv 6542 0cc0 11130 measurescmeas 33750 a.e.cae 33792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-esum 33583 df-meas 33751 df-ae 33794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |