Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd2 Structured version   Visualization version   GIF version

Theorem brtxpsd2 32965
Description: Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
brtxpsd2.4 𝐴𝐶𝐵
Assertion
Ref Expression
brtxpsd2 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)

Proof of Theorem brtxpsd2
StepHypRef Expression
1 brtxpsd2.4 . . 3 𝐴𝐶𝐵
2 brtxpsd2.3 . . . . 5 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))
32breqi 4968 . . . 4 (𝐴𝑅𝐵𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵)
4 brdif 5015 . . . 4 (𝐴(𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V)))𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵))
53, 4bitri 276 . . 3 (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐵 ∧ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵))
61, 5mpbiran 705 . 2 (𝐴𝑅𝐵 ↔ ¬ 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵)
7 brtxpsd2.1 . . 3 𝐴 ∈ V
8 brtxpsd2.2 . . 3 𝐵 ∈ V
97, 8brtxpsd 32964 . 2 𝐴ran ((V ⊗ E ) △ (𝑆 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
106, 9bitri 276 1 (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  wal 1520   = wceq 1522  wcel 2081  Vcvv 3437  cdif 3856  csymdif 4138   class class class wbr 4962   E cep 5352  ran crn 5444  ctxp 32900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-symdif 4139  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-eprel 5353  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-fo 6231  df-fv 6233  df-1st 7545  df-2nd 7546  df-txp 32924
This theorem is referenced by:  brtxpsd3  32966
  Copyright terms: Public domain W3C validator