![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pltval | Structured version Visualization version GIF version |
Description: Less-than relation. (df-pss 3965 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
pltval.l | β’ β€ = (leβπΎ) |
pltval.s | β’ < = (ltβπΎ) |
Ref | Expression |
---|---|
pltval | β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π β€ π β§ π β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltval.l | . . . . 5 β’ β€ = (leβπΎ) | |
2 | pltval.s | . . . . 5 β’ < = (ltβπΎ) | |
3 | 1, 2 | pltfval 18322 | . . . 4 β’ (πΎ β π΄ β < = ( β€ β I )) |
4 | 3 | breqd 5159 | . . 3 β’ (πΎ β π΄ β (π < π β π( β€ β I )π)) |
5 | brdif 5201 | . . . 4 β’ (π( β€ β I )π β (π β€ π β§ Β¬ π I π)) | |
6 | ideqg 5853 | . . . . . . 7 β’ (π β πΆ β (π I π β π = π)) | |
7 | 6 | necon3bbid 2968 | . . . . . 6 β’ (π β πΆ β (Β¬ π I π β π β π)) |
8 | 7 | adantl 480 | . . . . 5 β’ ((π β π΅ β§ π β πΆ) β (Β¬ π I π β π β π)) |
9 | 8 | anbi2d 628 | . . . 4 β’ ((π β π΅ β§ π β πΆ) β ((π β€ π β§ Β¬ π I π) β (π β€ π β§ π β π))) |
10 | 5, 9 | bitrid 282 | . . 3 β’ ((π β π΅ β§ π β πΆ) β (π( β€ β I )π β (π β€ π β§ π β π))) |
11 | 4, 10 | sylan9bb 508 | . 2 β’ ((πΎ β π΄ β§ (π β π΅ β§ π β πΆ)) β (π < π β (π β€ π β§ π β π))) |
12 | 11 | 3impb 1112 | 1 β’ ((πΎ β π΄ β§ π β π΅ β§ π β πΆ) β (π < π β (π β€ π β§ π β π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 β cdif 3942 class class class wbr 5148 I cid 5574 βcfv 6547 lecple 17239 ltcplt 18299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-plt 18321 |
This theorem is referenced by: pltle 18324 pltne 18325 pleval2i 18327 pltnle 18329 pltval3 18330 plttr 18333 latnlemlt 18463 latnle 18464 ipolt 18526 ogrpaddlt 32854 ogrpsublt 32858 ornglmullt 33082 orngrmullt 33083 orngmullt 33084 ofldlt1 33088 opltn0 38731 cvrval2 38815 cvrnbtwn2 38816 cvrnbtwn3 38817 cvrle 38819 cvrnbtwn4 38820 cvrne 38822 atlltn0 38847 hlrelat5N 38943 llnle 39060 lplnle 39082 llncvrlpln2 39099 lplncvrlvol2 39157 lhp2lt 39543 lautlt 39633 |
Copyright terms: Public domain | W3C validator |