MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval Structured version   Visualization version   GIF version

Theorem pltval 18402
Description: Less-than relation. (df-pss 3996 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltval ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))

Proof of Theorem pltval
StepHypRef Expression
1 pltval.l . . . . 5 = (le‘𝐾)
2 pltval.s . . . . 5 < = (lt‘𝐾)
31, 2pltfval 18401 . . . 4 (𝐾𝐴< = ( ∖ I ))
43breqd 5177 . . 3 (𝐾𝐴 → (𝑋 < 𝑌𝑋( ∖ I )𝑌))
5 brdif 5219 . . . 4 (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌))
6 ideqg 5876 . . . . . . 7 (𝑌𝐶 → (𝑋 I 𝑌𝑋 = 𝑌))
76necon3bbid 2984 . . . . . 6 (𝑌𝐶 → (¬ 𝑋 I 𝑌𝑋𝑌))
87adantl 481 . . . . 5 ((𝑋𝐵𝑌𝐶) → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 629 . . . 4 ((𝑋𝐵𝑌𝐶) → ((𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 𝑌𝑋𝑌)))
105, 9bitrid 283 . . 3 ((𝑋𝐵𝑌𝐶) → (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
114, 10sylan9bb 509 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
12113impb 1115 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973   class class class wbr 5166   I cid 5592  cfv 6573  lecple 17318  ltcplt 18378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-plt 18400
This theorem is referenced by:  pltle  18403  pltne  18404  pleval2i  18406  pltnle  18408  pltval3  18409  plttr  18412  latnlemlt  18542  latnle  18543  ipolt  18605  ogrpaddlt  33067  ogrpsublt  33071  ornglmullt  33302  orngrmullt  33303  orngmullt  33304  ofldlt1  33308  opltn0  39146  cvrval2  39230  cvrnbtwn2  39231  cvrnbtwn3  39232  cvrle  39234  cvrnbtwn4  39235  cvrne  39237  atlltn0  39262  hlrelat5N  39358  llnle  39475  lplnle  39497  llncvrlpln2  39514  lplncvrlvol2  39572  lhp2lt  39958  lautlt  40048
  Copyright terms: Public domain W3C validator