| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > truae | Structured version Visualization version GIF version | ||
| Description: A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.) |
| Ref | Expression |
|---|---|
| truae.1 | ⊢ ∪ dom 𝑀 = 𝑂 |
| truae.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
| truae.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| truae | ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | truae.3 | . . . . . . . 8 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | pm2.24d 151 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝜓 → 𝑥 ∈ ∅)) |
| 3 | 2 | ralrimivw 3129 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) |
| 4 | rabss 4035 | . . . . . 6 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ ↔ ∀𝑥 ∈ 𝑂 (¬ 𝜓 → 𝑥 ∈ ∅)) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅) |
| 6 | ss0 4365 | . . . . 5 ⊢ ({𝑥 ∈ 𝑂 ∣ ¬ 𝜓} ⊆ ∅ → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ ¬ 𝜓} = ∅) |
| 8 | 7 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = (𝑀‘∅)) |
| 9 | truae.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
| 10 | measbasedom 34192 | . . . . 5 ⊢ (𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ (measures‘dom 𝑀)) | |
| 11 | measvnul 34196 | . . . . 5 ⊢ (𝑀 ∈ (measures‘dom 𝑀) → (𝑀‘∅) = 0) | |
| 12 | 10, 11 | sylbi 217 | . . . 4 ⊢ (𝑀 ∈ ∪ ran measures → (𝑀‘∅) = 0) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀‘∅) = 0) |
| 14 | 8, 13 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0) |
| 15 | truae.1 | . . . 4 ⊢ ∪ dom 𝑀 = 𝑂 | |
| 16 | 15 | braew 34232 | . . 3 ⊢ (𝑀 ∈ ∪ ran measures → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 17 | 9, 16 | syl 17 | . 2 ⊢ (𝜑 → ({𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀 ↔ (𝑀‘{𝑥 ∈ 𝑂 ∣ ¬ 𝜓}) = 0)) |
| 18 | 14, 17 | mpbird 257 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝑂 ∣ 𝜓}a.e.𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 class class class wbr 5107 dom cdm 5638 ran crn 5639 ‘cfv 6511 0cc0 11068 measurescmeas 34185 a.e.cae 34227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-esum 34018 df-meas 34186 df-ae 34229 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |