| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd2 | Structured version Visualization version GIF version | ||
| Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
| Ref | Expression |
|---|---|
| brtxpsd2.1 | ⊢ 𝐴 ∈ V |
| brtxpsd2.2 | ⊢ 𝐵 ∈ V |
| brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
| brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
| Ref | Expression |
|---|---|
| brtxpsd2 | ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
| 2 | brtxpsd2.3 | . . . . 5 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
| 3 | 2 | breqi 5095 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵) |
| 4 | brdif 5142 | . . . 4 ⊢ (𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)) |
| 6 | 1, 5 | mpbiran 709 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵) |
| 7 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 8 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 9 | 7, 8 | brtxpsd 35936 | . 2 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| 10 | 6, 9 | bitri 275 | 1 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 △ csymdif 4199 class class class wbr 5089 E cep 5513 ran crn 5615 ⊗ ctxp 35872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-symdif 4200 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1st 7921 df-2nd 7922 df-txp 35896 |
| This theorem is referenced by: brtxpsd3 35938 |
| Copyright terms: Public domain | W3C validator |