![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltval | Structured version Visualization version GIF version |
Description: Less-than relation. (df-pss 3966 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
pltval.l | β’ β€ = (leβπΎ) |
pltval.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltval | β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π β€ π β§ π β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . . 5 β’ β€ = (leβπΎ) | |
2 | pltval.s | . . . . 5 β’ < = (ltβπΎ) | |
3 | 1, 2 | pltfval 18288 | . . . 4 β’ (πΎ β π΄ β < = ( β€ β I )) |
4 | 3 | breqd 5158 | . . 3 β’ (πΎ β π΄ β (π < π β π( β€ β I )π)) |
5 | brdif 5200 | . . . 4 β’ (π( β€ β I )π β (π β€ π β§ Β¬ π I π)) | |
6 | ideqg 5850 | . . . . . . 7 β’ (π β πΆ β (π I π β π = π)) | |
7 | 6 | necon3bbid 2976 | . . . . . 6 β’ (π β πΆ β (Β¬ π I π β π β π)) |
8 | 7 | adantl 480 | . . . . 5 β’ ((π β π΅ β§ π β πΆ) β (Β¬ π I π β π β π)) |
9 | 8 | anbi2d 627 | . . . 4 β’ ((π β π΅ β§ π β πΆ) β ((π β€ π β§ Β¬ π I π) β (π β€ π β§ π β π))) |
10 | 5, 9 | bitrid 282 | . . 3 β’ ((π β π΅ β§ π β πΆ) β (π( β€ β I )π β (π β€ π β§ π β π))) |
11 | 4, 10 | sylan9bb 508 | . 2 β’ ((πΎ β π΄ β§ (π β π΅ β§ π β πΆ)) β (π < π β (π β€ π β§ π β π))) |
12 | 11 | 3impb 1113 | 1 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π β€ π β§ π β π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 β cdif 3944 class class class wbr 5147 I cid 5572 βcfv 6542 lecple 17208 ltcplt 18265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-plt 18287 |
This theorem is referenced by: pltle 18290 pltne 18291 pleval2i 18293 pltnle 18295 pltval3 18296 plttr 18299 latnlemlt 18429 latnle 18430 ipolt 18492 ogrpaddlt 32505 ogrpsublt 32509 ornglmullt 32695 orngrmullt 32696 orngmullt 32697 ofldlt1 32701 opltn0 38363 cvrval2 38447 cvrnbtwn2 38448 cvrnbtwn3 38449 cvrle 38451 cvrnbtwn4 38452 cvrne 38454 atlltn0 38479 hlrelat5N 38575 llnle 38692 lplnle 38714 llncvrlpln2 38731 lplncvrlvol2 38789 lhp2lt 39175 lautlt 39265 |
Copyright terms: Public domain | W3C validator |