![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd2 | Structured version Visualization version GIF version |
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd2.1 | ⊢ 𝐴 ∈ V |
brtxpsd2.2 | ⊢ 𝐵 ∈ V |
brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
Ref | Expression |
---|---|
brtxpsd2 | ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
2 | brtxpsd2.3 | . . . . 5 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
3 | 2 | breqi 4968 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵) |
4 | brdif 5015 | . . . 4 ⊢ (𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)) | |
5 | 3, 4 | bitri 276 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)) |
6 | 1, 5 | mpbiran 705 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵) |
7 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
9 | 7, 8 | brtxpsd 32964 | . 2 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
10 | 6, 9 | bitri 276 | 1 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 ∀wal 1520 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∖ cdif 3856 △ csymdif 4138 class class class wbr 4962 E cep 5352 ran crn 5444 ⊗ ctxp 32900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-symdif 4139 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-eprel 5353 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fo 6231 df-fv 6233 df-1st 7545 df-2nd 7546 df-txp 32924 |
This theorem is referenced by: brtxpsd3 32966 |
Copyright terms: Public domain | W3C validator |