Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pltval | Structured version Visualization version GIF version |
Description: Less-than relation. (df-pss 3885 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
pltval.l | ⊢ ≤ = (le‘𝐾) |
pltval.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
pltval | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
2 | pltval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltfval 17837 | . . . 4 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
4 | 3 | breqd 5064 | . . 3 ⊢ (𝐾 ∈ 𝐴 → (𝑋 < 𝑌 ↔ 𝑋( ≤ ∖ I )𝑌)) |
5 | brdif 5106 | . . . 4 ⊢ (𝑋( ≤ ∖ I )𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌)) | |
6 | ideqg 5720 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐶 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
7 | 6 | necon3bbid 2978 | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
8 | 7 | adantl 485 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
9 | 8 | anbi2d 632 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
10 | 5, 9 | syl5bb 286 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋( ≤ ∖ I )𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
11 | 4, 10 | sylan9bb 513 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
12 | 11 | 3impb 1117 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∖ cdif 3863 class class class wbr 5053 I cid 5454 ‘cfv 6380 lecple 16809 ltcplt 17815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-plt 17836 |
This theorem is referenced by: pltle 17839 pltne 17840 pleval2i 17842 pltnle 17844 pltval3 17845 plttr 17848 latnlemlt 17978 latnle 17979 ipolt 18041 ogrpaddlt 31062 ogrpsublt 31066 ornglmullt 31225 orngrmullt 31226 orngmullt 31227 ofldlt1 31231 opltn0 36941 cvrval2 37025 cvrnbtwn2 37026 cvrnbtwn3 37027 cvrle 37029 cvrnbtwn4 37030 cvrne 37032 atlltn0 37057 hlrelat5N 37152 llnle 37269 lplnle 37291 llncvrlpln2 37308 lplncvrlvol2 37366 lhp2lt 37752 lautlt 37842 |
Copyright terms: Public domain | W3C validator |