MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval Structured version   Visualization version   GIF version

Theorem pltval 17838
Description: Less-than relation. (df-pss 3885 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltval ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))

Proof of Theorem pltval
StepHypRef Expression
1 pltval.l . . . . 5 = (le‘𝐾)
2 pltval.s . . . . 5 < = (lt‘𝐾)
31, 2pltfval 17837 . . . 4 (𝐾𝐴< = ( ∖ I ))
43breqd 5064 . . 3 (𝐾𝐴 → (𝑋 < 𝑌𝑋( ∖ I )𝑌))
5 brdif 5106 . . . 4 (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌))
6 ideqg 5720 . . . . . . 7 (𝑌𝐶 → (𝑋 I 𝑌𝑋 = 𝑌))
76necon3bbid 2978 . . . . . 6 (𝑌𝐶 → (¬ 𝑋 I 𝑌𝑋𝑌))
87adantl 485 . . . . 5 ((𝑋𝐵𝑌𝐶) → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 632 . . . 4 ((𝑋𝐵𝑌𝐶) → ((𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 𝑌𝑋𝑌)))
105, 9syl5bb 286 . . 3 ((𝑋𝐵𝑌𝐶) → (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
114, 10sylan9bb 513 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
12113impb 1117 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  cdif 3863   class class class wbr 5053   I cid 5454  cfv 6380  lecple 16809  ltcplt 17815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-plt 17836
This theorem is referenced by:  pltle  17839  pltne  17840  pleval2i  17842  pltnle  17844  pltval3  17845  plttr  17848  latnlemlt  17978  latnle  17979  ipolt  18041  ogrpaddlt  31062  ogrpsublt  31066  ornglmullt  31225  orngrmullt  31226  orngmullt  31227  ofldlt1  31231  opltn0  36941  cvrval2  37025  cvrnbtwn2  37026  cvrnbtwn3  37027  cvrle  37029  cvrnbtwn4  37030  cvrne  37032  atlltn0  37057  hlrelat5N  37152  llnle  37269  lplnle  37291  llncvrlpln2  37308  lplncvrlvol2  37366  lhp2lt  37752  lautlt  37842
  Copyright terms: Public domain W3C validator