MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltval Structured version   Visualization version   GIF version

Theorem pltval 18390
Description: Less-than relation. (df-pss 3983 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltval ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))

Proof of Theorem pltval
StepHypRef Expression
1 pltval.l . . . . 5 = (le‘𝐾)
2 pltval.s . . . . 5 < = (lt‘𝐾)
31, 2pltfval 18389 . . . 4 (𝐾𝐴< = ( ∖ I ))
43breqd 5159 . . 3 (𝐾𝐴 → (𝑋 < 𝑌𝑋( ∖ I )𝑌))
5 brdif 5201 . . . 4 (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌))
6 ideqg 5865 . . . . . . 7 (𝑌𝐶 → (𝑋 I 𝑌𝑋 = 𝑌))
76necon3bbid 2976 . . . . . 6 (𝑌𝐶 → (¬ 𝑋 I 𝑌𝑋𝑌))
87adantl 481 . . . . 5 ((𝑋𝐵𝑌𝐶) → (¬ 𝑋 I 𝑌𝑋𝑌))
98anbi2d 630 . . . 4 ((𝑋𝐵𝑌𝐶) → ((𝑋 𝑌 ∧ ¬ 𝑋 I 𝑌) ↔ (𝑋 𝑌𝑋𝑌)))
105, 9bitrid 283 . . 3 ((𝑋𝐵𝑌𝐶) → (𝑋( ∖ I )𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
114, 10sylan9bb 509 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐶)) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
12113impb 1114 1 ((𝐾𝐴𝑋𝐵𝑌𝐶) → (𝑋 < 𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cdif 3960   class class class wbr 5148   I cid 5582  cfv 6563  lecple 17305  ltcplt 18366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-plt 18388
This theorem is referenced by:  pltle  18391  pltne  18392  pleval2i  18394  pltnle  18396  pltval3  18397  plttr  18400  latnlemlt  18530  latnle  18531  ipolt  18593  ogrpaddlt  33077  ogrpsublt  33081  ornglmullt  33317  orngrmullt  33318  orngmullt  33319  ofldlt1  33323  opltn0  39172  cvrval2  39256  cvrnbtwn2  39257  cvrnbtwn3  39258  cvrle  39260  cvrnbtwn4  39261  cvrne  39263  atlltn0  39288  hlrelat5N  39384  llnle  39501  lplnle  39523  llncvrlpln2  39540  lplncvrlvol2  39598  lhp2lt  39984  lautlt  40074
  Copyright terms: Public domain W3C validator