MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval Structured version   Visualization version   GIF version

Theorem pltval 18347
Description: Less-than relation. (df-pss 3951 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltval ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))

Proof of Theorem pltval
StepHypRef Expression
1 pltval.l . . . . 5 = (le‘𝐾)
2 pltval.s . . . . 5 < = (lt‘𝐾)
31, 2pltfval 18346 . . . 4 (𝐾𝐴< = ( ∖ I ))
43breqd 5135 . . 3 (𝐾𝐴 → (𝑋 < 𝑌𝑋( ∖ I )𝑌))
5 brdif 5177 . . . 4 (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌))
6 ideqg 5836 . . . . . . 7 (𝑌𝐶 → (𝑋 I 𝑌𝑋 = 𝑌))
76necon3bbid 2970 . . . . . 6 (𝑌𝐶 → (¬ 𝑋 I 𝑌𝑋𝑌))
87adantl 481 . . . . 5 ((𝑋𝐵𝑌𝐶) → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 630 . . . 4 ((𝑋𝐵𝑌𝐶) → ((𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 𝑌𝑋𝑌)))
105, 9bitrid 283 . . 3 ((𝑋𝐵𝑌𝐶) → (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
114, 10sylan9bb 509 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
12113impb 1114 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cdif 3928   class class class wbr 5124   I cid 5552  cfv 6536  lecple 17283  ltcplt 18325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-plt 18345
This theorem is referenced by:  pltle  18348  pltne  18349  pleval2i  18351  pltnle  18353  pltval3  18354  plttr  18357  latnlemlt  18487  latnle  18488  ipolt  18550  ogrpaddlt  33090  ogrpsublt  33094  ornglmullt  33334  orngrmullt  33335  orngmullt  33336  ofldlt1  33340  opltn0  39213  cvrval2  39297  cvrnbtwn2  39298  cvrnbtwn3  39299  cvrle  39301  cvrnbtwn4  39302  cvrne  39304  atlltn0  39329  hlrelat5N  39425  llnle  39542  lplnle  39564  llncvrlpln2  39581  lplncvrlvol2  39639  lhp2lt  40025  lautlt  40115
  Copyright terms: Public domain W3C validator