Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd2 Structured version   Visualization version   GIF version

Theorem brtxpsd2 35896
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
Assertion
Ref Expression
brtxpsd2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd2
StepHypRef Expression
1 brtxpsd2.4 . . 3 𝐴𝐶𝐵
2 brtxpsd2.3 . . . . 5 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
32breqi 5149 . . . 4 (𝐴𝑅𝐵𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵)
4 brdif 5196 . . . 4 (𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵))
53, 4bitri 275 . . 3 (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵))
61, 5mpbiran 709 . 2 (𝐴𝑅𝐵 ↔ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)
7 brtxpsd2.1 . . 3 𝐴 ∈ V
8 brtxpsd2.2 . . 3 𝐵 ∈ V
97, 8brtxpsd 35895 . 2 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
106, 9bitri 275 1 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  csymdif 4252   class class class wbr 5143   E cep 5583  ran crn 5686  ctxp 35831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-symdif 4253  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-eprel 5584  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-1st 8014  df-2nd 8015  df-txp 35855
This theorem is referenced by:  brtxpsd3  35897
  Copyright terms: Public domain W3C validator