Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truae Structured version   Visualization version   GIF version

Theorem truae 34233
Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
truae.1 dom 𝑀 = 𝑂
truae.2 (𝜑𝑀 ran measures)
truae.3 (𝜑𝜓)
Assertion
Ref Expression
truae (𝜑 → {𝑥𝑂𝜓}a.e.𝑀)
Distinct variable groups:   𝑥,𝑂   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem truae
StepHypRef Expression
1 truae.3 . . . . . . . 8 (𝜑𝜓)
21pm2.24d 151 . . . . . . 7 (𝜑 → (¬ 𝜓𝑥 ∈ ∅))
32ralrimivw 3129 . . . . . 6 (𝜑 → ∀𝑥𝑂𝜓𝑥 ∈ ∅))
4 rabss 4035 . . . . . 6 ({𝑥𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥𝑂𝜓𝑥 ∈ ∅))
53, 4sylibr 234 . . . . 5 (𝜑 → {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ∅)
6 ss0 4365 . . . . 5 ({𝑥𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥𝑂 ∣ ¬ 𝜓} = ∅)
75, 6syl 17 . . . 4 (𝜑 → {𝑥𝑂 ∣ ¬ 𝜓} = ∅)
87fveq2d 6862 . . 3 (𝜑 → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅))
9 truae.2 . . . 4 (𝜑𝑀 ran measures)
10 measbasedom 34192 . . . . 5 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
11 measvnul 34196 . . . . 5 (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0)
1210, 11sylbi 217 . . . 4 (𝑀 ran measures → (𝑀‘∅) = 0)
139, 12syl 17 . . 3 (𝜑 → (𝑀‘∅) = 0)
148, 13eqtrd 2764 . 2 (𝜑 → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
15 truae.1 . . . 4 dom 𝑀 = 𝑂
1615braew 34232 . . 3 (𝑀 ran measures → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
179, 16syl 17 . 2 (𝜑 → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
1814, 17mpbird 257 1 (𝜑 → {𝑥𝑂𝜓}a.e.𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3405  wss 3914  c0 4296   cuni 4871   class class class wbr 5107  dom cdm 5638  ran crn 5639  cfv 6511  0cc0 11068  measurescmeas 34185  a.e.cae 34227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-esum 34018  df-meas 34186  df-ae 34229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator