Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truae Structured version   Visualization version   GIF version

Theorem truae 33705
Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Hypotheses
Ref Expression
truae.1 βˆͺ dom 𝑀 = 𝑂
truae.2 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
truae.3 (πœ‘ β†’ πœ“)
Assertion
Ref Expression
truae (πœ‘ β†’ {π‘₯ ∈ 𝑂 ∣ πœ“}a.e.𝑀)
Distinct variable groups:   π‘₯,𝑂   πœ‘,π‘₯
Allowed substitution hints:   πœ“(π‘₯)   𝑀(π‘₯)

Proof of Theorem truae
StepHypRef Expression
1 truae.3 . . . . . . . 8 (πœ‘ β†’ πœ“)
21pm2.24d 151 . . . . . . 7 (πœ‘ β†’ (Β¬ πœ“ β†’ π‘₯ ∈ βˆ…))
32ralrimivw 3149 . . . . . 6 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑂 (Β¬ πœ“ β†’ π‘₯ ∈ βˆ…))
4 rabss 4069 . . . . . 6 ({π‘₯ ∈ 𝑂 ∣ Β¬ πœ“} βŠ† βˆ… ↔ βˆ€π‘₯ ∈ 𝑂 (Β¬ πœ“ β†’ π‘₯ ∈ βˆ…))
53, 4sylibr 233 . . . . 5 (πœ‘ β†’ {π‘₯ ∈ 𝑂 ∣ Β¬ πœ“} βŠ† βˆ…)
6 ss0 4398 . . . . 5 ({π‘₯ ∈ 𝑂 ∣ Β¬ πœ“} βŠ† βˆ… β†’ {π‘₯ ∈ 𝑂 ∣ Β¬ πœ“} = βˆ…)
75, 6syl 17 . . . 4 (πœ‘ β†’ {π‘₯ ∈ 𝑂 ∣ Β¬ πœ“} = βˆ…)
87fveq2d 6895 . . 3 (πœ‘ β†’ (π‘€β€˜{π‘₯ ∈ 𝑂 ∣ Β¬ πœ“}) = (π‘€β€˜βˆ…))
9 truae.2 . . . 4 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
10 measbasedom 33664 . . . . 5 (𝑀 ∈ βˆͺ ran measures ↔ 𝑀 ∈ (measuresβ€˜dom 𝑀))
11 measvnul 33668 . . . . 5 (𝑀 ∈ (measuresβ€˜dom 𝑀) β†’ (π‘€β€˜βˆ…) = 0)
1210, 11sylbi 216 . . . 4 (𝑀 ∈ βˆͺ ran measures β†’ (π‘€β€˜βˆ…) = 0)
139, 12syl 17 . . 3 (πœ‘ β†’ (π‘€β€˜βˆ…) = 0)
148, 13eqtrd 2771 . 2 (πœ‘ β†’ (π‘€β€˜{π‘₯ ∈ 𝑂 ∣ Β¬ πœ“}) = 0)
15 truae.1 . . . 4 βˆͺ dom 𝑀 = 𝑂
1615braew 33704 . . 3 (𝑀 ∈ βˆͺ ran measures β†’ ({π‘₯ ∈ 𝑂 ∣ πœ“}a.e.𝑀 ↔ (π‘€β€˜{π‘₯ ∈ 𝑂 ∣ Β¬ πœ“}) = 0))
179, 16syl 17 . 2 (πœ‘ β†’ ({π‘₯ ∈ 𝑂 ∣ πœ“}a.e.𝑀 ↔ (π‘€β€˜{π‘₯ ∈ 𝑂 ∣ Β¬ πœ“}) = 0))
1814, 17mpbird 257 1 (πœ‘ β†’ {π‘₯ ∈ 𝑂 ∣ πœ“}a.e.𝑀)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431   βŠ† wss 3948  βˆ…c0 4322  βˆͺ cuni 4908   class class class wbr 5148  dom cdm 5676  ran crn 5677  β€˜cfv 6543  0cc0 11116  measurescmeas 33657  a.e.cae 33699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-esum 33490  df-meas 33658  df-ae 33701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator