Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd2 Structured version   Visualization version   GIF version

Theorem brtxpsd2 35937
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
Assertion
Ref Expression
brtxpsd2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd2
StepHypRef Expression
1 brtxpsd2.4 . . 3 𝐴𝐶𝐵
2 brtxpsd2.3 . . . . 5 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
32breqi 5095 . . . 4 (𝐴𝑅𝐵𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵)
4 brdif 5142 . . . 4 (𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵))
53, 4bitri 275 . . 3 (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵))
61, 5mpbiran 709 . 2 (𝐴𝑅𝐵 ↔ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)
7 brtxpsd2.1 . . 3 𝐴 ∈ V
8 brtxpsd2.2 . . 3 𝐵 ∈ V
97, 8brtxpsd 35936 . 2 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
106, 9bitri 275 1 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  csymdif 4199   class class class wbr 5089   E cep 5513  ran crn 5615  ctxp 35872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-symdif 4200  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-1st 7921  df-2nd 7922  df-txp 35896
This theorem is referenced by:  brtxpsd3  35938
  Copyright terms: Public domain W3C validator