| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pltval | Structured version Visualization version GIF version | ||
| Description: Less-than relation. (df-pss 3951 analog.) (Contributed by NM, 12-Oct-2011.) |
| Ref | Expression |
|---|---|
| pltval.l | ⊢ ≤ = (le‘𝐾) |
| pltval.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| pltval | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 2 | pltval.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 3 | 1, 2 | pltfval 18346 | . . . 4 ⊢ (𝐾 ∈ 𝐴 → < = ( ≤ ∖ I )) |
| 4 | 3 | breqd 5135 | . . 3 ⊢ (𝐾 ∈ 𝐴 → (𝑋 < 𝑌 ↔ 𝑋( ≤ ∖ I )𝑌)) |
| 5 | brdif 5177 | . . . 4 ⊢ (𝑋( ≤ ∖ I )𝑌 ↔ (𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌)) | |
| 6 | ideqg 5836 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐶 → (𝑋 I 𝑌 ↔ 𝑋 = 𝑌)) | |
| 7 | 6 | necon3bbid 2970 | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌)) |
| 9 | 8 | anbi2d 630 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → ((𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 10 | 5, 9 | bitrid 283 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋( ≤ ∖ I )𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 11 | 4, 10 | sylan9bb 509 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| 12 | 11 | 3impb 1114 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶) → (𝑋 < 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 class class class wbr 5124 I cid 5552 ‘cfv 6536 lecple 17283 ltcplt 18325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-plt 18345 |
| This theorem is referenced by: pltle 18348 pltne 18349 pleval2i 18351 pltnle 18353 pltval3 18354 plttr 18357 latnlemlt 18487 latnle 18488 ipolt 18550 ogrpaddlt 33090 ogrpsublt 33094 ornglmullt 33334 orngrmullt 33335 orngmullt 33336 ofldlt1 33340 opltn0 39213 cvrval2 39297 cvrnbtwn2 39298 cvrnbtwn3 39299 cvrle 39301 cvrnbtwn4 39302 cvrne 39304 atlltn0 39329 hlrelat5N 39425 llnle 39542 lplnle 39564 llncvrlpln2 39581 lplncvrlvol2 39639 lhp2lt 40025 lautlt 40115 |
| Copyright terms: Public domain | W3C validator |