![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtxpsd2 | Structured version Visualization version GIF version |
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
Ref | Expression |
---|---|
brtxpsd2.1 | ⊢ 𝐴 ∈ V |
brtxpsd2.2 | ⊢ 𝐵 ∈ V |
brtxpsd2.3 | ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) |
brtxpsd2.4 | ⊢ 𝐴𝐶𝐵 |
Ref | Expression |
---|---|
brtxpsd2 | ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxpsd2.4 | . . 3 ⊢ 𝐴𝐶𝐵 | |
2 | brtxpsd2.3 | . . . . 5 ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) | |
3 | 2 | breqi 5154 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵) |
4 | brdif 5201 | . . . 4 ⊢ (𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)) | |
5 | 3, 4 | bitri 275 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)) |
6 | 1, 5 | mpbiran 706 | . 2 ⊢ (𝐴𝑅𝐵 ↔ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵) |
7 | brtxpsd2.1 | . . 3 ⊢ 𝐴 ∈ V | |
8 | brtxpsd2.2 | . . 3 ⊢ 𝐵 ∈ V | |
9 | 7, 8 | brtxpsd 35171 | . 2 ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
10 | 6, 9 | bitri 275 | 1 ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 △ csymdif 4241 class class class wbr 5148 E cep 5579 ran crn 5677 ⊗ ctxp 35107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-symdif 4242 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-1st 7978 df-2nd 7979 df-txp 35131 |
This theorem is referenced by: brtxpsd3 35173 |
Copyright terms: Public domain | W3C validator |