| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > truae | Structured version Visualization version GIF version | ||
| Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| truae.1 | ⊢ ∪ dom 𝑀 = 𝑂 |
| truae.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| truae.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| truae | ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | truae.3 | . . . . . . . 8 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm2.24d 151 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝜓 → 𝑥 ∈ ∅)) |
| 3 | 2 | ralrimivw 3128 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) |
| 4 | rabss 4017 | . . . . . 6 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅) |
| 6 | ss0 4349 | . . . . 5 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) |
| 8 | 7 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅)) |
| 9 | truae.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | measbasedom 34215 | . . . . 5 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) | |
| 11 | measvnul 34219 | . . . . 5 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0) | |
| 12 | 10, 11 | sylbi 217 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀‘∅) = 0) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀‘∅) = 0) |
| 14 | 8, 13 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
| 15 | truae.1 | . . . 4 ⊢ ∪ dom 𝑀 = 𝑂 | |
| 16 | 15 | braew 34255 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 17 | 9, 16 | syl 17 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 18 | 14, 17 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 ∅c0 4280 ∪ cuni 4856 class class class wbr 5089 dom cdm 5614 ran crn 5615 ‘cfv 6481 0cc0 11006 measurescmeas 34208 a.e.cae 34250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-esum 34041 df-meas 34209 df-ae 34252 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |