Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truae Structured version   Visualization version   GIF version

Theorem truae 34238
Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
truae.1 dom 𝑀 = 𝑂
truae.2 (𝜑𝑀 ran measures)
truae.3 (𝜑𝜓)
Assertion
Ref Expression
truae (𝜑 → {𝑥𝑂𝜓}a.e.𝑀)
Distinct variable groups:   𝑥,𝑂   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem truae
StepHypRef Expression
1 truae.3 . . . . . . . 8 (𝜑𝜓)
21pm2.24d 151 . . . . . . 7 (𝜑 → (¬ 𝜓𝑥 ∈ ∅))
32ralrimivw 3150 . . . . . 6 (𝜑 → ∀𝑥𝑂𝜓𝑥 ∈ ∅))
4 rabss 4085 . . . . . 6 ({𝑥𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥𝑂𝜓𝑥 ∈ ∅))
53, 4sylibr 234 . . . . 5 (𝜑 → {𝑥𝑂 ∣ ¬ 𝜓} ⊆ ∅)
6 ss0 4411 . . . . 5 ({𝑥𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥𝑂 ∣ ¬ 𝜓} = ∅)
75, 6syl 17 . . . 4 (𝜑 → {𝑥𝑂 ∣ ¬ 𝜓} = ∅)
87fveq2d 6918 . . 3 (𝜑 → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅))
9 truae.2 . . . 4 (𝜑𝑀 ran measures)
10 measbasedom 34197 . . . . 5 (𝑀 ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀))
11 measvnul 34201 . . . . 5 (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0)
1210, 11sylbi 217 . . . 4 (𝑀 ran measures → (𝑀‘∅) = 0)
139, 12syl 17 . . 3 (𝜑 → (𝑀‘∅) = 0)
148, 13eqtrd 2777 . 2 (𝜑 → (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0)
15 truae.1 . . . 4 dom 𝑀 = 𝑂
1615braew 34237 . . 3 (𝑀 ran measures → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
179, 16syl 17 . 2 (𝜑 → ({𝑥𝑂𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜓}) = 0))
1814, 17mpbird 257 1 (𝜑 → {𝑥𝑂𝜓}a.e.𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  wcel 2108  wral 3061  {crab 3436  wss 3966  c0 4342   cuni 4915   class class class wbr 5151  dom cdm 5693  ran crn 5694  cfv 6569  0cc0 11162  measurescmeas 34190  a.e.cae 34232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-ov 7441  df-esum 34023  df-meas 34191  df-ae 34234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator