| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltval | Structured version Visualization version GIF version | ||
| Description: Less-than relation. (df-pss 3925 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltval | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 2 | pltval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltfval 18253 | . . . 4 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| 4 | 3 | breqd 5106 | . . 3 ⊢ (𝐾 ∈ 𝐴 → (𝑋 < 𝑌 ↔ 𝑋( ≤ ∖ I )𝑌)) |
| 5 | brdif 5148 | . . . 4 ⊢ (𝑋( ≤ ∖ I )𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌)) | |
| 6 | ideqg 5798 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐶 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 7 | 6 | necon3bbid 2962 | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
| 9 | 8 | anbi2d 630 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 10 | 5, 9 | bitrid 283 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋( ≤ ∖ I )𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 11 | 4, 10 | sylan9bb 509 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 12 | 11 | 3impb 1114 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 class class class wbr 5095 I cid 5517 ‘cfv 6486 lecple 17186 ltcplt 18232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-plt 18252 |
| This theorem is referenced by: pltle 18255 pltne 18256 pleval2i 18258 pltnle 18260 pltval3 18261 plttr 18264 latnlemlt 18396 latnle 18397 ipolt 18459 ogrpaddlt 20035 ogrpsublt 20039 ornglmullt 20772 orngrmullt 20773 orngmullt 20774 ofldlt1 20778 opltn0 39168 cvrval2 39252 cvrnbtwn2 39253 cvrnbtwn3 39254 cvrle 39256 cvrnbtwn4 39257 cvrne 39259 atlltn0 39284 hlrelat5N 39380 llnle 39497 lplnle 39519 llncvrlpln2 39536 lplncvrlvol2 39594 lhp2lt 39980 lautlt 40070 |
| Copyright terms: Public domain | W3C validator |