Proof of Theorem brinxper
Step | Hyp | Ref
| Expression |
1 | | relinxp 5812 |
. 2
⊢ Rel (
∼
∩ (𝑉 × 𝑉)) |
2 | | brxp 5723 |
. . . . 5
⊢ (𝑥(𝑉 × 𝑉)𝑦 ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
3 | | brinxper.s |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉 → (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥)) |
4 | 3 | adantr 479 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ∼ 𝑦 → 𝑦 ∼ 𝑥)) |
5 | | ancom 459 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ↔ (𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
6 | | brxp 5723 |
. . . . . . 7
⊢ (𝑦(𝑉 × 𝑉)𝑥 ↔ (𝑦 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
7 | 5, 6 | sylbb2 237 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → 𝑦(𝑉 × 𝑉)𝑥) |
8 | 4, 7 | jctird 525 |
. . . . 5
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑥 ∧ 𝑦(𝑉 × 𝑉)𝑥))) |
9 | 2, 8 | sylbi 216 |
. . . 4
⊢ (𝑥(𝑉 × 𝑉)𝑦 → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑥 ∧ 𝑦(𝑉 × 𝑉)𝑥))) |
10 | 9 | impcom 406 |
. . 3
⊢ ((𝑥 ∼ 𝑦 ∧ 𝑥(𝑉 × 𝑉)𝑦) → (𝑦 ∼ 𝑥 ∧ 𝑦(𝑉 × 𝑉)𝑥)) |
11 | | brin 5197 |
. . 3
⊢ (𝑥( ∼ ∩ (𝑉 × 𝑉))𝑦 ↔ (𝑥 ∼ 𝑦 ∧ 𝑥(𝑉 × 𝑉)𝑦)) |
12 | | brin 5197 |
. . 3
⊢ (𝑦( ∼ ∩ (𝑉 × 𝑉))𝑥 ↔ (𝑦 ∼ 𝑥 ∧ 𝑦(𝑉 × 𝑉)𝑥)) |
13 | 10, 11, 12 | 3imtr4i 291 |
. 2
⊢ (𝑥( ∼ ∩ (𝑉 × 𝑉))𝑦 → 𝑦( ∼ ∩ (𝑉 × 𝑉))𝑥) |
14 | | brin 5197 |
. . . . . . 7
⊢ (𝑦( ∼ ∩ (𝑉 × 𝑉))𝑧 ↔ (𝑦 ∼ 𝑧 ∧ 𝑦(𝑉 × 𝑉)𝑧)) |
15 | | brxp 5723 |
. . . . . . . . . 10
⊢ (𝑦(𝑉 × 𝑉)𝑧 ↔ (𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) |
16 | | brinxper.t |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑉 → ((𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧) → 𝑥 ∼ 𝑧)) |
17 | 16 | expd 414 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑉 → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧))) |
18 | 17 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 ∼ 𝑦 → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧))) |
19 | 18 | impcom 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑦 ∼ 𝑧 → 𝑥 ∼ 𝑧)) |
20 | 19 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∼ 𝑧 → ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∼ 𝑧)) |
21 | 20 | adantl 480 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ 𝑦 ∼ 𝑧) → ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∼ 𝑧)) |
22 | 21 | imp 405 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ 𝑦 ∼ 𝑧) ∧ (𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) → 𝑥 ∼ 𝑧) |
23 | | simplr 767 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ 𝑦 ∼ 𝑧) → 𝑧 ∈ 𝑉) |
24 | | simprl 769 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
25 | 23, 24 | anim12ci 612 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ 𝑦 ∼ 𝑧) ∧ (𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) → (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) |
26 | 22, 25 | jca 510 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ∧ 𝑦 ∼ 𝑧) ∧ (𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) → (𝑥 ∼ 𝑧 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉))) |
27 | 26 | exp31 418 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (𝑦 ∼ 𝑧 → ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 ∼ 𝑧 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉))))) |
28 | 15, 27 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑦(𝑉 × 𝑉)𝑧 → (𝑦 ∼ 𝑧 → ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 ∼ 𝑧 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉))))) |
29 | 28 | impcom 406 |
. . . . . . . 8
⊢ ((𝑦 ∼ 𝑧 ∧ 𝑦(𝑉 × 𝑉)𝑧) → ((𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 ∼ 𝑧 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)))) |
30 | 2 | anbi2i 621 |
. . . . . . . 8
⊢ ((𝑥 ∼ 𝑦 ∧ 𝑥(𝑉 × 𝑉)𝑦) ↔ (𝑥 ∼ 𝑦 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
31 | | brxp 5723 |
. . . . . . . . 9
⊢ (𝑥(𝑉 × 𝑉)𝑧 ↔ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) |
32 | 31 | anbi2i 621 |
. . . . . . . 8
⊢ ((𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧) ↔ (𝑥 ∼ 𝑧 ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉))) |
33 | 29, 30, 32 | 3imtr4g 295 |
. . . . . . 7
⊢ ((𝑦 ∼ 𝑧 ∧ 𝑦(𝑉 × 𝑉)𝑧) → ((𝑥 ∼ 𝑦 ∧ 𝑥(𝑉 × 𝑉)𝑦) → (𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧))) |
34 | 14, 33 | sylbi 216 |
. . . . . 6
⊢ (𝑦( ∼ ∩ (𝑉 × 𝑉))𝑧 → ((𝑥 ∼ 𝑦 ∧ 𝑥(𝑉 × 𝑉)𝑦) → (𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧))) |
35 | 34 | com12 32 |
. . . . 5
⊢ ((𝑥 ∼ 𝑦 ∧ 𝑥(𝑉 × 𝑉)𝑦) → (𝑦( ∼ ∩ (𝑉 × 𝑉))𝑧 → (𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧))) |
36 | 11, 35 | sylbi 216 |
. . . 4
⊢ (𝑥( ∼ ∩ (𝑉 × 𝑉))𝑦 → (𝑦( ∼ ∩ (𝑉 × 𝑉))𝑧 → (𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧))) |
37 | 36 | imp 405 |
. . 3
⊢ ((𝑥( ∼ ∩ (𝑉 × 𝑉))𝑦 ∧ 𝑦( ∼ ∩ (𝑉 × 𝑉))𝑧) → (𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧)) |
38 | | brin 5197 |
. . 3
⊢ (𝑥( ∼ ∩ (𝑉 × 𝑉))𝑧 ↔ (𝑥 ∼ 𝑧 ∧ 𝑥(𝑉 × 𝑉)𝑧)) |
39 | 37, 38 | sylibr 233 |
. 2
⊢ ((𝑥( ∼ ∩ (𝑉 × 𝑉))𝑦 ∧ 𝑦( ∼ ∩ (𝑉 × 𝑉))𝑧) → 𝑥( ∼ ∩ (𝑉 × 𝑉))𝑧) |
40 | | brinxper.r |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → 𝑥 ∼ 𝑥) |
41 | | id 22 |
. . . . . 6
⊢ (𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑉) |
42 | | brxp 5723 |
. . . . . 6
⊢ (𝑥(𝑉 × 𝑉)𝑥 ↔ (𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉)) |
43 | 41, 41, 42 | sylanbrc 581 |
. . . . 5
⊢ (𝑥 ∈ 𝑉 → 𝑥(𝑉 × 𝑉)𝑥) |
44 | 40, 43 | jca 510 |
. . . 4
⊢ (𝑥 ∈ 𝑉 → (𝑥 ∼ 𝑥 ∧ 𝑥(𝑉 × 𝑉)𝑥)) |
45 | 42 | simplbi 496 |
. . . . 5
⊢ (𝑥(𝑉 × 𝑉)𝑥 → 𝑥 ∈ 𝑉) |
46 | 45 | adantl 480 |
. . . 4
⊢ ((𝑥 ∼ 𝑥 ∧ 𝑥(𝑉 × 𝑉)𝑥) → 𝑥 ∈ 𝑉) |
47 | 44, 46 | impbii 208 |
. . 3
⊢ (𝑥 ∈ 𝑉 ↔ (𝑥 ∼ 𝑥 ∧ 𝑥(𝑉 × 𝑉)𝑥)) |
48 | | brin 5197 |
. . 3
⊢ (𝑥( ∼ ∩ (𝑉 × 𝑉))𝑥 ↔ (𝑥 ∼ 𝑥 ∧ 𝑥(𝑉 × 𝑉)𝑥)) |
49 | 47, 48 | bitr4i 277 |
. 2
⊢ (𝑥 ∈ 𝑉 ↔ 𝑥( ∼ ∩ (𝑉 × 𝑉))𝑥) |
50 | 1, 13, 39, 49 | iseri 8753 |
1
⊢ ( ∼ ∩
(𝑉 × 𝑉)) Er 𝑉 |