| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > truae | Structured version Visualization version GIF version | ||
| Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| truae.1 | ⊢ ∪ dom 𝑀 = 𝑂 |
| truae.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| truae.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| truae | ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | truae.3 | . . . . . . . 8 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm2.24d 151 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝜓 → 𝑥 ∈ ∅)) |
| 3 | 2 | ralrimivw 3137 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) |
| 4 | rabss 4052 | . . . . . 6 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅) |
| 6 | ss0 4382 | . . . . 5 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) |
| 8 | 7 | fveq2d 6890 | . . 3 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅)) |
| 9 | truae.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | measbasedom 34162 | . . . . 5 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) | |
| 11 | measvnul 34166 | . . . . 5 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0) | |
| 12 | 10, 11 | sylbi 217 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀‘∅) = 0) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀‘∅) = 0) |
| 14 | 8, 13 | eqtrd 2769 | . 2 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
| 15 | truae.1 | . . . 4 ⊢ ∪ dom 𝑀 = 𝑂 | |
| 16 | 15 | braew 34202 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 17 | 9, 16 | syl 17 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 18 | 14, 17 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4887 class class class wbr 5123 dom cdm 5665 ran crn 5666 ‘cfv 6541 0cc0 11137 measurescmeas 34155 a.e.cae 34197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-esum 33988 df-meas 34156 df-ae 34199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |